1
|
Chowdhury M, Biswas N, Saha S, Rahaman A, Gupta PS, Banerjee A, Mandal DP, Bhattacharjee S, Zangrando E, Sciortino G, Pisanu F, Garribba E, Roy Choudhury R, Roy Choudhury C. Interaction with CT-DNA and in vitro cytotoxicity of two new copper(II)-based potential drugs derived from octanoic hydrazide ligands. J Inorg Biochem 2024; 256:112546. [PMID: 38593611 DOI: 10.1016/j.jinorgbio.2024.112546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
Two copper(II) complexes [Cu(Hpmoh)(NO3)(NCS)] (1) and [Cu(peoh)(N3)]2 (2) were designed and synthesized by reaction of Cu(NO3)2·3H2O with hydrazone Schiff base ligands,abbreviated with Hpmoh and Hpeoh. Hpmoh and Hpeoh were prepared by condensation reaction of octanoic hydrazide with pyridine-2-carboxyaldehyde and 2-acetylpyridine, respectively. Complexes 1 and 2 were characterized using different analytical techniques such as FT-IR, UV-Vis, IR, EPR and single X-ray diffraction (XRD) analyses as well as computational methods (DFT). The XRD of 1 and 2 shows a mononuclear or a dinuclear structure with the copper(II) centre adopting a slightly distorted square pyramidal geometry. In water-containing solution and in DMSO, 1 and 2 undergo a partial transformation with formation of [Cu(Hpmoh)(NO3)(NCS)] (1) and [Cu(Hpmoh)(NO3)(H2O/DMSO)] (1a) in one system and [Cu(peoh)(N3)] (2a) in the other one, as supported by DFT calculations. Docking simulations confirmed that the intercalation is the preferred binding mode with DNA for 1, 1a and 2a, but suggested that the minor groove binding is also possible. A significant fluorescence quenching of the DNA-ethidium bromide conjugate was observed upon the addition of complexes 1 and 2 with a quenching constant around 104 M-1 s-1. Finally, both 1 and 2 were examined for anti-cancer activity using MDA-MB-231 (human breast adenocarcinoma) and A375 (malignant melanoma) cell lines through in vitro MTT assay which suggest comparable cancer cell killing efficacy, with the higher effectiveness of 2 due to the dissociation into two [Cu(peoh)(N3)] units.
Collapse
Affiliation(s)
- Manas Chowdhury
- Department of Chemistry, West Bengal State University, Barasat, Kolkata 700126, India
| | - Niladri Biswas
- Department of Biotechnology, Institute of Genetic Engineering, No. 30, Thakurhat Road, Badu, Madhyamgram, Kolkata, West Bengal 700128, India
| | - Sandeepta Saha
- Sripur High School, Madhyamgram Bazar, Kolkata 700130, India
| | - Ashikur Rahaman
- Department of Zoology, West Bengal State University, Barasat, Kolkata 700126, India
| | - Poulami Sen Gupta
- Department of Zoology, West Bengal State University, Barasat, Kolkata 700126, India
| | - Ankur Banerjee
- Department of Zoology, West Bengal State University, Barasat, Kolkata 700126, India
| | - Deba Prasad Mandal
- Department of Zoology, West Bengal State University, Barasat, Kolkata 700126, India
| | - Shamee Bhattacharjee
- Department of Zoology, West Bengal State University, Barasat, Kolkata 700126, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Federico Pisanu
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, 07100 Sassari, Italy.
