1
|
Huang MC, Willson CJ, Jaligama S, Baker GL, Singer AW, Cao Y, Pierfelice J, Mutlu E, Burback B, Xie G, Malarkey DE, Sparrow B, Ryan K, Stout M, Roberts GK. Whole-body inhalation exposure to 2-ethyltoluene for two weeks produced nasal lesions in rats and mice. Inhal Toxicol 2021; 33:334-346. [PMID: 34890527 DOI: 10.1080/08958378.2021.2002480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Ethyltoluenes are isolated during crude oil refinement for use in gasoline and commercial products and are ubiquitous in the environment. However, minimal toxicity data are available. Previously, we identified 2-ethyltoluene (2-ET) as the most potent isomer via nose-only inhalation exposure in rodents. Here, we expanded the hazard characterization of 2-ET in two rodent models using whole-body inhalation exposure and evaluated the role of prenatal exposure. METHODS Time-mated Hsd:Sprague Dawley® SD® rats were exposed to 0, 150, 300, 600, 900, or 1200 ppm 2-ET via inhalation starting on gestation day 6 until parturition. Rat offspring (n = 8/exposure/sex) were exposed to the same concentrations as the respective dams for 2 weeks after weaning. Adult male and female B6C3F1/N mice (n = 5/exposure/sex) were exposed to the same concentrations for 2 weeks. RESULTS AND DISCUSSION Exposure to ≥600 ppm 2-ET produced acute toxicity in rats and mice characterized by large decreases in survival, body weight, adverse clinical observations, and diffuse nasal olfactory epithelium degeneration (rats) or necrosis (mice). Due to the early removal of groups ≥600 ppm, most endpoint evaluations focused on lower exposure groups. In 150 and 300 ppm exposure groups, reproductive performance and littering were not significantly changed and body weights in exposed rats and mice were 9-18% lower than controls. Atrophy of the olfactory epithelium and nerves was observed in all animals exposed to 150 and 300 ppm. These lesions were more severe in mice than in rats. CONCLUSION Nasal lesions were observed in all animals after whole-body exposure up to 600 ppm 2-ET for 2 weeks. Future studies should focus on 2-ET metabolism and distribution to better understand species differences and refine hazard characterization of this understudied environmental contaminant.
Collapse
Affiliation(s)
- Madelyn C Huang
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | | | | | | - Yu Cao
- Battelle, Columbus, OH, USA
| | | | - Esra Mutlu
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Guanhua Xie
- Social and Scientific Services, Durham, NC, USA
| | - David E Malarkey
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Kristen Ryan
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Matthew Stout
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Georgia K Roberts
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
2
|
RIFM fragrance ingredient safety assessment, xylene (mixed), CAS Registry Number 1330-20-7. Food Chem Toxicol 2021; 153 Suppl 1:112299. [PMID: 34038792 DOI: 10.1016/j.fct.2021.112299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/30/2021] [Accepted: 05/19/2021] [Indexed: 11/22/2022]
|
3
|
Davidson CJ, Hannigan JH, Bowen SE. Effects of inhaled combined Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX): Toward an environmental exposure model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103518. [PMID: 33132182 DOI: 10.1016/j.etap.2020.103518] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Combined environmental exposures to the volatile organic compounds (VOCs) Benzene, Toluene, Ethylbenzene, and Xylene (BTEX) pose clear risks to public health. Research into these risks is under-studied even as BTEX levels in the atmosphere are predicted to rise. This review focuses on the available literature using single- and combined-BTEX component inhaled solvent exposures in animal models, necessarily also drawing on findings from models of inhalant abuse and occupational exposures. Health effects of these exposures are discussed for multiple organ systems, but with particular attention on neurobehavioral outcomes such as locomotor activity, impulsivity, learning, and psychopharmacological responses. It is clear that animal models have significant differences in the concentrations, durations and patterns of exposure. Experimental evidence of the deleterious health and neurobehavioral consequences of exposures to the individual components of BTEX were found, but these effects were typically assessed using concentrations and exposure patterns not characteristic of environmental exposure. Future studies with animal models designed appropriately to explore combined BTEX will be necessary and advantageous to discovering health outcomes and more subtle neurobehavioral impacts of long-term environmental exposures.
