1
|
do Nascimento THO, Pereira-Figueiredo D, Veroneze L, Nascimento AA, De Logu F, Nassini R, Campello-Costa P, Faria-Melibeu ADC, Souza Monteiro de Araújo D, Calaza KC. Functions of TRPs in retinal tissue in physiological and pathological conditions. Front Mol Neurosci 2024; 17:1459083. [PMID: 39386050 PMCID: PMC11461470 DOI: 10.3389/fnmol.2024.1459083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
The Transient Receptor Potential (TRP) constitutes a family of channels subdivided into seven subfamilies: Ankyrin (TRPA), Canonical (TRPC), Melastatin (TRPM), Mucolipin (TRPML), no-mechano-potential C (TRPN), Polycystic (TRPP), and Vanilloid (TRPV). Although they are structurally similar to one another, the peculiarities of each subfamily are key to the response to stimuli and the signaling pathway that each one triggers. TRPs are non-selective cation channels, most of which are permeable to Ca2+, which is a well-established second messenger that modulates several intracellular signaling pathways and is involved in physiological and pathological conditions in various cell types. TRPs depolarize excitable cells by increasing the influx of Ca2+, Na+, and other cations. Most TRP families are activated by temperature variations, membrane stretching, or chemical agents and, therefore, are defined as polymodal channels. All TPRs are expressed, at some level, in the central nervous system (CNS) and ocular-related structures, such as the retina and optic nerve (ON), except the TRPP in the ON. TRPC, TRPM, TRPV, and TRPML are found in the retinal pigmented cells, whereas only TRPA1 and TRPM are detected in the uvea. Accordingly, several studies have focused on the search to unravel the role of TRPs in physiological and pathological conditions related to the eyes. Thus, this review aims to shed light on endogenous and exogenous modulators, triggered cell signaling pathways, and localization and roles of each subfamily of TRP channels in physiological and pathological conditions in the retina, optic nerve, and retinal pigmented epithelium of vertebrates.
Collapse
Affiliation(s)
- Thaianne Hanah Oliveira do Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
| | - Danniel Pereira-Figueiredo
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Louise Veroneze
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Amanda Alves Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Paula Campello-Costa
- Laboratory of Neuroplasticity, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | - Adriana da Cunha Faria-Melibeu
- Laboratory of Neurobiology of Development, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | | | - Karin Costa Calaza
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Patterson K, Chong JX, Chung DD, Lisch W, Karp CL, Dreisler E, Lockington D, Rohrbach JM, Garczarczyk-Asim D, Müller T, Tuft SJ, Skalicka P, Wilnai Y, Samra NN, Ibrahim A, Mandel H, Davidson AE, Liskova P, Aldave AJ, Bamshad MJ, Janecke AR. Lisch Epithelial Corneal Dystrophy Is Caused by Heterozygous Loss-of-Function Variants in MCOLN1. Am J Ophthalmol 2024; 258:183-195. [PMID: 37972748 DOI: 10.1016/j.ajo.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE To report the genetic etiology of Lisch epithelial corneal dystrophy (LECD). DESIGN Multicenter cohort study. METHODS A discovery cohort of 27 individuals with LECD from 17 families, including 7 affected members from the original LECD family, 6 patients from 2 new families and 14 simplex cases, was recruited. A cohort of 6 individuals carrying a pathogenic MCOLN1 (mucolipin 1) variant was reviewed for signs of LECD. Next-generation sequencing or targeted Sanger sequencing were used in all patients to identify pathogenic or likely pathogenic variants and penetrance of variants. RESULTS Nine rare heterozygous MCOLN1 variants were identified in 23 of 27 affected individuals from 13 families. The truncating nature of 7 variants and functional testing of 1 missense variant indicated that they result in MCOLN1 haploinsufficiency. Importantly, in the homozygous and compound-heterozygous state, 4 of 9 LECD-associated variants cause the rare lysosomal storage disorder mucolipidosis IV (MLIV). Autosomal recessive MLIV is a systemic disease and comprises neurodegeneration as well as corneal opacity of infantile-onset with epithelial autofluorescent lysosomal inclusions. However, the 6 parents of 3 patients with MLIV confirmed to carry pathogenic MCOLN1 variants did not have the LECD phenotype, suggesting MCOLN1 haploinsufficiency may be associated with reduced penetrance and variable expressivity. CONCLUSIONS MCOLN1 haploinsufficiency is the major cause of LECD. Based on the overlapping clinical features of corneal epithelial cells with autofluorescent inclusions reported in both LECD and MLIV, it is concluded that some carriers of MCOLN1 haploinsufficiency-causing variants present with LECD.
Collapse
Affiliation(s)
- Karynne Patterson
- From the Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA (K.P., M.J.B.)
| | - Jessica X Chong
- Department of Pediatrics and Brotman-Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA (J.X.C.)
| | - Doug D Chung
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA (D.D.C., A.J.A.)
| | - Walter Lisch
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg- University Mainz, 55131 Mainz, Germany (W.L.)
| | - Carol L Karp
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller, School of Medicine, Miami, USA (C.L.K.)
| | - Erling Dreisler
- Independent scholar, N.Jespersensvej 3, DK-2000 Copenhagen, Frederiksberg, Denmark (E.D.)
| | - David Lockington
- Tennent Institute of Ophthalmology, NHS Greater Glasgow and Clyde, Gartnavel General Hospital, 1053 Great Western Road, Glasgow, G12 0YN, UK (D.L.)
| | - Jens M Rohrbach
- Universitäts-Augenklinik, Elfriede-Aulhorn-Str. 7, 72076, Tübingen, Deutschland (J.M.R.)
| | - Dorota Garczarczyk-Asim
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria (D.G.-A., T.M., A.R.J.)
| | - Thomas Müller
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria (D.G.-A., T.M., A.R.J.)
| | - Stephen J Tuft
- Moorfields eye hospital NHS foundation trust, London, UK (S.J.T.); UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK (A.E.D.)
| | - Pavlina Skalicka
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic (P.S., P.L.)
| | - Yael Wilnai
- Genetic Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel (Y.W.)
| | - Nadra Naser Samra
- Genetic Unit, Sieff hospital, Bar Ilan University Faculty of Medicine, Safed, Israel (N.N.S.)
| | - Ali Ibrahim
- Ophthalmology unit, Maccabi and Clalit Health Services, Magdal Shams Medical center, Golan Heights, Israel (A.I.)
| | - Hanna Mandel
- Pediatric Metabolic Clinic, Sieff hospital, Bar Ilan University Faculty of Medicine, Safed, Israel (H.M.)
| | - Alice E Davidson
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK (A.E.D.)
| | - Petra Liskova
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic (P.S., P.L.); Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic (P.S.,P.L.)
| | - Anthony J Aldave
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA (D.D.C., A.J.A.)
| | - Michael J Bamshad
- From the Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA (K.P., M.J.B.); Department of Pediatrics and Brotman-Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA (J.X.C.)
| | - Andreas R Janecke
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria (D.G.-A., T.M., A.R.J.); Division of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria (A.R.J.).
| |
Collapse
|
3
|
Gibson D, Brar V, Li R, Kalra A, Goodwin A, Couser N. The High Association of Ophthalmic Manifestations in Individuals With Mucolipidosis Type IV. J Pediatr Ophthalmol Strabismus 2022; 59:332-337. [PMID: 35192386 DOI: 10.3928/01913913-20211206-03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE To present a case report of mucolipidosis type IV (ML4) and review the literature for all of the ophthalmic abnormalities associated with this disease. METHODS A systematic review of the literature using PubMed/Medline was conducted, and with the addition of the current case report, the eye and ocular adnexa findings of 93 patients with ML4 are summarized. RESULTS The most common ophthalmic findings reported among the 93 patients included corneal clouding (90.3%), strabismus (58.1%), optic nerve pallor (52.2%), retinal dystrophy/pigmentary changes (50.5%), and retinal vascular attenuation (38.9%). Other less commonly reported findings included nystagmus, photophobia, ocular pain, excessive lacrimation, ptosis, and cataracts. CONCLUSIONS The ophthalmic findings discussed in the current case report and literature review serve as indicators for ML4. Early diagnosis of ML4 is important in forming a multidisciplinary management plan, genetic counseling strategy, and maximizing the visual development of affected individuals. [J Pediatr Ophthalmol Strabimus. 2022;59(5):332-337.].