| | - Ruma Roy Choudhury
- Department of Chemistry and Environment, Heritage Institute of Technology, Chowbaga Road, Badu, Kolkata 700 107, India
| | | |
Collapse
|
2
|
Mitrović M, Djukić MB, Vukić M, Nikolić I, Radovanović MD, Luković J, Filipović IP, Matić S, Marković T, Klisurić OR, Popović S, Matović ZD, Ristić MS. Search for new biologically active compounds: in vitro studies of antitumor and antimicrobial activity of dirhodium(II,II) paddlewheel complexes. Dalton Trans 2024; 53:9330-9349. [PMID: 38747564 DOI: 10.1039/d4dt01082e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Four neutral Rh1-Rh4 complexes of the general formula [Rh2(CH3COO)4L2], where L is an N-alkylimidazole ligand, were synthesized and characterized using various spectroscopic techniques, and in the case of Rh4 the crystal structure was confirmed. Investigation of the interactions of these complexes with HSA by fluorescence spectroscopy revealed that the binding constants Kb are moderately strong (∼104 M-1), and site-marker competition experiments showed that the complexes bind to Heme site III (subdomain IB). Competitive binding studies for CT DNA using EB and HOE showed that the complexes bind to the minor groove, which was also confirmed by viscosity experiments. Molecular docking confirmed the experimental data for HSA and CT DNA. Antimicrobial tests showed that the Rh2-Rh4 complexes exerted a strong inhibitory effect on G+ bacteria B. cereus and G- bacteria V. parahaemolyticus as well as on the yeast C. tropicalis, which showed a higher sensitivity compared to fluconazole. The cytotoxic activity of Rh1-Rh4 complexes tested on three cancer cell lines (HeLa, HCT116 and MDA-MB-231) and on healthy MRC-5 cells showed that all investigated complexes elicited more efficient cytotoxicity on all tested tumor cells than on control cells. Investigation of the mechanism of action revealed that the Rh1-Rh4 complexes inhibit cell proliferation via different mechanisms of action, namely apoptosis (increase in expression of the pro-apoptotic Bax protein and caspase-3 protein in HeLa and HCT116 cells; changes in mitochondrial potential and mitochondrial damage; release of cytochrome c from the mitochondria; cell cycle arrest in G2/M phase in both HeLa and HCT116 cells together with a decrease in the expression of cyclin A and cyclin B) and autophagy (reduction in the expression of the protein p62 in HeLa and HCT116 cells).
Collapse
Affiliation(s)
- Marina Mitrović
- University of Kragujevac, Faculty of Medical Sciences, Department of Medical Biochemistry, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Maja B Djukić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Milena Vukić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Ivana Nikolić
- University of Kragujevac, Faculty of Medical Sciences, Department of Medical Biochemistry, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Marko D Radovanović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Jovan Luković
- University of Kragujevac, Faculty of Medical Sciences, Department of Medical Biochemistry, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Ignjat P Filipović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Sanja Matić
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Tijana Marković
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Olivera R Klisurić
- University of Novi Sad, Faculty of Sciences, Department of Physics, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
| | - Suzana Popović
- University of Kragujevac, Faculty of Medical Sciences, Centre for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Zoran D Matović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Marija S Ristić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| |
Collapse
|
3
|
Ćorović K, Stojković DL, Petrović ĐS, Jovičić Milić SS, Đukić MB, Radojević ID, Raković I, Jurišević M, Gajović N, Jovanović M, Marinković J, Jovanović I, Stojanović B. Newly synthesized palladium(II) complexes with dialkyl esters of ( S, S)-propylenediamine- N, N'-di-(2,2'-di-(4-hydroxy-benzil))acetic acid: in vitro investigation of biological activities and HSA/DNA binding. Dalton Trans 2024; 53:7922-7938. [PMID: 38644680 DOI: 10.1039/d4dt00659c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The four new ligands, dialkyl esters of (S,S)-propylenediamine-N,N'-di-(2,2'-di-(4-hydroxy-benzil))acetic acid (R2-S,S-pddtyr·2HCl) (R = ethyl (L1), propyl (L2), butyl (L3), and pentyl (L4)) and corresponding palladium(II) complexes have been synthesized and characterized by microanalysis, infrared, 1H NMR and 13C NMR spectroscopy. In vitro cytotoxicity was evaluated using the MTT assay on four tumor cell lines, including mouse mammary (4T1) and colon (CT26), and human mammary (MDA-MD-468) and colon (HCT116), as well as non-tumor mouse mesenchymal stem cells. Using fluorescence spectroscopy were investigated the interactions of new palladium(II) complexes [PdCl2(R2-S,S-pddtyr)]; (R = ethyl (C1), propyl (C2), butyl (C3), and pentyl (C4)) with calf thymus human serum albumin (HSA) and DNA (CT-DNA). The high values of the binding constants, Kb, and the Stern-Volmer quenching constant, KSV, show the good binding of all complexes for HSA and CT-DNA. The mentioned ligands and complexes were also tested on in vitro antimicrobial activity against 11 microorganisms. Testing was performed by the microdilution method, where the minimum inhibitory concentration (MMC) and the minimum microbicidal concentration (MMC) were determined.