Collapse
Affiliation(s)
| | - John H Hannigan
- Department of Psychology, Wayne State University, Detroit, MI, USA; Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI, USA; Merrill Palmer Skillman Institute for Child & Family Development, Wayne State University, Detroit, MI, USA; Center for Urban Responses to Environmental Stressors, Wayne State University, Detroit, MI, USA
| | - Scott E Bowen
- Department of Psychology, Wayne State University, Detroit, MI, USA; Center for Urban Responses to Environmental Stressors, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
4
|
Roberts GK, Willson CJ, Olivera DS, Malarkey DE, Morgan DL. Comparative inhalation toxicity of ethyltoluene isomers in rats and mice. Inhal Toxicol 2018; 29:577-585. [PMID: 29374990 DOI: 10.1080/08958378.2018.1430190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The C9 alkylbenzenes, composed mostly of ethyltoluenes and trimethylbenzenes, comprise 75-90% of the naphtha fraction of crude oil. Occupational and environmental exposure to C9 alkylbenzenes occur via inhalation. We conducted short-term inhalation studies on the ethyltoluene isomers (2-, 3- or 4-) to select one isomer for more comprehensive studies. Male Hsd:Sprague Dawley rats and female B6C3F1/N mice (n = 10) were exposed by nose-only inhalation to 2-, 3- or 4-ethyltoluene (0, 1000 or 2000 ppm) or cumene (a reference compound: 0, 500 or 1000 ppm) 3 h/day, 5 days/week, for 2 weeks. Clinical observations included abnormal gait and delayed righting reflex. Rats and mice exposed to 2000 ppm 2-ethyltoluene and mice exposed to 2000 ppm 4-ethyltoluene were euthanized early in moribund condition; no exposure-related deaths were observed with 3-ethyltoluene or cumene. Histopathology of selected tissues revealed that the nose and liver (rats and mice) and lung (mice only) to be toxicity targets. In the mouse lung, all compounds except 4-ethyltoluene produced bronchial and bronchiolar hyperplasia. In rats and mice, 2-ethyltoluene was the only compound to produce lesions in the nose and liver: in mice, squamous metaplasia and neutrophilic inflammation of the respiratory epithelium and atrophy and degeneration of the olfactory epithelium were observed in the nose and centrilobular hypertrophy and necrosis were observed in the liver. In rats, 2-ethyltoluene exposure produced atrophy of the olfactory epithelium in the nose and centrilobular necrosis in the liver. Based on mortality, body weight effects and histopathology, the 2-ethyltoluene isomer was the most potent isomer.
Collapse
Affiliation(s)
| | | | - Dorian S Olivera
- c Alion Science and Technology Corporation , RTP , Durham , NC , USA
| | | | - Daniel L Morgan
- a Division of the National Toxicology Program , RTP , NC , USA
| |
Collapse
|
5
|
Davis JA, Kraft A. Quantitative meta-analytic approaches for the systematic synthesis of data and hazard identification: A case study of decreased pain sensitivity due to trimethylbenzene exposure. ENVIRONMENTAL RESEARCH 2017; 158:598-609. [PMID: 28719868 PMCID: PMC11017105 DOI: 10.1016/j.envres.2017.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Traditionally, human health risk assessments have relied on qualitative approaches for hazard identification, which involves weight of evidence determinations that integrate evidence across multiple studies. Recently, the National Research Council has recommended the development of quantitative approaches for evidence integration, including the application of meta-analyses, to help summarize and evaluate the results of a systematic review. In the meta-analytic approach, a pooled effect size is calculated after consideration of multiple potential confounding factors in order to determine whether the entire database under consideration indicates a chemical is a hazard. The following case-study applies qualitative and quantitative approaches to determine whether trimethylbenzene (TMB) isomers represent a neurotoxic hazard, specifically focusing on pain sensitivity. Following a thorough literature search, the only pain sensitivity studies available for TMBs initially seem discordant in their results: effects on pain sensitivity are seen immediately after termination of exposure, appear to resolve 24h after exposure, and then reappear 50 days later following foot-shock. Qualitative consideration of toxicological and toxicokinetic characteristics of the TMB isomers suggests that the observed differences between studies are likely due to testing time and the application of external stressors. Meta-analyses and -regressions support this conclusion: when all studies are included and possible confounders (isomer, testing time, laboratory, etc.) are accounted for, the pooled effect sizes are statistically significant, thus supporting that TMBs are a possible neurotoxic hazard to human health. Ultimately, this case study demonstrates how qualitative and quantitative methods can be combined to provide a robust hazard identification analysis by incorporating more of the available information.
