1
|
Manual Therapy Facilitates Homeostatic Adaptation to Bone Microstructural Declines Induced by a Rat Model of Repetitive Forceful Task. Int J Mol Sci 2022; 23:ijms23126586. [PMID: 35743030 PMCID: PMC9223642 DOI: 10.3390/ijms23126586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 01/27/2023] Open
Abstract
The effectiveness of manual therapy in reducing the catabolic effects of performing repetitive intensive force tasks on bones has not been reported. We examined if manual therapy could reduce radial bone microstructural declines in adult female Sprague–Dawley rats performing a 12-week high-repetition and high-force task, with or without simultaneous manual therapy to forelimbs. Additional rats were provided 6 weeks of rest after task cessation, with or without manual therapy. The control rats were untreated or received manual therapy for 12 weeks. The untreated TASK rats showed increased catabolic indices in the radius (decreased trabecular bone volume and numbers, increased osteoclasts in these trabeculae, and mid-diaphyseal cortical bone thinning) and increased serum CTX-1, TNF-α, and muscle macrophages. In contrast, the TASK rats receiving manual therapy showed increased radial bone anabolism (increased trabecular bone volume and osteoblast numbers, decreased osteoclast numbers, and increased mid-diaphyseal total area and periosteal perimeter) and increased serum TNF-α and muscle macrophages. Rest, with or without manual therapy, improved the trabecular thickness and mid-diaphyseal cortical bone attributes but not the mineral density. Thus, preventive manual therapy reduced the net radial bone catabolism by increasing osteogenesis, while rest, with or without manual therapy, was less effective.
Collapse
|
2
|
Sun YY, Wu YJ. Tri-ortho-cresyl phosphate induces axonal degeneration in chicken DRG neurons by the NAD+ pathway. Toxicol Lett 2022; 363:77-84. [DOI: 10.1016/j.toxlet.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
|
3
|
Narine M, Colognato H. Current Insights Into Oligodendrocyte Metabolism and Its Power to Sculpt the Myelin Landscape. Front Cell Neurosci 2022; 16:892968. [PMID: 35573837 PMCID: PMC9097137 DOI: 10.3389/fncel.2022.892968] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/06/2022] [Indexed: 12/20/2022] Open
Abstract
Once believed to be part of the nervenkitt or "nerve glue" network in the central nervous system (CNS), oligodendroglial cells now have established roles in key neurological functions such as myelination, neuroprotection, and motor learning. More recently, oligodendroglia has become the subject of intense investigations aimed at understanding the contributions of its energetics to CNS physiology and pathology. In this review, we discuss the current understanding of oligodendroglial metabolism in regulating key stages of oligodendroglial development and health, its role in providing energy to neighboring cells such as neurons, as well as how alterations in oligodendroglial bioenergetics contribute to disease states. Importantly, we highlight how certain inputs can regulate oligodendroglial metabolism, including extrinsic and intrinsic mediators of cellular signaling, pharmacological compounds, and even dietary interventions. Lastly, we discuss emerging studies aimed at discovering the therapeutic potential of targeting components within oligodendroglial bioenergetic pathways.
Collapse
Affiliation(s)
- Mohanlall Narine
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
- Department of Neurobiology, & Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Holly Colognato
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
4
|
Barbe MF, Panibatla ST, Harris MY, Amin M, Dorotan JT, Cruz GE, Bove GM. Manual Therapy With Rest as a Treatment for Established Inflammation and Fibrosis in a Rat Model of Repetitive Strain Injury. Front Physiol 2021; 12:755923. [PMID: 34803739 PMCID: PMC8600143 DOI: 10.3389/fphys.2021.755923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Repetitive strain injuries caused by repetitive occupational work are difficult to prevent for multiple reasons. Therefore, we examined the effectiveness of manual therapy (MT) with rest to treat the inflammation and fibrosis that develops through the performance of a repetitive task. We hypothesized that this treatment would reduce task-induced sensorimotor declines and neuromuscular inflammation. Methods: Twenty-nine female Sprague-Dawley rats performed a reaching and lever-pulling task for 14weeks. All ceased performing the task at 14weeks. Ten were euthanized at this timepoint (TASK). Nine received manual therapy to their upper extremities while resting 7weeks (MTR); 10 were assigned to rest alone (REST). Ten additional food restricted rats were included that neither performed the task nor received manual therapy (FRC). Results: Confirming previous experiments, TASK rats showed behavioral changes (forepaw mechanical hypersensitivity, reduced grip strength, lowered forelimb/forepaw agility, and noxious cold temperature sensitivity), reduced median nerve conduction velocity (NCV), and pathological tissue changes (myelin degradation, increased median nerve and muscle inflammation, and collagen production). Manual therapy with rest (MTR) ameliorated cold sensitivity seen in REST rats, enhanced muscle interleukin 10 (IL-10) more than in REST rats, lead to improvement in most other measures, compared to TASK rats. REST rats showed improved grip strength, lowered nerve inflammation and degraded myelin, and lowered muscle tumor necrosis factor alpha (TNFα) and collagen I levels, compared to TASK rats, yet maintained lowered forelimb/forepaw agility and NCV, and increased neural fibrosis. Conclusion: In our model of repetitive motion disorder, manual therapy during rest had modest effects on behavioral, histological, and physiological measures, compared to rest alone. These findings stand in contrast to the robust preventive effects of manual therapy in this same model.