Collapse
Affiliation(s)
- Kemal Ćorović
- Community Health Center Tutin, Department of Emergency Medicine, Bogoljuba Čukića 12, 36320 Tutin, Republic of Serbia
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| | - Danijela Lj Stojković
- University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Republic of Serbia.
| | - Đorđe S Petrović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Republic of Serbia
| | - Sandra S Jovičić Milić
- University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Republic of Serbia.
| | - Maja B Đukić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Republic of Serbia
| | - Ivana D Radojević
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000 Kragujevac, Republic of Serbia
| | - Ivana Raković
- University of Kragujevac, Faculty of Medical Sciences, Department of Infectious Diseases, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| | - Milena Jurišević
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| | - Nevena Gajović
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| | - Marina Jovanović
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
- University of Kragujevac, Faculty of Medical Sciences, Department of Otorinolaringology, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| | - Jovana Marinković
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| | - Ivan Jovanović
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| | - Bojan Stojanović
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
- University of Kragujevac, Faculty of Medical Sciences, Department of Surgery, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| |
Collapse
|
4
|
Heidari A, Dehghanian E, Razmara Z, Shahraki S, Samareh Delarami H, Heidari Majd M. Effect of Cu(II) compound containing dipicolinic acid on DNA damage: a study of antiproliferative activity and DNA interaction properties by spectroscopic, molecular docking and molecular dynamics approaches. J Biomol Struct Dyn 2024:1-16. [PMID: 38498382 DOI: 10.1080/07391102.2024.2329308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
A polymeric compound formulized as [Cu(µ-dipic)2{Na2(µ-H2O)4]n.2nH2O (I), where dipic is 2,6-pyridine dicarboxylic acid (dipicolinic acid, H2dipic), was synthesized by sonochemical irradiation. The initial in-vitro cytotoxic activity of this complex compared with renowned anticancer drugs like cisplatin, versus HCT116 colon cell lines, shows promising results. This study investigated the interaction mode between compound (I) and calf-thymus DNA utilizing a range of analytical techniques including spectrophotometry, fluorimetry, partition coefficient analysis, viscometry, gel electrophoresis and molecular docking technique. The results obtained from experimental methods reveal complex (I) could bind to CT-DNA via hydrogen bonding and van der Waals forces and the theoretical methods support it. Also, complex (I) indicates nuclease activity in the attendance of H2O2 and can act as an artificial nuclease to cleave DNA with high efficiency.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ameneh Heidari
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Effat Dehghanian
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | - Zohreh Razmara
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Somaye Shahraki
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | | | | |
Collapse
|
5
|
Alajroush DR, Smith CB, Anderson BF, Oyeyemi IT, Beebe SJ, Holder AA. A Comparison of In Vitro Studies between Cobalt(III) and Copper(II) Complexes with Thiosemicarbazone Ligands to Treat Triple Negative Breast Cancer. Inorganica Chim Acta 2024; 562:121898. [PMID: 38282819 PMCID: PMC10810091 DOI: 10.1016/j.ica.2023.121898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Metal complexes have gained significant attention as potential anti-cancer agents. The anti-cancer activity of [Co(phen)2(MeATSC)](NO3)3•1.5H2O•C2H5OH 1 (where phen = 1,10-phenanthroline and MeATSC = 9-anthraldehyde-N(4)-methylthiosemicarbazone) and [Cu(acetylethTSC)Cl]Cl•0.25C2H5OH 2 (where acetylethTSC = (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide) was investigated by analyzing DNA cleavage activity. The cytotoxic effect was analyzed using CCK-8 viability assay. The activities of caspase 3/7, 9, and 1, reactive oxygen species (ROS) production, cell cycle arrest, and mitochondrial function were further analyzed to study the cell death mechanisms. Complex 2 induced a significant increase in nicked DNA. The IC50 values of complex 1 were 17.59 μM and 61.26 μM in cancer and non-cancer cells, respectively. The IC50 values of complex 2 were 5.63 and 12.19 μM for cancer and non-cancer cells, respectively. Complex 1 induced an increase in ROS levels, mitochondrial dysfunction, and activated caspases 3/7, 9, and 1, which indicated the induction of intrinsic apoptotic pathway and pyroptosis. Complex 2 induced cell cycle arrest in the S phase, ROS generation, and caspase 3/7 activation. Thus, complex 1 induced cell death in the breast cancer cell line via activation of oxidative stress which induced apoptosis and pyroptosis while complex 2 induced cell cycle arrest through the induction of DNA cleavage.