Collapse
Affiliation(s)
- J Allen Davis
- National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, United States.
| | - Andrew Kraft
- National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, United States
| |
Collapse
|
6
|
Richtwerte für Dimethylbenzole in der Innenraumluft. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2015; 58:1378-89. [DOI: 10.1007/s00103-015-2252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Mckee RH, Adenuga MD, Carrillo JC. Characterization of the toxicological hazards of hydrocarbon solvents. Crit Rev Toxicol 2015; 45:273-365. [DOI: 10.3109/10408444.2015.1016216] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
McKee RH, Lammers JHCM, Muijser H, Owen DE, Kulig BM. Neurobehavioral Effects of Acute Exposure to Aromatic Hydrocarbons. Int J Toxicol 2010; 29:277-90. [DOI: 10.1177/1091581810365089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article reports the results of neurobehavioral tests on representative aromatic constituents, specifically C9 to C11 species. The testing evaluated effects in several domains including clinical effects, motor activity, functional observations, and visual discrimination performance. Exposures ranging from 600 to 5000 mg/m3, depending on the molecular weights of the specific aromatic constituents, produced minor, reversible effects on the central nervous system (CNS), particularly in the domains of gait and visual discrimination. There was little evidence of effects at lower exposure levels. There was some evidence of respiratory effects at 5000 mg/m3 in 1 study, and there were also minor changes in body weight and temperature. The CNS effects became less pronounced with repeated exposures, corresponding to lower concentrations in the brain of 1 representative substance, 1,2,4-trimethyl benzene (TMB). At high exposure levels, the alkyl benzenes apparently induced their own metabolism, increasing elimination rates.
Collapse
Affiliation(s)
| | | | - H. Muijser
- TNO Quality of Life, Zeist, The Netherlands
| | - D. E. Owen
- Shell Chemicals, Ltd, London, United Kingdom
| | | |
Collapse
|
9
|
Lo Pumo R, Bellia M, Nicosia A, Micale V, Drago F. Long-lasting neurotoxicity of prenatal benzene acute exposure in rats. Toxicology 2006; 223:227-34. [PMID: 16698163 DOI: 10.1016/j.tox.2006.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 04/01/2006] [Accepted: 04/03/2006] [Indexed: 11/21/2022]
Abstract
Benzene is a common element of environmental pollution. Although this substance is not recognized as a teratogenic agent, it is not known whether prenatal exposure to benzene may induce neurobehavioral changes in the progeny. Benzene 0.1mg/kg was injected subcutaneously (s.c.) acutely at day 15 of gestation into pregnant female rats of the Sprague-Dawley strain and neurotoxicity of the substance was studied in pups and male adult animals of the same progeny. No change was found in total number of neonates, body weight and eye opening time between benzene-exposed animals and controls. No malformations were observed. At birth, neonatal reflexes (cliff aversion, forelimb placing, bar holding, forelimb grasping, startle) were scored in benzene-exposed pups and their percent appearance was found to be anticipated (more benzene-exposed pups exhibited reflexes each day) in comparison to that of control animals. Also, the completion (maximum appearance, i.e. 100% of the brood was found to exhibit each reflex) of neonatal reflexes in benzene-exposed animals preceded that of controls. Starting 2 months after birth, cognitive and motor performance was assessed only in male animals of the prenatally benzene-exposed progeny. The overall evaluation of motor activity in benzene-exposed animals in the open-field test revealed reduced ambulation in these rats as compared to control animals. Acquisition of active avoidance responses in the shuttle-box test, as assessed by the number of conditioned avoidance responses and the percent of learners, was impaired in benzene-exposed rats as compared to control animals. Prenatal exposure to benzene was also followed by reduced retention latency in a step-through passive avoidance task in two retention tests. These results suggest that acute exposure to benzene during gestational organogenesis may cause long-lasting changes in motor behavior and cognitive processes. This may be relevant for the assessment of benzene toxic profile for the progeny of pregnant subjects, although teratogenic effects are not observed.