Collapse
|
4
|
Misko AL, Wood LB, DeBono M, Oberman R, Raas-Rothschild A, Grishchuk Y, Eichler F. Cross-sectional Observations on the Natural History of Mucolipidosis Type IV. Neurol Genet 2022; 8:e662. [PMID: 35425852 PMCID: PMC9005048 DOI: 10.1212/nxg.0000000000000662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/04/2022] [Indexed: 11/18/2022]
Abstract
Background and Objectives Mucolipidosis type IV (MLIV) is an ultra-rare lysosomal disorder initially described as a static neurodevelopmental condition. However, patient caregivers frequently report progressive muscular hypertonicity and functional decline. We evaluated a cohort of patients with MLIV to determine whether neurologic disability correlates with age. Methods We performed a cross-sectional, observational study of 26 patients with MLIV in the United States and Israel ranging in age from 2 to 40 years. Medical history was obtained from caregivers, and patients underwent a full neurologic examination. The Brief Assessment of Motor Function (BAMF), Gross Motor Function Classification System, and modified Ashworth scales were applied. Caregivers identified developmental skills on the Oregon Project for Visually Impaired and Blind Children checklist that their child had lost the ability to perform. Results Three patients were clinically classified as mildly affected and the remaining 23 patients as typical, severely affected cases. Timing of first symptom onset ranged from 1.5 months to 8 years of age (median 7.25 months). Across typical patients, modified Ashworth scores demonstrated a positive age dependence illustrating worsening spasticity across the lifespan. Signs of extrapyramidal motor dysfunction were also qualitatively observed. In parallel, gross and fine motor function assessed with the BAMF and Gross Motor Function Classification System scales declined across age. All typical patients had restricted tongue mobility and lacked rotary jaw movement when chewing, but BAMF scores for deglutition declined only in the oldest patients. In contrast, scores for articulation were low in all patients and did not correlate with age. Finally, loss of developmental skills frequently occurred in early adolescence. Discussion This cross-sectional natural history study of MLIV demonstrates worse motor function in older patients. These data support a neurodegenerative component of MLIV that manifests as developmental regression in the second decade of life. Whether the emergence of functional decline results from the cumulative, nonlinear interactions of steadily progressive neurodegenerative processes or reflects an inflection from impaired CNS development to degeneration is uncertain. However, understanding the relationship between CNS pathology and clinical course of disease will be imperative to guiding future interventional trials and optimizing patient care.
Collapse
|
5
|
Beerepoot S, Wolf NI, Wehner K, Bender B, van der Knaap MS, Krägeloh-Mann I, Groeschel S. Acute-onset paralytic strabismus in toddlers is important to consider as a potential early sign of late-infantile Metachromatic Leukodystrophy. Eur J Paediatr Neurol 2022; 37:87-93. [PMID: 35152000 DOI: 10.1016/j.ejpn.2022.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 11/30/2021] [Accepted: 01/29/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Metachromatic leukodystrophy (MLD) is a fatal lysosomal storage disease characterized by progressive demyelination within the central and peripheral nervous system. Rapid diagnosis is crucial in view of evolving therapeutic options. Strabismus has anecdotally been described as a feature in children with MLD. Our first aim was to examine the prevalence of strabismus as an early or even presenting sign of MLD in two nationwide cohorts. Second, we aimed to investigate the temporal relation between the onset of strabismus and gross motor deterioration, other early onset eye movement disorders and brain white matter abnormalities. METHODS Clinical records of 204 MLD patients at the University Children's Hospital Tubingen and Amsterdam University Medical Center were reviewed on the presence of strabismus and other eye movement disorders. Gross motor deterioration and white matter abnormalities on brain MRI were evaluated by using the Gross Motor Function Classification in MLD and MLD LOES score, respectively. RESULTS We identified strabismus as an early sign in MLD patients with the late-infantile form, with a prevalence of 27% (N = 17). The onset of strabismus preceded gross motor symptoms and brain white matter abnormalities in 71% and 46% respectively of the cases. Important characteristics were an acute-onset paralytic esotropia, partly accompanied by other eye movement abnormalities, and gadolinium enhancement of the cranial nerves. CONCLUSIONS Acute-onset paralytic strabismus in toddlers should be considered a potential early sign of late-infantile MLD and might result from early cranial nerve involvement. Brain MRI with gadolinium contrast may facilitate early diagnosis.
Collapse
Affiliation(s)
- Shanice Beerepoot
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Center, VU University Amsterdam, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | - Nicole I Wolf
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Center, VU University Amsterdam, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands.
| | - Katharina Wehner
- Department of Paediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany Hoppe-Seyler-Straße 1, 72076, Tübingen, Germany.
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Straße 3, Tübingen, Germany.
| | - Marjo S van der Knaap
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Center, VU University Amsterdam, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, Amsterdam, the Netherlands.
| | - Ingeborg Krägeloh-Mann
- Department of Paediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany Hoppe-Seyler-Straße 1, 72076, Tübingen, Germany.
| | - Samuel Groeschel
- Department of Paediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany Hoppe-Seyler-Straße 1, 72076, Tübingen, Germany.
| |
Collapse
|
6
|
Schwickert K, Andrzejewski M, Grabowsky S, Schirmeister T. Synthesis, X-ray Structure Determination, and Comprehensive Photochemical Characterization of (Trifluoromethyl)diazirine-Containing TRPML1 Ligands. J Org Chem 2021; 86:6169-6183. [PMID: 33835801 DOI: 10.1021/acs.joc.0c02993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Potential (trifluoromethyl)diazirine-based TRPML1 ion channel ligands were designed and synthesized, and their structures were determined by single-crystal X-ray diffraction analysis. Photoactivation studies via 19F NMR spectroscopy and HPLC-MS analysis revealed distinct kinetical characteristics in selected solvents and favorable photochemical properties in an aqueous buffer. These photoactivatable TRPML activators represent useful and valuable tools for TRPML photoaffinity labeling combined with mass spectrometry.
Collapse
Affiliation(s)
- Kevin Schwickert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Michał Andrzejewski
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Simon Grabowsky
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| |
Collapse
|
7
|
Bostan C, Mitchell G, Ellezam B, Soucy JF, Harissi-Dagher M, Hamel P. Corneal imaging with optical coherence tomography assisting the diagnosis of mucolipidosis type IV. Can J Ophthalmol 2021; 56:e120-e121. [PMID: 33741364 DOI: 10.1016/j.jcjo.2021.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/31/2021] [Accepted: 02/15/2021] [Indexed: 11/15/2022]
|
8
|
Huizing M, Gahl WA. Inherited disorders of lysosomal membrane transporters. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183336. [PMID: 32389669 PMCID: PMC7508925 DOI: 10.1016/j.bbamem.2020.183336] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/01/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Disorders caused by defects in lysosomal membrane transporters form a distinct subgroup of lysosomal storage disorders (LSDs). To date, defects in only 10 lysosomal membrane transporters have been associated with inherited disorders. The clinical presentations of these diseases resemble the phenotypes of other LSDs; they are heterogeneous and often present in children with neurodegenerative manifestations. However, for pathomechanistic and therapeutic studies, lysosomal membrane transport defects should be distinguished from LSDs caused by defective hydrolytic enzymes. The involved proteins differ in function, localization, and lysosomal targeting, and the diseases themselves differ in their stored material and therapeutic approaches. We provide an overview of the small group of disorders of lysosomal membrane transporters, emphasizing discovery, pathomechanism, clinical features, diagnostic methods and therapeutic aspects. We discuss common aspects of lysosomal membrane transporter defects that can provide the basis for preclinical research into these disorders.