Collapse
Affiliation(s)
- Duaa R. Alajroush
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, U.S.A
| | - Chloe B. Smith
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, U.S.A
| | - Brittney F. Anderson
- Department of Biological Sciences, University of the Virgin Islands, 2 John Brewers Bay, St. Thomas, VI 00802, U.S.A
| | - Ifeoluwa T. Oyeyemi
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, U.S.A
- Department of Biological Sciences, University of Medical Sciences, Ondo City, Nigeria
| | - Stephen J. Beebe
- Frank Reidy Research center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA, 23508, U.S.A
| | - Alvin A. Holder
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, U.S.A
| |
Collapse
|
6
|
Rajendran P, Murugaperumal P, Nallathambi S, Perdih F, Ayyanar S, Chellappan S. Performance of 4,5-diphenyl-1H-imidazole derived highly selective 'Turn-Off' fluorescent chemosensor for iron(III) ions detection and biological applications. LUMINESCENCE 2024; 39:e4694. [PMID: 38414310 DOI: 10.1002/bio.4694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/10/2023] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
Two fluorescent chemosensors, denoted as chemosensor 1 and chemosensor 2, were synthesized and subjected to comprehensive characterization using various techniques. The characterization techniques employed were Fourier-transform infrared (FTIR), proton (1 H)- and carbon-13 (13 C)-nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization (ESI) mass spectrometry, and single crystal X-ray diffraction analysis. Chemosensor 1 is composed of a 1H-imidazole core with specific substituents, including a 4-(2-(4,5-c-2-yl)naphthalene-3-yloxy)butoxy)naphthalene-1-yl moiety. However, chemosensor 2 features a 1H-imidazole core with distinct substituents, such as 4-methyl-2-(4,5-diphenyl-1H-imidazole-2-yl)phenoxy)butoxy)-5-methylphenyl. Chemosensor 1 crystallizes in the monoclinic space group C2/c. Both chemosensors 1 and 2 exhibit a discernible fluorescence quenching response selectively toward iron(III) ion (Fe3+ ) at 435 and 390 nm, respectively, in dimethylformamide (DMF) solutions, distinguishing them from other tested cations. This fluorescence quenching is attributed to the established mechanism of chelation quenched fluorescence (CHQF). The binding constants for the formation of the 1 + Fe3+ and 2 + Fe3+ complexes were determined using the modified Benesi-Hildebrand equation, yielding values of approximately 2.2 × 103 and 1.3 × 104 M-1 , respectively. The calculated average fluorescence lifetimes for 1 and 1 + Fe3+ were 2.51 and 1.17 ns, respectively, while for 2 and 2 + Fe3+ , the lifetimes were 1.13 and 0.63 ns, respectively. Additionally, the applicability of chemosensors 1 and 2 in detecting Fe3+ in live cells was demonstrated, with negligible observed cell toxicity.
Collapse
Affiliation(s)
- Praveena Rajendran
- Department of Industrial Chemistry, Alagappa University, Karaikudi, India
| | | | - Sengottuvelan Nallathambi
- Department of Chemistry, Directorate of Distance Education (DDE), Alagappa University, Karaikudi, India
| | - Franc Perdih
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Siva Ayyanar
- Department of Inorganic Chemistry, Madurai Kamaraj University, Madurai, India
| | - Selvaraju Chellappan
- National Center for Ultrafast Process, University of Madras, Tarmani Campus, Chennai, India
| |
Collapse
|
7
|
Selaković S, Rodić MV, Novaković I, Matić IZ, Stanojković T, Pirković A, Živković L, Spremo-Potparević B, Milčić M, Medaković V, Dimiza F, Psomas G, Anđelković K, Šumar-Ristović M. Cu(II) complexes with a salicylaldehyde derivative and α-diimines as co-ligands: synthesis, characterization, biological activity. Experimental and theoretical approach. Dalton Trans 2024; 53:2770-2788. [PMID: 38226867 DOI: 10.1039/d3dt03862a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Copper(II) complexes with an α-diimine show a wide variety of biological activities, such as antibacterial, antifungal, antioxidant and anticancer. In this work, we synthesized and structurally characterized two novel Cu(II) complexes with methyl 3-formyl-4-hydroxybenzoate (HL) and α-diimines: 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen). Crystal structure analysis shows that the formulas of the compounds are [Cu(bipy)(L)(BF4)] (1) and [Cu(phen)(L)(H2O)](BF4)·H2O (2), with BF4- as a ligand in complex 1, which is rarely coordinated to metals. Both complexes have a square pyramidal geometry, while DFT calculations showed that the most stable structures of complexes 1 and 2 in a water/DMSO mixture are square-planar derivatives [Cu(bipy)(L)]+ and [Cu(phen)(L)]+. The antibacterial activity of compounds was evaluated in vitro on four Gram-negative and four Gram-positive bacterial strains. Complex 2 showed greater antibacterial activity towards all bacterial strains comparable to the control compound Amikacin. Complex 2 exerted a strong cytotoxic effect against the tested cancer cell lines (IC50 values ranging from 0.32 to 0.44 μM). Both complexes caused apoptotic cell death in HeLa cells and a noticeable in vitro antiangiogenic effect. In the concentration range of 5 to 100 μM, the complexes showed the absence of a genotoxic effect and displayed a protective effect against oxidative DNA damage induced by H2O2 in human peripheral blood cells. The interaction between the compounds and calf-thymus DNA was evaluated by diverse techniques suggesting a tight binding, which was also confirmed by molecular docking. In addition, it was found that the complexes bind tightly and reversibly to bovine and human serum albumin.