Collapse
Affiliation(s)
- Roberta Lo Pumo
- Department of Internal Medicine and Systemic Diseases, Section of Occupational Health, University of Catania Medical School, 95124 Catania, Italy
| | | | | | | | | |
Collapse
|
10
|
Schupp T, Bolt HM, Jaeckh R, Hengstler JG. Benzene and its methyl-derivatives: Derivation of maximum exposure levels in automobiles. Toxicol Lett 2006; 160:93-104. [PMID: 16122889 DOI: 10.1016/j.toxlet.2005.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 06/18/2005] [Accepted: 06/19/2005] [Indexed: 11/20/2022]
Abstract
Automobile drivers are exposed to several organic hydrocarbons. Concentrations measured in passenger compartments have been reported to range between 13 and 560 microg/m(3) for benzene, 33-258 microg/m(3) for toluene, 20-250 microg/m(3) for xylene (mixed isomers) and 3-23 microg/m(3) for trimethylbenzene (mixed isomers). These aromatic hydrocarbons are emitted from gasoline and from materials inside a car. In the present study we evaluated, whether these exposures pose a potential risk to the health of drivers. Therefore, we derived maximum exposure levels inside cars for chronic (ELIA(chronic)) and short-term (STELIA) exposure. The lowest ELIA's(chronic) for benzene, toluene, xylene and trimethylbenzene were 0.083, 1.2, 8.8 and 0.31 mg/m(3), respectively. The respective STELIA's were 16, 30, 29 and 25 mg/m(3). Obviously concentrations of toluene, xylene and trimethylbenzene inside cars do not exceed their individual STELIA's. In contrast, benzene seems to be problematic, since concentrations inside cars amount up to 0.56 mg/m(3), which exceeds the ELIA(chronic) derived for benzene. This should not be underestimated, since benzene is a genotoxic carcinogen that probably acts by non-threshold mechanisms. In conclusion, concentrations of toluene, xylene and trimethylbenzene usually observed inside cars are unlikely to pose a risk to the health of drivers. A systematic toxicological evaluation of the risk associated with benzene exposure in cars seems to be necessary.
Collapse
Affiliation(s)
- Thomas Schupp
- Elastogran, Department for Ecology and Product Safety, Lemförde, Germany.
| | | | | | | |
Collapse
|
11
|
Saillenfait AM, Gallissot F, Sabate JP, Morel G. Developmental toxicity of two trimethylbenzene isomers, mesitylene and pseudocumene, in rats following inhalation exposure. Food Chem Toxicol 2005; 43:1055-63. [PMID: 15833381 DOI: 10.1016/j.fct.2005.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 02/09/2005] [Accepted: 02/15/2005] [Indexed: 10/25/2022]
Abstract
The developmental toxicity of two trimethylbenzene isomers, mesitylene (1,3,5-trimethylbenzene) and pseudocumene (1,2,4-trimethylbenzene) was studied in Sprague-Dawley rats following inhalation exposure. Pregnant rats were exposed whole body to vapours of mesitylene (0, 100, 300, 600, and 1200 ppm) or pseudocumene (0, 100, 300, 600, and 900 ppm), 6h/day, on gestational days (GD) 6 through 20. Significant decrease in maternal body weight gain and food consumption was observed at concentrations of 300 ppm mesitylene, 600 ppm pseudocumene, or greater. Fetal toxicity, expressed as significant reduction in fetal body weight, occurred at 600 and 1200 ppm mesitylene, and at 600 and 900 ppm pseudocumene. There was no evidence of embryolethal or teratogenic effects following inhalation exposure to either of these chemicals. In summary, the no-observed-adverse-effect-level (NOAEL) for maternal toxicity was 100 ppm for mesitylene and 300 ppm for pseudocumene, and the NOAEL for developmental toxicity was 300 ppm for mesitylene and pseudocumene.