Collapse
Affiliation(s)
- Marjan Huizing
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - William A Gahl
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Jezela-Stanek A, Ciara E, Stepien KM. Neuropathophysiology, Genetic Profile, and Clinical Manifestation of Mucolipidosis IV-A Review and Case Series. Int J Mol Sci 2020; 21:ijms21124564. [PMID: 32604955 PMCID: PMC7348969 DOI: 10.3390/ijms21124564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 12/23/2022] Open
Abstract
Mucolipidosis type IV (MLIV) is an ultra-rare lysosomal storage disorder caused by biallelic mutations in MCOLN1 gene encoding the transient receptor potential channel mucolipin-1. So far, 35 pathogenic or likely pathogenic MLIV-related variants have been described. Clinical manifestations include severe intellectual disability, speech deficit, progressive visual impairment leading to blindness, and myopathy. The severity of the condition may vary, including less severe psychomotor delay and/or ocular findings. As no striking recognizable facial dysmorphism, skeletal anomalies, organomegaly, or lysosomal enzyme abnormalities in serum are common features of MLIV, the clinical diagnosis may be significantly improved because of characteristic ophthalmological anomalies. This review aims to outline the pathophysiology and genetic defects of this condition with a focus on the genotype–phenotype correlation amongst cases published in the literature. The authors will present their own clinical observations and long-term outcomes in adult MLIV cases.
Collapse
Affiliation(s)
- Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland;
| | - Elżbieta Ciara
- Department of Medical Genetics, The Children’s Memorial Heath Institute, 04-730 Warsaw, Poland;
| | - Karolina M. Stepien
- Adult Inherited Metabolic Diseases, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
- Correspondence:
| |
Collapse
|
10
|
Hayashi T, Hosono K, Kubo A, Kurata K, Katagiri S, Mizobuchi K, Kurai M, Mamiya N, Kondo M, Tachibana T, Saitsu H, Ogata T, Nakano T, Hotta Y. Long-term observation of a Japanese mucolipidosis IV patient with a novel homozygous p.F313del variant of MCOLN1. Am J Med Genet A 2020; 182:1500-1505. [PMID: 32220057 DOI: 10.1002/ajmg.a.61575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/05/2020] [Accepted: 03/13/2020] [Indexed: 11/11/2022]
Abstract
Mucolipidosis type IV (MLIV) is an autosomal recessively inherited lysosomal storage disorder characterized by progressive psychomotor delay and retinal degeneration that is associated with biallelic variants in the MCOLN1 gene. The gene, which is expressed in late endosomes and lysosomes of various tissue cells, encodes the transient receptor potential channel mucolipin 1 consisting of six transmembrane domains. Here, we described 14-year follow-up observation of a 4-year-old Japanese male MLIV patient with a novel homozygous in-frame deletion variant p.(F313del), which was identified by whole-exome sequencing analysis. Neurological examination revealed progressive psychomotor delay, and atrophy of the corpus callosum and cerebellum was observed on brain magnetic resonance images. Ophthalmologically, corneal clouding has remained unchanged during the follow-up period, whereas optic nerve pallor and retinal degenerative changes exhibited progressive disease courses. Light-adapted electroretinography was non-recordable. Transmission electron microscopy of granulocytes revealed characteristic concentric multiple lamellar structures and an electron-dense inclusion in lysosomes. The in-frame deletion variant was located within the second transmembrane domain, which is of putative functional importance for channel properties.
Collapse
Affiliation(s)
- Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Katsushika Medical Center, The Jikei University School of Medicine, Tokyo, Japan
| | - Katsuhiro Hosono
- Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Akiko Kubo
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Kinan Hospital, Mie, Japan
| | - Kentaro Kurata
- Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Satoshi Katagiri
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Norihito Mamiya
- Department of Pediatrics, Kinan Hospital, Mie, Japan.,Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Mie, Japan
| | - Toshiaki Tachibana
- Core Research Facilities for Basic Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
11
|
Santoni G, Maggi F, Amantini C, Marinelli O, Nabissi M, Morelli MB. Pathophysiological Role of Transient Receptor Potential Mucolipin Channel 1 in Calcium-Mediated Stress-Induced Neurodegenerative Diseases. Front Physiol 2020; 11:251. [PMID: 32265740 PMCID: PMC7105868 DOI: 10.3389/fphys.2020.00251] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
Mucolipins (TRPML) are endosome/lysosome Ca2+ permeable channels belonging to the family of transient receptor potential channels. In mammals, there are three TRPML proteins, TRPML1, 2, and 3, encoded by MCOLN1-3 genes. Among these channels, TRPML1 is a reactive oxygen species sensor localized on the lysosomal membrane that is able to control intracellular oxidative stress due to the activation of the autophagic process. Moreover, genetic or pharmacological inhibition of the TRPML1 channel stimulates oxidative stress signaling pathways. Experimental data suggest that elevated levels of reactive species play a role in several neurological disorders. There is a need to gain better understanding of the molecular mechanisms behind these neurodegenerative diseases, considering that the main sources of free radicals are mitochondria, that mitochondria/endoplasmic reticulum and lysosomes are coupled, and that growing evidence links neurodegenerative diseases to the gain or loss of function of proteins related to lysosome homeostasis. This review examines the significant roles played by the TRPML1 channel in the alterations of calcium signaling responsible for stress-mediated neurodegenerative disorders and its potential as a new therapeutic target for ameliorating neurodegeneration in our ever-aging population.
Collapse
Affiliation(s)
- Giorgio Santoni
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Federica Maggi
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy.,Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Consuelo Amantini
- Immunopathology Laboratory, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Oliviero Marinelli
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy.,Immunopathology Laboratory, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Massimo Nabissi
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Maria Beatrice Morelli
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy.,Immunopathology Laboratory, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
12
|
Jimenez J, Sakthivel M, Nischal KK, Fedorchak MV. Drug delivery systems and novel formulations to improve treatment of rare corneal disease. Drug Discov Today 2019; 24:1564-1574. [PMID: 30872110 DOI: 10.1016/j.drudis.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/17/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023]
Abstract
As the field of ocular drug delivery grows so does the potential for novel drug discovery or reformulation in lesser-known diseases of the eye. In particular, rare corneal diseases are an interesting area of research because drug delivery is limited to the outermost tissue of the eye. This review will highlight the opportunities and challenges of drug reformulation and alternative treatment approaches for rare corneal diseases. The barriers to effective drug delivery and proposed solutions in development will be discussed along with an overview of corneal rare disease resources, their current treatments and ophthalmic drug delivery systems that could benefit such cases. The regulatory considerations for effective translation of orphan-designated products will also be discussed.