Collapse
Affiliation(s)
- Mary F Barbe
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Siva Tejaa Panibatla
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michele Y Harris
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Mamta Amin
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Jocelynne T Dorotan
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Geneva E Cruz
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Geoffrey M Bove
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Bove Consulting, Kennebunkport, ME, United States
| |
Collapse
|
5
|
Xu HY, Wang P, Sun YJ, Jiang L, Xu MY, Wu YJ. Autophagy in Tri-o-cresyl Phosphate-Induced Delayed Neurotoxicity. J Neuropathol Exp Neurol 2017; 76:52-60. [PMID: 28040792 DOI: 10.1093/jnen/nlw108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The widely used organophosphorus compound tri-o-cresyl phosphate (TOCP) elicits delayed neurotoxicity characterized by progressive axonal degeneration in the spinal cord and peripheral nerves. However, the precise mechanisms of TOCP-induced delayed neurotoxicity are not clear. Because autophagy has been linked to the pathogenesis of neurodegenerative diseases, we aimed to characterize autophagy in the progression of TOCP-induced delayed neurotoxicity. In vivo experiments using the adult hen animal model showed that autophagy in spinal cord axons and in sciatic nerves was markedly induced at the early preclinical stage of TOCP-induced delayed neurotoxicity; it was decreased as the delayed neurotoxicity progressed to the overt neuropathy stage. In cultured human neuroblastoma SH-SY5Y cells, TOCP reduced cell growth, and induced prominent autophagy. The autophagy inhibitor 3-methyladenine could attenuate TOCP-induced cytotoxicity, indicating that the autophagy is accountable for TOCP-induced neurotoxicity. In addition, we found that TOCP-induced Parkin translocation to mitochondria in SH-SY5Y cells, suggesting that autophagy may function to degrade mitochondria after TOCP exposure. These results suggest that autophagy may play an important role in the initiation and progression of axonal damage during TOCP-induced neurotoxicity.
Collapse
Affiliation(s)
- Hai-Yang Xu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Pan Wang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ying-Jian Sun
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Department of Veterinary Medicine and Animal Science, Beijing University of Agriculture, Beijing, People's Republic of China
| | - Lu Jiang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ming-Yuan Xu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
6
|
Emerick GL, Fernandes LS, de Paula ES, Barbosa F, dos Santos NAG, dos Santos AC. In vitro study of the neuropathic potential of the organophosphorus compounds fenamiphos and profenofos: Comparison with mipafox and paraoxon. Toxicol In Vitro 2015; 29:1079-87. [PMID: 25910916 DOI: 10.1016/j.tiv.2015.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 03/24/2015] [Accepted: 04/11/2015] [Indexed: 10/23/2022]
Abstract
Organophosphorus-induced delayed neuropathy (OPIDN) is a central-peripheral distal axonopathy that develops 8-14 days after poisoning by a neuropathic organophosphorus compound (OP). Several OPs that caused OPIDN were withdrawn from the agricultural market due to induction of serious delayed effects. Therefore, the development of in vitro screenings able to differentiate neuropathic from non-neuropathic OPs is of crucial importance. Thus, the aim of this study was to evaluate the differences in the neurotoxic effects of mipafox (neuropathic OP) and paraoxon (non-neuropathic OP) in SH-SY5Y human neuroblastoma cells, using the inhibition and aging of neuropathy target esterase (NTE), inhibition of acetylcholinesterase (AChE), activation of calpain, neurite outgrowth, cytotoxicity and intracellular calcium as indicators. Additionally, the potential of fenamiphos and profenofos to cause acute and/or delayed effects was also evaluated. Mipafox had the lowest IC50 and induced the highest percentage of aging of NTE among the OPs evaluated. Only mipafox was able to cause calpain activation after 24 h of incubation. Concentrations of mipafox and fenamiphos which inhibited at least 70% of NTE were also able to reduce neurite outgrowth. Cytotoxicity was higher in non-neuropathic than in neuropathic OPs while the intracellular calcium levels were higher in neuropathic than in non-neuropathic OPs. In conclusion, the SH-SY5Y cellular model was selective to differentiate neuropathic from non-neuropathic OPs; fenamiphos, but not profenofos presented results compatible with the induction of OPIDN.