Collapse
Affiliation(s)
- A M Saillenfait
- Institut National de Recherche et de Sécurité, Avenue de Bourgogne, B.P. No. 27, 54501 Vandoeuvre, France.
| | | | | | | |
Collapse
|
12
|
Páez-Martínez N, Cruz SL, López-Rubalcava C. Comparative study of the effects of toluene, benzene, 1,1,1-trichloroethane, diethyl ether, and flurothyl on anxiety and nociception in mice. Toxicol Appl Pharmacol 2003; 193:9-16. [PMID: 14613712 DOI: 10.1016/s0041-008x(03)00335-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The main purpose of this study was to compare the effects of solvents from different chemical classes on anxiety and nociception. Independent groups of mice were exposed to air (control group), toluene (1000-4000 ppm), benzene (1000-4000 ppm), 1,1,1-trichloroethane (TCE, 2000-12000 ppm), diethyl ether (10,000-30,000) or flurothyl (200-600 ppm). After a 30-min exposure, animals were tested either in the anxiety paradigm conditioned defensive burying (CDB) test or in the hot plate test. All solvents but flurothyl produced anxiolytic-like actions being the order of potency toluene > benzene > TCE > diethyl ether. When tested in the hot plate paradigm, toluene and TCE increased nociception, benzene and diethyl ether had no effects, and flurothyl decreased nociception Additional groups of mice were conditioned to recognize the aversive stimulus (electrified prod) prior to toluene exposure and then tested in the CDB test. In unconditioned animals, toluene increased the number of shocks that mice received; however, when mice had previous experience in the CDB test, toluene lacked this effect. Taken together, these results show that inhalants have different effects with different potencies both in the CDB and in the hot plate tests. Additionally, data suggest that acute administration of toluene could impair learning.
Collapse
Affiliation(s)
- Nayeli Páez-Martínez
- Departamento de Farmacobiologia, Cinvestav, IPN. Calz. de los Tenorios 235, Col. Granjas Coapa, México D.F. 14330, México
| | | | | |
Collapse
|
13
|
Ritchie GD, Rossi J, Nordholm AF, Still KR, Carpenter RL, Wenger GR, Wright DW. Effects of repeated exposure to JP-8 jet fuel vapor on learning of simple and difficult operant tasks by rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2001; 64:385-415. [PMID: 11700005 DOI: 10.1080/152873901753170731] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Groups of 16 Sprague-Dawley rats each were exposed by whole-body inhalation methods to JP-8 jet fuel at the highest vapor concentration without formation of aerosol (1,000 +/- 10% mg/m3); to 50% of this concentration (500 +/- 10% mg/m3); or to treated room air (70 +/- 81 L/min) for 6 h/d, 5 d/wk, for 6 wk (180 h). Although two subjects died of apparent kidney complications during the study, no other change in the health status of exposed rats was observed, including rate of weight gain. Following a 65-d period of rest, rats were evaluated for their capacity to learn and perform a series of operant tasks. These tasks ranged in difficulty from learning of a simple food-reinforced lever pressing response, to learning a task in which subjects were required to emit up to four-response chains of pressing three different levers (e.g., press levers C, R, L, then C). It was shown that repeated exposure to 1,000 mg/m3 JP-8 vapor induced significant deficits in acquisition or performance of moderately difficult or difficult tasks, but not simple learning tasks, as compared to those animals exposed to 500 mg/m3. Learning/performance of complex tasks by the 500-mg/m3 exposure group generally exceeded the performance of control animals, while learning by the 1,000-mg/m3 group was nearly always inferior to controls, indicating possible "neurobehavioral" hormesis. These findings appear consistent with some previously reported data for operant performance following acute exposure to certain hydrocarbon constituents of JP-8 (i.e., toluene, xylenes). There has, however, been little previously published research demonstrating long-term learning effects for repeated hydrocarbon fuel exposures. Examination of regional brain tissues from vapor-exposed rats indicated significant changes in levels of dopamine in the cerebral cortex and DOPAC in the brainstem, measured as long as 180 d postexposure, as compared to controls.
Collapse
Affiliation(s)
- G D Ritchie
- Geo-Centers, Inc, Wright-Patterson Air Force Base, Ohio 45433, USA.
| | | | | | | | | | | | | |
Collapse
|