Collapse
Affiliation(s)
- Jorge Jimenez
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meera Sakthivel
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kanwal K Nischal
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Morgan V Fedorchak
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Chaer L, Harissi-Dagher M, Soucy JF, Ellezam B, Hamel P. Mucolipidosis type IV in a child. J AAPOS 2018; 22:469-471. [PMID: 30120981 DOI: 10.1016/j.jaapos.2018.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 11/27/2022]
Abstract
Mucolipidosis type IV is a rare autosomal recessive lysosomal storage disorder with psychomotor developmental delay, visual impairment, and achlorhydria. A mutation in the MCOLN1 gene causes an alteration of the protein mucolipin-1 that results in the accumulation of lipids and proteins in cytoplasmic vacuoles derived from lysosomes. Visual impairment results mainly from corneal clouding and retinal degeneration. The involvement of the corneal epithelium has been proposed following clinical observation and confirmed by ultrastructural studies of the cornea. We present the case of a child of French Canadian origin affected by mucolipidosis type IV who showed abnormal optical coherence tomography imaging of the cornea, typical skin cell inclusions on electronic microscopy, and a novel pathogenic mutation.
Collapse
Affiliation(s)
- Laila Chaer
- Centre hospitalier régional de Lanaudière, Joliette
| | | | | | - Benjamin Ellezam
- Department of Pathology, Centre hospitalier universitaire Sainte-Justine, Montréal
| | - Patrick Hamel
- Department of Ophthalmology, Centre hospitalier universitaire Sainte-Justine, Montréal.
| |
Collapse
|
14
|
Taleb A, Rodier Bonifas C, Boucher S, Kocaba V, Mege Chevallier F, Burillon C. Mucolipidose de type IV et atteinte cornéenne : à propos d’un cas pédiatrique. J Fr Ophtalmol 2018; 41:e121-e122. [DOI: 10.1016/j.jfo.2017.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/02/2017] [Indexed: 11/16/2022]
|
15
|
Li H, Pei W, Vergarajauregui S, Zerfas PM, Raben N, Burgess SM, Puertollano R. Novel degenerative and developmental defects in a zebrafish model of mucolipidosis type IV. Hum Mol Genet 2018; 26:2701-2718. [PMID: 28449103 DOI: 10.1093/hmg/ddx158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/19/2017] [Indexed: 12/20/2022] Open
Abstract
Mucolipidosis type IV (MLIV) is a lysosomal storage disease characterized by neurologic and ophthalmologic abnormalities. There is currently no effective treatment. MLIV is caused by mutations in MCOLN1, a lysosomal cation channel from the transient receptor potential (TRP) family. In this study, we used genome editing to knockout the two mcoln1 genes present in Danio rerio (zebrafish). Our model successfully reproduced the retinal and neuromuscular defects observed in MLIV patients, indicating that this model is suitable for studying the disease pathogenesis. Importantly, our model revealed novel insights into the origins and progression of the MLIV pathology, including the contribution of autophagosome accumulation to muscle dystrophy and the role of mcoln1 in embryonic development, hair cell viability and cellular maintenance. The generation of a MLIV model in zebrafish is particularly relevant given the suitability of this organism for large-scale in vivo drug screening, thus providing unprecedented opportunities for therapeutic discovery.
Collapse
Affiliation(s)
- Huiqing Li
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wuhong Pei
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sivia Vergarajauregui
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.,Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Patricia M Zerfas
- Office of Research Services, Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, USA
| | - Nina Raben
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Abstract
Lysosomes have emerged in the last decade as an immensely important intracellular site of Ca2+ storage and signalling. More recently there has been an increase in the number of new ion channels found to be functional on lysosomes and the potential roles that these signalling pathways might play in fundamental cellular processes are being uncovered. Defects in lysosomal function have been shown to result in changes in lysosomal Ca2+ homeostasis and ultimately can result in cell death. Several neurodegenerative diseases, from rare lysosomal storage diseases through to more common diseases of ageing, have recently been identified as having alterations in lysosomal Ca2+ homeostasis that may play an important role in neuronal excitotoxicity and ultimately cell death. This review will critically summarise these recent findings.
Collapse
Affiliation(s)
- Emyr Lloyd-Evans
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff, CF10 3AX
| |
Collapse
|
17
|
Grishchuk Y, Peña KA, Coblentz J, King VE, Humphrey DM, Wang SL, Kiselyov KI, Slaugenhaupt SA. Impaired myelination and reduced brain ferric iron in the mouse model of mucolipidosis IV. Dis Model Mech 2015; 8:1591-601. [PMID: 26398942 PMCID: PMC4728313 DOI: 10.1242/dmm.021154] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/08/2015] [Indexed: 12/11/2022] Open
Abstract
Mucolipidosis type IV (MLIV) is a lysosomal storage disease caused by mutations in the MCOLN1 gene, which encodes the lysosomal transient receptor potential ion channel mucolipin-1 (TRPML1). MLIV causes impaired motor and cognitive development, progressive loss of vision and gastric achlorhydria. How loss of TRPML1 leads to severe psychomotor retardation is currently unknown, and there is no therapy for MLIV. White matter abnormalities and a hypoplastic corpus callosum are the major hallmarks of MLIV brain pathology. Here, we report that loss of TRPML1 in mice results in developmental aberrations of brain myelination as a result of deficient maturation and loss of oligodendrocytes. Defective myelination is evident in Mcoln1(-/-) mice at postnatal day 10, an active stage of postnatal myelination in the mouse brain. Expression of mature oligodendrocyte markers is reduced in Mcoln1(-/-) mice at postnatal day 10 and remains lower throughout the course of the disease. We observed reduced Perls' staining in Mcoln1(-/-) brain, indicating lower levels of ferric iron. Total iron content in unperfused brain is not significantly different between Mcoln1(-/-) and wild-type littermate mice, suggesting that the observed maturation delay or loss of oligodendrocytes might be caused by impaired iron handling, rather than by global iron deficiency. Overall, these data emphasize a developmental rather than a degenerative disease course in MLIV, and suggest that there should be a stronger focus on oligodendrocyte maturation and survival to better understand MLIV pathogenesis and aid treatment development.
Collapse
Affiliation(s)
- Yulia Grishchuk
- Center for Human Genetic Research and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - Karina A Peña
- Department of Biological Sciences, University of Pittsburgh, 519 Langley Hall, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Jessica Coblentz
- Department of Biological Sciences, University of Pittsburgh, 519 Langley Hall, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Victoria E King
- Center for Human Genetic Research and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - Daniel M Humphrey
- Center for Human Genetic Research and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - Shirley L Wang
- Center for Human Genetic Research and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - Kirill I Kiselyov
- Department of Biological Sciences, University of Pittsburgh, 519 Langley Hall, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Susan A Slaugenhaupt
- Center for Human Genetic Research and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| |
Collapse
|
18
|
Grishchuk Y, Stember KG, Matsunaga A, Olivares AM, Cruz NM, King VE, Humphrey DM, Wang SL, Muzikansky A, Betensky RA, Thoreson WB, Haider N, Slaugenhaupt SA. Retinal Dystrophy and Optic Nerve Pathology in the Mouse Model of Mucolipidosis IV. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:199-209. [PMID: 26608452 DOI: 10.1016/j.ajpath.2015.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/31/2015] [Accepted: 09/10/2015] [Indexed: 11/19/2022]
Abstract
Mucolipidosis IV is a debilitating developmental lysosomal storage disorder characterized by severe neuromotor retardation and progressive loss of vision, leading to blindness by the second decade of life. Mucolipidosis IV is caused by loss-of-function mutations in the MCOLN1 gene, which encodes the transient receptor potential channel protein mucolipin-1. Ophthalmic pathology in patients includes corneal haze and progressive retinal and optic nerve atrophy. Herein, we report ocular pathology in Mcoln1(-/-) mouse, a good phenotypic model of the disease. Early, but non-progressive, thinning of the photoreceptor layer, reduced levels of rhodopsin, disrupted rod outer segments, and widespread accumulation of the typical storage inclusion bodies were the major histological findings in the Mcoln1(-/-) retina. Electroretinograms showed significantly decreased functional response (scotopic a- and b-wave amplitudes) in the Mcoln1(-/-) mice. At the ultrastructural level, we observed formation of axonal spheroids and decreased density of axons in the optic nerve of the aged (6-month-old) Mcoln1(-/-) mice, which indicates progressive axonal degeneration. Our data suggest that mucolipin-1 plays a role in postnatal development of photoreceptors and provides a set of outcome measures that can be used for ocular therapy development for mucolipidosis IV.