Collapse
Affiliation(s)
- Snežana Selaković
- University of Belgrade - Faculty of Pharmacy, Department of General and Inorganic Chemistry, 11000 Belgrade, Serbia
| | - Marko V Rodić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, 21102 Novi Sad, Serbia
| | - Irena Novaković
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, 11000 Belgrade, Serbia
| | - Ivana Z Matić
- Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | | | - Andrea Pirković
- Institute for the Application of Nuclear Energy-INEP, Department for Biology of Reproduction, Serbia
| | - Lada Živković
- University of Belgrade - Faculty of Pharmacy, Department of Pathobiology, 11000 Belgrade, Serbia
| | | | - Miloš Milčić
- University of Belgrade - Faculty of Chemistry, 11000 Belgrade, Serbia.
| | - Vesna Medaković
- University of Belgrade - Faculty of Chemistry, 11000 Belgrade, Serbia.
| | - Filitsa Dimiza
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | | | | |
Collapse
|
8
|
Ibrahim M, Nabi HU, Muhammad N, Ikram M, Khan M, Ibrahim M, AlAsmari AF, Alharbi M, Alshammari A. Synthesis, Antioxidant, Molecular Docking and DNA Interaction Studies of Metal-Based Imine Derivatives. Molecules 2023; 28:5926. [PMID: 37570896 PMCID: PMC10421135 DOI: 10.3390/molecules28155926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Currently, numerous ongoing studies are investigating the interaction of free radicals with biological systems, such as lipids, DNA and protein. In the present work, synthesis, characterization, antioxidant, DNA binding and molecular docking studies of Schiff base ligand and its Ni(II), Co(II), Cu(II) and Zn(II) were evaluated. The metal complexes have shown significant dose-dependent antioxidant activities higher than those of the free ligand but lesser than those of the standard antioxidant, ascorbic acid. The DNA binding constants (Kb) were found in the order Zn(pimp)2 {9.118 × 105 M-1} > H-pimp {3.487 × 105 M-1} > Co(pimp)2 {3.090 × 105 M-1} > Ni(pimp)2 {1.858 × 105 M-1} > Cu(pimp)2 {1.367 × 105 M-1}. Binding constants (Kb) values calculated from the molecular docking analysis were found to be in close agreement with the experimental results. The obtained results indicate the importance of synthesis complexes as a source of synthetic antioxidants and anticancer drugs.
Collapse
Affiliation(s)
- Mohammad Ibrahim
- Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM) KPK, Mardan 23200, Pakistan; (H.U.N.); (N.M.); (M.I.); (M.K.)
| | - Hazrat Un Nabi
- Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM) KPK, Mardan 23200, Pakistan; (H.U.N.); (N.M.); (M.I.); (M.K.)
| | - Niaz Muhammad
- Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM) KPK, Mardan 23200, Pakistan; (H.U.N.); (N.M.); (M.I.); (M.K.)
| | - Muhammad Ikram
- Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM) KPK, Mardan 23200, Pakistan; (H.U.N.); (N.M.); (M.I.); (M.K.)
| | - Momin Khan
- Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM) KPK, Mardan 23200, Pakistan; (H.U.N.); (N.M.); (M.I.); (M.K.)
| | - Musadiq Ibrahim
- Department of Chemistry, Division of Biochemistry and Life Science, University of Glasgow, Glasgow G12 8QQ, UK;
- Department of Chemistry, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.A.); (M.A.); (A.A.)