Collapse
Affiliation(s)
- Guilherme L Emerick
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, USP, Avenida do Café s/n, Monte Alegre, 14040-903 Ribeirão Preto, SP, Brazil; Departamento de Farmácia, Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso - ICS/UFMT/CUS, Sinop, MT, Brazil.
| | - Laís S Fernandes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, USP, Avenida do Café s/n, Monte Alegre, 14040-903 Ribeirão Preto, SP, Brazil
| | - Eloísa Silva de Paula
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, USP, Avenida do Café s/n, Monte Alegre, 14040-903 Ribeirão Preto, SP, Brazil
| | - Fernando Barbosa
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, USP, Avenida do Café s/n, Monte Alegre, 14040-903 Ribeirão Preto, SP, Brazil
| | - Neife Aparecida Guinaim dos Santos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, USP, Avenida do Café s/n, Monte Alegre, 14040-903 Ribeirão Preto, SP, Brazil
| | - Antonio Cardozo dos Santos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, USP, Avenida do Café s/n, Monte Alegre, 14040-903 Ribeirão Preto, SP, Brazil
| |
Collapse
|
7
|
Meucci RD, Fassa AG, Faria NMX, Fiori NS. Chronic low back pain among tobacco farmers in southern Brazil. INTERNATIONAL JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HEALTH 2015; 21:66-73. [PMID: 25633930 PMCID: PMC4273522 DOI: 10.1179/2049396714y.0000000094] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND Despite tobacco farming involving intensive manual labor, chronic low back pain (CLBP) prevalence and associated factors are unknown among this occupational group. METHODS This was a cross-sectional study conducted in southern Brazil. A random sample of tobacco farmers was interviewed. Socioeconomic and individual characteristics, occupational tasks, workloads, and comorbidities were investigated. Chronic low back pain prevalence was described in relation to independent variables, and associations were examined with Poisson regression. RESULTS Chronic low back pain prevalence was 8·4%. Increasing age, rearing two or more species of livestock (PR 1·65), exposure to tasks that require heavy physical exertion (PR 2·00), working in awkward postures (PR 1·36), green tobacco sickness (GTS) (PR 1·63), pesticide poisoning (PR 2·37), and minor psychiatric disorders (PR 2·55) were associated with CLBP. CONCLUSIONS This study found that CLBP is a relevant health problem among tobacco farmers and highlights understudied risk factors such as pesticide poisoning and GTS. Policies to minimize exposure to physiological and chemical workloads in tobacco planting to prevent CLBP are needed. Health professionals should be trained to diagnose and prevent acute low back pain episodes and thus prevent/minimize limitations and disabilities due to CLBP.
Collapse
|
8
|
Bader SR, Fischer A, Emrich D, Juetting U, Weyh T, Kaspers B, Matiasek K. Evaluation of lumbosacral nerve root conduction in chickens by electrophysiological testing including high-resolution spinal magnetic stimulation. J Neurosci Methods 2011; 194:342-9. [PMID: 21074557 DOI: 10.1016/j.jneumeth.2010.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 10/31/2010] [Accepted: 11/02/2010] [Indexed: 02/06/2023]
Abstract
The value of avian models in peripheral nerve research recently became substantiated by the immunobiological similarity of avian inflammatory demyelinating polyradiculoneuropathy to human Guillain-Barré syndrome providing an alternative animal model for experimental autoimmune neuritis. As electrophysiologic evaluation of nerve roots is essential part of the diagnosis of polyradiculoneuropathies in humans, it would be favourable to have similar research methods available for juvenile chickens. Hence, this study was performed (1) to establish a tool-set that allows for reproducible evaluation of the tibial/sciatic nerve and its nerve roots, (2) to achieve age-matched reference values, and (3) to trace the kinetics of peripheral nerve maturation within chickens. Nine chickens underwent serial electrodiagnostic examinations between the age of 6 and 15 weeks. Several methods of sensory and motor nerve fiber stimulation of the tibial/sciatic nerve were tested and modified or established. Ultimately, scalp-recorded somatosensory evoked potentials, compound muscle action potentials elicited by tibial/sciatic nerve electrical as well as spinal magnetic stimulation and motor nerve conduction velocity were available for tibial/sciatic nerve and nerve root evaluation in chickens. Base values were obtained for all investigations and parameters. Results indicated that the maturation of the nerve fibers is incomplete up to the age of 15 weeks. The methods tested here provide an excellent tool-set for quantitative tibial/sciatic nerve and nerve root assessment in avian polyradiculoneuropathies, especially within the scope of longitudinal monitoring of the disease course.