Collapse
Affiliation(s)
- Yulia Grishchuk
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts.
| | - Katherine G Stember
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts
| | - Aya Matsunaga
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts
| | - Ana M Olivares
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Nelly M Cruz
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Victoria E King
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts
| | - Daniel M Humphrey
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts
| | - Shirley L Wang
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts
| | - Alona Muzikansky
- Massachusetts General Hospital Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Rebecca A Betensky
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - Wallace B Thoreson
- Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Neena Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Susan A Slaugenhaupt
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
19
|
Grishchuk Y, Sri S, Rudinskiy N, Ma W, Stember KG, Cottle MW, Sapp E, Difiglia M, Muzikansky A, Betensky RA, Wong AMS, Bacskai BJ, Hyman BT, Kelleher RJ, Cooper JD, Slaugenhaupt SA. Behavioral deficits, early gliosis, dysmyelination and synaptic dysfunction in a mouse model of mucolipidosis IV. Acta Neuropathol Commun 2014; 2:133. [PMID: 25200117 PMCID: PMC4173007 DOI: 10.1186/s40478-014-0133-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 08/26/2014] [Indexed: 12/04/2022] Open
Abstract
Mucolipidosis IV (MLIV) is caused by mutations in the gene MCOLN1. Patients with MLIV have severe neurologic deficits and very little is known about the brain pathology in this lysosomal disease. Using an accurate mouse model of mucolipidosis IV, we observed early behavioral deficits which were accompanied by activation of microglia and astrocytes. The glial activation that persisted during the course of disease was not accompanied by neuronal loss even at the late stage. In vivo [Ca2+]-imaging revealed no changes in resting [Ca2+] levels in Mcoln1−/− cortical neurons, implying their physiological health. Despite the absence of neuron loss, we observed alterations in synaptic plasticity, as indicated by elevated paired-pulse facilitation and enhanced long-term potentiation. Myelination deficits and severely dysmorphic corpus callosum were present early and resembled white matter pathology in mucolipidosis IV patients. These results indicate the early involvement of glia, and challenge the traditional view of mucolipidosis IV as an overtly neurodegenerative condition.
Collapse
|
20
|
Chen CC, Keller M, Hess M, Schiffmann R, Urban N, Wolfgardt A, Schaefer M, Bracher F, Biel M, Wahl-Schott C, Grimm C. A small molecule restores function to TRPML1 mutant isoforms responsible for mucolipidosis type IV. Nat Commun 2014; 5:4681. [PMID: 25119295 DOI: 10.1038/ncomms5681] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/11/2014] [Indexed: 11/08/2022] Open
Abstract
Mucolipidosis type IV (MLIV) is an autosomal recessive lysosomal storage disorder often characterized by severe neurodevelopmental abnormalities and neuro-retinal degeneration. Mutations in the TRPML1 gene are causative for MLIV. We used lead optimization strategies to identify--and MLIV patient fibroblasts to test--small-molecule activators for their potential to restore TRPML1 mutant channel function. Using the whole-lysosome planar patch-clamp technique, we found that activation of MLIV mutant isoforms by the endogenous ligand PI(3,5)P2 is strongly reduced, while activity can be increased using synthetic ligands. We also found that the F465L mutation renders TRPML1 pH insensitive, while F408Δ impacts synthetic ligand binding. Trafficking defects and accumulation of zinc in lysosomes of MLIV mutant fibroblasts can be rescued by the small molecule treatment. Collectively, our data demonstrate that small molecules can be used to restore channel function and rescue disease associated abnormalities in patient cells expressing specific MLIV point mutations.
Collapse
Affiliation(s)
- Cheng-Chang Chen
- 1] Department of Pharmacy-Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munchen 81377, Germany [2]
| | - Marco Keller
- 1] Department of Pharmacy, Ludwig-Maximilians-Universität München, Munchen 81377, Germany [2]
| | - Martin Hess
- Department of Biology, Ludwig-Maximilians-Universität München, Munchen 82152, Germany
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, Texas, USA
| | - Nicole Urban
- Rudolf-Boehm-Institute for Pharmacology and Toxicolgy, Universität Leipzig, Leipzig 04107, Germany
| | - Annette Wolfgardt
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munchen 81377, Germany
| | - Michael Schaefer
- Rudolf-Boehm-Institute for Pharmacology and Toxicolgy, Universität Leipzig, Leipzig 04107, Germany
| | - Franz Bracher
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munchen 81377, Germany
| | - Martin Biel
- Department of Pharmacy-Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munchen 81377, Germany
| | - Christian Wahl-Schott
- Department of Pharmacy-Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munchen 81377, Germany
| | - Christian Grimm
- 1] Department of Pharmacy-Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munchen 81377, Germany [2]
| |
Collapse
|
21
|
Schiffmann R, Mayfield J, Swift C, Nestrasil I. Quantitative neuroimaging in mucolipidosis type IV. Mol Genet Metab 2014; 111:147-51. [PMID: 24332805 PMCID: PMC4097300 DOI: 10.1016/j.ymgme.2013.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 11/25/2022]
Abstract
Mucolipidosis type IV (MLIV) is an autosomal recessive disorder resulting from mutations in the MCOLN1 gene. This gene encodes the endosomal/lysosomal transient receptor potential channel protein mucolipin-1 (TRPML1). Affected patients suffer from neurodevelopmental abnormalities and progressive retinal dystrophy. In a prospective natural history study we hypothesized the presence of an additional slow cerebral neurodegenerative process. We have recruited 5 patients, tested their neurodevelopmental status, and measured cerebral regional volumes and white matter integrity using MRI yearly. Over a period of up to 3 years, MLIV patients remained neurologically stable. There was a trend for increased cortical and subcortical gray matter volumes and increased ventricular size, while white matter and cerebellar volumes decreased. Mean diffusivity (MD) was increased and fractional anisotropy (FA) values were below normal in all analyzed brain regions. There was a positive correlation between motor scores of the Vineland Scale and the FA values in the corticospinal tract (corr coef 0.39), and a negative correlation with the MD values (corr coef -0.50) in the same brain region. We conclude from these initial findings that deficiency in mucolipin-1 affects the entire brain but that there might be a selective regional cerebral neurodegenerative process in MLIV. In addition, these data suggest that diffusion-weighted imaging might be a good biomarker for following patients with MLIV. Therefore, our findings may be helpful for designing future clinical trials.