Collapse
Affiliation(s)
- Sophie R Bader
- Section of Neuropathology, Department of Veterinary Clinical Sciences, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Xin X, Zeng T, Dou DD, Zhao S, Du JY, Pei JJ, Xie KQ, Zhao XL. Changes of mitochondrial ultrastructures and function in central nervous tissue of hens treated with tri-ortho-cresyl phosphate (TOCP). Hum Exp Toxicol 2010; 30:1062-72. [PMID: 20965953 DOI: 10.1177/0960327110386815] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tri-ortho-cresyl phosphate (TOCP), an organophosphorus ester, is capable of producing organophosphorus ester-induced delayed neurotoxicity (OPIDN) in humans and sensitive animals. The mechanism of OPIDN has not been fully understood. The present study has been designed to evaluate the role of mitochondrial dysfunctions in the development of OPIDN. Adult hens were treated with 750 mg/kg·bw TOCP by gavage and control hens were given an equivalent volume of corn oil. On day 1, 5, 15, 21 post-dosing, respectively, hens were anesthetized by intraperitoneal injection of sodium pentobarbital and perfused with 4% paraformaldehyde. The cerebral cortex cinerea and the ventral horn of lumbar spinal cord were dissected for electron microscopy. Another batch of hens were randomly divided into three experimental groups and control group. Hens in experimental groups were, respectively, given 185, 375, 750 mg/kg·bw TOCP orally and control group received solvent. After 1, 5, 15, 21 days of administration, they were sacrificed and the cerebrum and spinal cord dissected for the determination of the mitochondrial permeability transition (MPT), membrane potential (Δψ(m)) and the activity of succinate dehydrogenase. Structural changes of mitochondria were observed in hens' nervous tissues, including vacuolation and fission, which increased with time post-dosing. MPT was increased in both the cerebrum and spinal cord, with the most noticeable increase in the spinal cord. Δψ(m) was decreased in both the cerebrum and spinal cord, although there was no significant difference in the three treated groups and control group. The activity of mitochondrial succinate dehydrogenase assayed by methyl thiazolyl tetrazolium (MTT) reduction also confirmed mitochondrial dysfunctions following development of OPIDN. The results suggested mitochondrial dysfunction might partly account for the development of OPIDN induced by TOCP.
Collapse
Affiliation(s)
- Xing Xin
- Institute of Toxicology, Shandong University, Shandong, PR China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kart A, Bilgili A. Effects of organophosphate phenyl saligenin phosphate and polyether carboxylic ionophore lasalocid on motor nerve conduction velocity, neuropathy target esterase enzyme activity, and clinical ataxia in chickens. Toxicol Mech Methods 2009; 19:351-5. [DOI: 10.1080/15376510903030403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Clippinger TL, Bennett RA, Platt SR. The avian neurologic examination and ancillary neurodiagnostic techniques: a review update. Vet Clin North Am Exot Anim Pract 2007; 10:803-36, vi. [PMID: 17765849 DOI: 10.1016/j.cvex.2007.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The purpose of this article is to guide the avian clinician in the assessment of neurologic function in birds. Physical and neurologic examinations that evaluate cranial nerves, postural reactions, and spinal reflexes identify neurologic dysfunction and the corresponding anatomic location of the lesion. Ancillary diagnostic tests, such as cerebrospinal fluid analysis, diagnostic imaging, muscle and nerve histology, and electrodiagnostics, are tools to confirm and clarify conclusions from the neurologic examination and to identify the cause of disease. Once the disease location and pathologic process have been identified, appropriate treatment and prognosis may be provided.