Collapse
Affiliation(s)
- Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX, USA.
| | | | - Caren Swift
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX, USA
| | - Igor Nestrasil
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
22
|
Annesley SJ, Chen S, Francione LM, Sanislav O, Chavan AJ, Farah C, De Piazza SW, Storey CL, Ilievska J, Fernando SG, Smith PK, Lay ST, Fisher PR. Dictyostelium, a microbial model for brain disease. Biochim Biophys Acta Gen Subj 2013; 1840:1413-32. [PMID: 24161926 DOI: 10.1016/j.bbagen.2013.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/05/2013] [Accepted: 10/10/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND Most neurodegenerative diseases are associated with mitochondrial dysfunction. In humans, mutations in mitochondrial genes result in a range of phenotypic outcomes which do not correlate well with the underlying genetic cause. Other neurodegenerative diseases are caused by mutations that affect the function and trafficking of lysosomes, endosomes and autophagosomes. Many of the complexities of these human diseases can be avoided by studying them in the simple eukaryotic model Dictyostelium discoideum. SCOPE OF REVIEW This review describes research using Dictyostelium to study cytopathological pathways underlying a variety of neurodegenerative diseases including mitochondrial, lysosomal and vesicle trafficking disorders. MAJOR CONCLUSIONS Generalised mitochondrial respiratory deficiencies in Dictyostelium produce a consistent pattern of defective phenotypes that are caused by chronic activation of a cellular energy sensor AMPK (AMP-activated protein kinase) and not ATP deficiency per se. Surprisingly, when individual subunits of Complex I are knocked out, both AMPK-dependent and AMPK-independent, subunit-specific phenotypes are observed. Many nonmitochondrial proteins associated with neurological disorders have homologues in Dictyostelium and are associated with the function and trafficking of lysosomes and endosomes. Conversely, some genes associated with neurodegenerative disorders do not have homologues in Dictyostelium and this provides a unique avenue for studying these mutated proteins in the absence of endogeneous protein. GENERAL SIGNIFICANCE Using the Dictyostelium model we have gained insights into the sublethal cytopathological pathways whose dysregulation contributes to phenotypic outcomes in neurodegenerative disease. This work is beginning to distinguish correlation, cause and effect in the complex network of cross talk between the various organelles involved. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- S J Annesley
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - S Chen
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - L M Francione
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - O Sanislav
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - A J Chavan
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - C Farah
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - S W De Piazza
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - C L Storey
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - J Ilievska
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - S G Fernando
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - P K Smith
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - S T Lay
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - P R Fisher
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086.
| |
Collapse
|
23
|
Wakabayashi K, Gustafson AM, Sidransky E, Goldin E. Mucolipidosis type IV: an update. Mol Genet Metab 2011; 104:206-13. [PMID: 21763169 PMCID: PMC3205274 DOI: 10.1016/j.ymgme.2011.06.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/09/2011] [Accepted: 06/09/2011] [Indexed: 11/28/2022]
Abstract
Mucolipidosis type IV (MLIV) is a neurodevelopmental as well as neurodegenerative disorder with severe psychomotor developmental delay, progressive visual impairment, and achlorydria. It is characterized by the presence of lysosomal inclusions in many cell types in patients. MLIV is an autosomal recessive disease caused by mutations in MCOLN1, which encodes for mucolipin-1, a member of the transient receptor potential (TRP) cation channel family. Although approximately 70-80% of patients identified are Ashkenazi Jewish, MLIV is a pan-ethnic disorder. Importantly, while MLIV is thought to be a rare disease, its frequency may be greater than currently appreciated, for its common presentation as a cerebral palsy-like encephalopathy can lead to misdiagnosis. Moreover, patients with milder variants are often not recognized as having MLIV. This review provides an update on the ethnic distribution, clinical manifestations, laboratory findings, methods of diagnosis, molecular genetics, differential diagnosis, and treatment of patients with MLIV. An enhanced awareness of the manifestations of this disorder may help to elucidate the true frequency and range of symptoms associated with MLIV, providing insight into the pathogenesis of this multi-system disease.
Collapse
Affiliation(s)
| | | | - Ellen Sidransky
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Building 35, Room 1A213, 35 Convent Dr., MSC 3708, Bethesda, MD 20892-3708
| | - Ehud Goldin
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Building 35, Room 1A213, 35 Convent Dr., MSC 3708, Bethesda, MD 20892-3708
| |
Collapse
|
24
|
Sáenz-Madrazo N, Arribas-Garcia I, Tejada-Palacios P, Romance-Garcia A. Spontaneous subperiosteal hematoma of the orbit. J Pediatr Ophthalmol Strabismus 2009; 46:175-7. [PMID: 19496501 DOI: 10.3928/01913913-20090505-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Orbital subperiosteal hemorrhage is rare, with most cases occurring in young males as a result of direct facial or orbital trauma. The authors present a case of a spontaneous subperiosteal hematoma of the orbit in a 4-year-old girl.
Collapse
Affiliation(s)
- Nerea Sáenz-Madrazo
- Department of Ophthalmology, Hospital Universitario 12 de Octubre, Av. Córdoba s/n, 28041 Madrid, Spain
| | | | | | | |
Collapse
|
25
|
Goldin E, Caruso RC, Benko W, Kaneski CR, Stahl S, Schiffmann R. Isolated ocular disease is associated with decreased mucolipin-1 channel conductance. Invest Ophthalmol Vis Sci 2008; 49:3134-42. [PMID: 18326692 DOI: 10.1167/iovs.07-1649] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To evaluate a 15-year-old boy with MLIV (mucolipidosis type IV) and clinical abnormalities restricted to the eye who also had achlorhydria with elevated blood gastrin levels. METHODS In addition to a detailed neuro-ophthalmic and electrophysiological assessment, his mutant mucolipin-1 was experimentally expressed in liposomes and its channel properties studied in vitro. RESULTS The patient was a compound heterzygote for c.920delT and c.1615delG. Detailed neuro-ophthalmic examination including electroretinography showed him to have a typical retinal dystrophy predominantly affecting rod and bipolar cell function. In vitro expression of MCOLN1 in liposomes showed that the c.1615delG mutated channel had significantly reduced conductance compared with wild-type mucolipin-1, whereas the inhibitory effect of low pH and amiloride remained intact. CONCLUSIONS These findings suggest that reduced channel conductance is relatively well tolerated by the brain during development, whereas retinal cells and stomach parietal cells require normal protein function. MLIV should be considered in patients with retinal dystrophy of unknown cause and screened for using blood gastrin levels.
Collapse
Affiliation(s)
- Ehud Goldin
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
26
|
Thompson EG, Schaheen L, Dang H, Fares H. Lysosomal trafficking functions of mucolipin-1 in murine macrophages. BMC Cell Biol 2007; 8:54. [PMID: 18154673 PMCID: PMC2254603 DOI: 10.1186/1471-2121-8-54] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 12/21/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mucolipidosis Type IV is currently characterized as a lysosomal storage disorder with defects that include corneal clouding, achlorhydria and psychomotor retardation. MCOLN1, the gene responsible for this disease, encodes the protein mucolipin-1 that belongs to the "Transient Receptor Potential" family of proteins and has been shown to function as a non-selective cation channel whose activity is modulated by pH. Two cell biological defects that have been described in MLIV fibroblasts are a hyperacidification of lysosomes and a delay in the exit of lipids from lysosomes. RESULTS We show that mucolipin-1 localizes to lysosomal compartments in RAW264.7 mouse macrophages that show subcompartmental accumulations of endocytosed molecules. Using stable RNAi clones, we show that mucolipin-1 is required for the exit of lipids from these compartments, for the transport of endocytosed molecules to terminal lysosomes, and for the transport of the Major Histocompatibility Complex II to the plasma membrane. CONCLUSION Mucolipin-1 functions in the efficient exit of molecules, destined for various cellular organelles, from lysosomal compartments.