Collapse
Affiliation(s)
- Tracy L Clippinger
- Department of Veterinary Services, Zoological Society of San Diego-San Diego Zoo, 1354 Old Globe Way, San Diego, CA 92101-1635, USA.
| | | | | |
Collapse
|
12
|
Massicotte C, Knight K, Van der Schyf CJ, Jortner BS, Ehrich M. Effects of organophosphorus compounds on ATP production and mitochondrial integrity in cultured cells. Neurotox Res 2005; 7:203-17. [PMID: 15897155 DOI: 10.1007/bf03036450] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent studies in vivo and in vitro suggested that mitochondrial dysfunction follows exposure to organophosphorus (OP) esters. As mitochondrial ATP production is important for cellular integrity, ATP production in the presence of OP neurotoxicants was examined in a human neuronal cell line (SH-SY5Y neuroblastoma cells) and primary dorsal root ganglia (DRG) cells isolated from chick embryos and subsequently cultured to achieve maturation with axons. These cell culture systems were chosen to evaluate toxic effects on the mitochondrial respiratory chain associated with exposure to OP compounds that do and do not cause OP-induced delayed neuropathy (OPIDN), a disorder preceded by inhibition of neurotoxic esterase (NTE). Concentration- and time-response studies were done in neuroblastoma cells exposed to phenyl saligenin phosphate (PSP) and mipafox, both compounds that readily induce delayed neuropathy in hens, or paraoxon, which does not. Phenylmethylsulfonyl fluoride (PMSF) was included as a non-neuropathic inhibitor of NTE. Purified neuronal cultures from 9 day-old chick embryo DRG were treated for 12 h with 1 microM PSP, mipafox, or paraoxon. In situ evaluation of ATP production measured by bioluminescence assay demonstrated decreased ATP concentrations both in neuroblastoma cells and chick DRG neurons treated with PSP. Mipafox decreased ATP production in DRG but not in SH-SY5Y cells. This low energy state was present at several levels of the mitochondrial respiratory chain, including Complexes I, II, III, and IV, although Complex I was the most severely affected. Paraoxon and PMSF were not effective at all complexes, and, when effective, required higher concentrations than needed for PSP. Results suggest that mitochondria are an important early target for OP compounds, with exposure resulting in depletion of ATP production. The targeting of neuronal, rather than Schwann cell mitochondria in DRG following exposure to PSP and mipafox was verified by loss of the mitochondrial-specific dye, tetramethylrhodamine, in these cells. No such loss was seen in paraoxon exposed neurons isolated from DRG or in Schwann cells treated with any of the test compounds.
Collapse
Affiliation(s)
- C Massicotte
- Virginia-Maryland Regional College of Veterinary Medicine, 1 Duck Pond Drive, Blacksburg, VA 24061-0442, USA
| | | | | | | | | |
Collapse
|
13
|
Massicotte C, Jortner BS, Ehrich M. Morphological effects of neuropathy-inducing organophosphorus compounds in primary dorsal root ganglia cell cultures. Neurotoxicology 2004; 24:787-96. [PMID: 14637373 DOI: 10.1016/s0161-813x(03)00061-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chick embryo dorsal root ganglia (DRG) cultures were used to explore early pathological events associated with exposure to neuropathy-inducing organophosphorus (OP) compounds. This approach used an in vitro neuronal system from the species that provides the animal model for OP-induced delayed neuropathy (OPIDN). DRG were obtained from 9-day-old chick embryos, and grown for 14 days in minimal essential medium (MEM) supplemented with bovine and human placental sera and growth factors. Cultures were then exposed to 1 microM of the OP compounds phenyl saligenin phosphate (PSP) or mipafox, which readily elicit OPIDN in hens, paraoxon, which does not cause OPIDN, or the DMSO vehicle. The medium containing these toxicants was removed after 12 h, and cultures maintained for 4-7 days post-exposure. Morphometric analysis of neurites was performed by inverted microscopy, which demonstrated that neurites of cells treated with mipafox or PSP but not with paraoxon had decreased length-to-diameter ratios at day 4 post-exposure. Ultrastructural alterations of neurons treated with PSP and mipafox included dissolution of microtubules and neurofilaments and degrading mitochondria. Paraoxon-treated and DMSO control neuronal cell cultures did not show such evident ultrastructural changes. This study demonstrates that chick DRG show pathological changes following exposure to neuropathy-inducing OP compounds.
Collapse
Affiliation(s)
- Christiane Massicotte
- Laboratory for Neurotoxicity Studies, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, 1 Duckpond Drive, Blacksburg, VA 24061-0442, USA
| | | | | |
Collapse
|