Collapse
Affiliation(s)
- Eric G Thompson
- Department of Molecular and Cellular Biology, Life Sciences South Room 531, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | |
Collapse
|
27
|
Venugopal B, Browning MF, Curcio-Morelli C, Varro A, Michaud N, Nanthakumar N, Walkley SU, Pickel J, Slaugenhaupt SA. Neurologic, gastric, and opthalmologic pathologies in a murine model of mucolipidosis type IV. Am J Hum Genet 2007; 81:1070-83. [PMID: 17924347 DOI: 10.1086/521954] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 07/27/2007] [Indexed: 11/04/2022] Open
Abstract
Mucolipidosis type IV (MLIV) is an autosomal recessive lysosomal storage disorder caused by mutations in the MCOLN1 gene, which encodes the 65-kDa protein mucolipin-1. The most common clinical features of patients with MLIV include severe mental retardation, delayed motor milestones, ophthalmologic abnormalities, constitutive achlorhydria, and elevated plasma gastrin levels. Here, we describe the first murine model for MLIV, which accurately replicates the phenotype of patients with MLIV. The Mcoln1(-/-) mice present with numerous dense inclusion bodies in all cell types in brain and particularly in neurons, elevated plasma gastrin, vacuolization in parietal cells, and retinal degeneration. Neurobehavioral assessments, including analysis of gait and clasping, confirm the presence of a neurological defect. Gait deficits progress to complete hind-limb paralysis and death at age ~8 mo. The Mcoln1(-/-) mice are born in Mendelian ratios, and both male and female Mcoln1(-/-) mice are fertile and can breed to produce progeny. The creation of the first murine model for human MLIV provides an excellent system for elucidating disease pathogenesis. In addition, this model provides an invaluable resource for testing treatment strategies and potential therapies aimed at preventing or ameliorating the abnormal lysosomal storage in this devastating neurological disorder.
Collapse
Affiliation(s)
- Bhuvarahamurthy Venugopal
- Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dobrovolny R, Liskova P, Ledvinova J, Poupetova H, Asfaw B, Filipec M, Jirsova K, Kraus J, Elleder M. Mucolipidosis IV: report of a case with ocular restricted phenotype caused by leaky splice mutation. Am J Ophthalmol 2007; 143:663-71. [PMID: 17239335 DOI: 10.1016/j.ajo.2006.11.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 11/22/2006] [Accepted: 11/22/2006] [Indexed: 11/28/2022]
Abstract
PURPOSE To confirm and define a molecular basis for a case of mucolipidosis type IV (ML IV) with an extremely atypical phenotype pattern. DESIGN Observational case report of a patient with ML IV with disease progression restricted to ocular symptoms. METHODS Complete ophthalmologic and neurologic examination. Ultrastructural examination of white blood cells, skin, conjunctiva, and corneal epithelium. The MCOLN1 gene was sequenced from cDNA and the proportion of splicing variants were assessed by quantitative allele-specific polymerase chain reaction. RESULTS Absence of any neurological abnormalities. Retinal pathologic features were the main cause of visual disability: low visual acuity and cloudy corneas since 2 years of age, progressive decrease in visual acuity since the age of 9 years. Ultrastructural examination showed storage lysosomes filled with either concentric membranes or lucent precipitate in corneal and conjunctive epithelia and in vascular endothelium. Cultured fibroblasts were free of any autofluorescence. Sequencing of the MCOLN1 gene identified compound heterozygosity for D362Y and A-->T transition leading to the creation of a novel donor splicing site and a 4-bp deletion from exon 13 at the mRNA level. Both normal and pathologic splice forms were detected in skin fibroblasts and leukocytes, with the normal form being more abundant. CONCLUSIONS The case of this patient with ML IV is unique and is characterized by a curious lack of generalized symptoms. In this patient, the disorder was limited to the eyes and appeared without the usual psychomotor deterioration. The resulting phenotype is the mildest seen to date.
Collapse
Affiliation(s)
- Robert Dobrovolny
- Institute of Inherited Metabolic Diseases, First Medical Faculty and General Faculty Hospital, Charles University, Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
LaPlante JM, Sun M, Falardeau J, Dai D, Brown EM, Slaugenhaupt SA, Vassilev PM. Lysosomal exocytosis is impaired in mucolipidosis type IV. Mol Genet Metab 2006; 89:339-48. [PMID: 16914343 DOI: 10.1016/j.ymgme.2006.05.016] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Accepted: 05/24/2006] [Indexed: 11/21/2022]
Abstract
Mucolipidosis type IV (MLIV) is an autosomal recessive disease characterized by severe neurological impairment, ophthalmologic defects, and gastric dysfunction. MLIV cells have a deficiency in the late endosomal/lysosomal (LEL) pathway that results in the buildup of lysosomal inclusions. Using a Xenopus oocyte expression system, we previously showed that mucolipin-1 (MLN1), the protein encoded by the MCOLN1 gene is a Ca2+ -permeable non-selective cation channel that is transiently modulated by elevations in intracellular Ca2+. We further showed that MLN1 is translocated to the plasma membrane during lysosomal exocytosis. In this study we show that lysosomal exocytosis is impaired in fibroblasts from MLIV patients, indicating that MLN1 plays an active role in this process. Further, we show that transfection with wild type MLN1 cDNA rescues exocytosis, suggesting the possibility of treatments based on the restoration of this crucial cellular function.
Collapse
Affiliation(s)
- Janice M LaPlante
- Division of Endocrinology, Diabetes and Hypertension and Membrane Biology Program, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Kiselyov K, Chen J, Rbaibi Y, Oberdick D, Tjon-Kon-Sang S, Shcheynikov N, Muallem S, Soyombo A. TRP-ML1 is a lysosomal monovalent cation channel that undergoes proteolytic cleavage. J Biol Chem 2005; 280:43218-23. [PMID: 16257972 DOI: 10.1074/jbc.m508210200] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the gene MCOLN1 coding for the TRP (transient receptor potential) family ion channel TRP-ML1 lead to the lipid storage disorder mucolipidosis type IV (MLIV). The function and role of TRP-ML1 are not well understood. We report here that TRP-ML1 is a lysosomal monovalent cation channel. Both native and recombinant TRP-ML1 are cleaved resulting in two products. Recombinant TRP-ML1 is detected as the full-length form and as short N- and C-terminal forms, whereas in native cells mainly the cleaved N and C termini are detected. The N- and C-terminal fragments of TRP-ML1 were co-immunoprecipitated from cell lysates and co-eluted from a Ni2+ column. TRP-ML1 undergoes proteolytic cleavage that is inhibited by inhibitors of cathepsin B (CatB) and is altered when TRP-ML1 is expressed in CatB-/- cells. N-terminal sequencing of purified C-terminal fragment of TRP-ML1 expressed in Sf9 cells indicates a cleavage site at Arg200 downward arrow Pro201. Consequently, the conserved R200H mutation changed the cleavage pattern of TRP-ML1. The cleavage inhibited TRP-ML1 channel activity. This work provides the first example of inactivation by cleavage of a TRP channel. The significance of the cleavage to the function of TRP-ML1 is under investigation.
Collapse
Affiliation(s)
- Kirill Kiselyov
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Cantiello HF, Montalbetti N, Goldmann WH, Raychowdhury MK, González-Perrett S, Timpanaro GA, Chasan B. Cation channel activity of mucolipin-1: the effect of calcium. Pflugers Arch 2005; 451:304-12. [PMID: 16133264 DOI: 10.1007/s00424-005-1448-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 04/12/2005] [Indexed: 12/12/2022]
Abstract
Mucolipidosis type IV (MLIV) is a rare, neurogenetic disorder characterized by developmental abnormalities of the brain, and impaired neurological, ophthalmological, and gastric function. Considered a lysosomal disease, MLIV is characterized by the accumulation of large vacuoles in various cell types. Recent evidence indicates that MLIV is caused by mutations in MCOLN1, the gene that encodes mucolipin-1 (ML1), a 65-kDa protein showing sequence homology and topological similarities with polycystin-2 and other transient receptor potential (TRP) channels. In this report, our observations on the channel properties of ML1, and molecular pathophysiology of MLIV are reviewed and expanded. Our studies have shown that ML1 is a multiple sub-conductance, non-selective cation channel. MLIV-causing mutations result in functional differences in the channel protein. In particular, the V446L and DeltaF408 mutations retain channel function but have interesting functional differences with regards to pH dependence and Ca(2+) transport. While the wild-type protein is inhibited by Ca(2+) transport, mutant ML1 is not. Atomic force microscopy imaging of ML1 channels shows that changes in pH modify the aggregation and size of the ML1 channels, which has an impact on vesicular fusogenesis. The new evidence provides support for a novel role of ML1 cation channels in vesicular acidification and normal endosomal function.
Collapse
Affiliation(s)
- Horacio F Cantiello
- Renal Unit, Massachusetts General Hospital East, 149 13th Street, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Bach G. Mucolipin 1: endocytosis and cation channel--a review. Pflugers Arch 2004; 451:313-7. [PMID: 15570434 DOI: 10.1007/s00424-004-1361-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 10/05/2004] [Indexed: 11/26/2022]
Abstract
Mucolipidosis type IV (MLIV) is a neurodegenerative, recessive, lysosomal storage disorder characterized by psychomotor retardation and visual impairment due to various ophthalmologic abnormalities. MLIV is found in relatively high frequency in the Ashkenazi Jewish population. The disease is caused by mutations in the gene MCOLN1, which encodes the protein mucolipin 1 (MLN1), a member of the mucolipins family. MLN1 is a non-specific cation channel, and its putative structure attributes it to the TRP superfamily; thus, the gene is also referred as TRPML1. Over 16 MLIV-causing mutations, including two founder mutations in the Ashkenazi population, have been identified hitherto. Atypical increased lysosomal storage in MLIV is present in the cells of all patients. This accumulation is caused by an abnormal endocytosis process of the membrane components to late endosomes to the lysosomes, resulting in an apparent block in the traffic process in pre-lysosomal vacuoles with intraluminal pH of >5.0. MLN1 was localized in cultured cells to late endosomes and lysosomes. The exact function of this cation channel in the late stages of lysosomal maintenance is currently under study.
Collapse
Affiliation(s)
- Gideon Bach
- Department of Human Genetics, Hadassah Hebrew University Hospital, 91120 Jerusalem, Israel.
| |
Collapse
|
33
|
LaPlante JM, Ye CP, Quinn SJ, Goldin E, Brown EM, Slaugenhaupt SA, Vassilev PM. Functional links between mucolipin-1 and Ca2+-dependent membrane trafficking in mucolipidosis IV. Biochem Biophys Res Commun 2004; 322:1384-91. [PMID: 15336987 DOI: 10.1016/j.bbrc.2004.08.045] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Indexed: 11/20/2022]
Abstract
Most of the membrane trafficking phenomena including those involving the interactions between endosomes and lysosomes are regulated by changes in intracellular Ca2+ (Cai). These processes are disturbed in some types of mucolipidoses and other lysosomal storage disorders, such as mucolipidosis IV (MLIV), a neurological disorder that usually presents during the first year of life with blindness, cognitive impairment, and psychomotor delays. It is caused by mutations in MCOLN1, the gene encoding mucolipin-1 (MLN1), which we have recently established to represent a Ca2+-permeable cation channel that is transiently modulated by changes in Cai. The cells of MLIV patients contain enlarged lysosomes that are likely associated with abnormal sorting and trafficking of these and related organelles. We studied fibroblasts from MLIV patients and found disturbed Ca2+ signaling and large acidic organelles such as late endosomes and lysosomes (LEL) with altered cellular localization in these cells. The fusion between LEL vesicles in these cells was defective. This is a Ca2+-dependent process related to signaling pathways involved in regulation of Ca2+ homeostasis and trafficking. The MLN1 channels could play a key role in Ca2+ release from LEL vesicles, which triggers the fusion and trafficking of these organelles. The characterization of this MLN1-mediated Ca2+-dependent process should provide new insights into the pathophysiological mechanisms that lead to the development of MLIV and other mucolipidoses associated with similar disturbances in membrane trafficking.
Collapse
Affiliation(s)
- Janice M LaPlante
- Division of Endocrinology, Diabetes and Hypertension and Membrane Biology Program, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Bonavita S, Virta A, Jeffries N, Goldin E, Tedeschi G, Schiffmann R. Diffuse neuroaxonal involvement in mucolipidosis IV as assessed by proton magnetic resonance spectroscopic imaging. J Child Neurol 2003; 18:443-9. [PMID: 12940649 DOI: 10.1177/08830738030180070701] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mucolipidosis IV is an autosomal recessive disorder caused by mutations in MCOLN1, which codes for mucolipin, a transient receptor potential protein. In order to investigate brain metabolic abnormalities in mucolipidosis IV, we studied 14 patients (11 children, 3 adults) by proton magnetic resonance spectroscopic imaging. The ratios of N-acetylaspartate/ creatine-phosphocreatine and N-acetylaspartate/choline-containing compounds in patients with mucolipidosis IV were significantly reduced in all regions of interest except the parietal gray matter and thalamus. The ratios of choline-containing compounds/creatine-phosphocreatine was not significantly reduced in patients compared with controls. The ratio of N-acetylaspartate/creatine-phosphocreatine were significantly lower (P = .005) in the more neurologically impaired patients compared with the least impaired. For every region of interest, except for parietal gray matter, the ratio of N-acetylaspartate/creatine-phosphocreatine was lower in the more motorically impaired patient group. There was no difference for the ratio of N-acetylaspartate/creatine-phosphocreatine between younger and older patients. These findings suggest that mucolipidosis IV is largely a static developmental encephalopathy associated with diffuse neuronal and axonal damage or dysfunction. Mucolipin deficiency impairs motor more than sensory central nervous system pathways.
Collapse
Affiliation(s)
- Simona Bonavita
- Second Division of Neurology, Second University of Naples, Italy
| | | | | | | | | | | |
Collapse
|
35
|
LaPlante JM, Falardeau J, Sun M, Kanazirska M, Brown EM, Slaugenhaupt SA, Vassilev PM. Identification and characterization of the single channel function of human mucolipin-1 implicated in mucolipidosis type IV, a disorder affecting the lysosomal pathway. FEBS Lett 2002; 532:183-7. [PMID: 12459486 DOI: 10.1016/s0014-5793(02)03670-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mucolipin-1 (MLN1) is a membrane protein with homology to the transient receptor potential channels and other non-selective cation channels. It is encoded by the MCOLN1 gene, which is mutated in patients with mucolipidosis type IV (MLIV), an autosomal recessive disease that is characterized by severe abnormalities in neurological development as well as by ophthalmologic defects. At the cellular level, MLIV is associated with abnormal lysosomal sorting and trafficking. Here we identify the channel function of human MLN1 and characterize its properties. MLN1 represents a novel Ca(2+)-permeable channel that is transiently modulated by changes in [Ca(2+)]. It is also permeable to Na(+) and K(+). Large unitary conductances were measured in the presence of these cations. With its Ca(2+) permeability and modulation by [Ca(2+)], MLN1 could play a major role in Ca(2+) transport regulating lysosomal exocytosis and potentially other phenomena related to the trafficking of late endosomes and lysosomes.
Collapse
Affiliation(s)
- Janice M LaPlante
- Division of Endocrinology, Diabetes and Hypertension and Membrane Biology Program, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|