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.A.); (M.A.); (A.A.)
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.A.); (M.A.); (A.A.)
| |
Collapse
|
9
|
Keshavarzian E, Asadi Z, Eigner V, Dusek M, Rastegari B. DNA interactions, docking and in vitro cytotoxicity studies of [M(Hvalmea)2] complexes (M = CuII, CoIII). J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Gkisiou C, Malis G, Hatzidimitriou AG, Psomas G. Erbium(III) coordination compounds with substituted salicylaldehydes: Characterization and biological profile. J Inorg Biochem 2023; 242:112161. [PMID: 36821973 DOI: 10.1016/j.jinorgbio.2023.112161] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
Five erbium(III) complexes with salicylaldehyde (saloH for 1), and mono- (5-X-saloH; X = NO2 and Me for 2 and 3, respectively) or di-substituted salicylaldehydes (3,5-diX-saloH; X = Cl and Br for 4 and 5, respectively) were synthesized and characterized by physicochemical and spectroscopic techniques and single-crystal X-ray crystallography. All five complexes have the general formula [Er(deprotonated salicylaldehyde)3(MeOH)(H2O)]. The structure of complexes [Er(3,5-diCl-salo)3(MeOH)(H2O)]·1.5MeOH (complex 4) and [Er(3,5-diBr-salo)3(MeOH)(H2O)]·1.75MeOH (complex 5) were verified by single-crystal X-ray crystallography. The evaluation of antioxidant activity of the complexes was focused on their ability to scavenge 1,1-diphenyl-picrylhydrazyl and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) free radicals and to reduce H2O2. The interaction of the complexes with calf-thymus DNA was investigated by UV-vis spectroscopy, viscosity measurements and via competitive studies with ethidium bromide in order to evaluate the possible DNA-binding mode and to determine the corresponding DNA-binding constants. The affinity of the complexes for bovine and human serum albumins was explored by fluorescence emission spectroscopy and the corresponding binding constants were determined.
Collapse
Affiliation(s)
- Chrysoula Gkisiou
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece
| | - Georgios Malis
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece
| | - Antonios G Hatzidimitriou
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece.
| |
Collapse
|
11
|
Soldatović TV, Šmit B, Mrkalić EM, Matić SL, Jelić RM, Serafinović MĆ, Gligorijević N, Čavić M, Aranđelović S, Grgurić-Šipka S. Exploring heterometallic bridged Pt(II)-Zn(II) complexes as potential antitumor agents. J Inorg Biochem 2023; 240:112100. [PMID: 36535193 DOI: 10.1016/j.jinorgbio.2022.112100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
The four novel complexes [{cis-PtCl(NH3)2(μ-4,4'-bipyridyl)ZnCl(terpy)}](ClO4)2 (C1), [{trans-PtCl(NH3)2(μ-4,4'-bipyridyl)ZnCl(terpy)}](ClO4)2 (C2), [{cis-PtCl(NH3)2(μ-pyrazine)ZnCl(terpy)}](ClO4)2 (C3) and [{trans-PtCl(NH3)2(μ-pyrazine)ZnCl(terpy)}](ClO4)2 (C4) (where terpy = 2,2':6',2''-terpyridine) were synthesized and characterized. Acid-base titrations and concentration dependent kinetic measurements for the reactions with biologically relevant ligands such as guanosine-5'-monophosphate (5'-GMP), inosine-5'-monophosphate (5'-IMP) and glutathione (GSH), were studied at pH 7.4 and 37 °C. The binding of the heterometallic bridged cis- or trans-Pt(II)-Zn(II) complexes to calf thymus DNA (CT-DNA) was studied by UV absorption and fluorescence emission spectroscopy and molecular docking. The results indicated that the complexes bind strongly to DNA, through groove binding, hydrogen bonds, and hydrophobic or electrostatic interaction. The possible in vitro DNA protective effect of cis- and trans-Pt-L-Zn complexes has shown that C3 had significant dose-dependent DNA-protective effect and the same ability to inhibit peroxyl as well as hydroxyl radicals. Antiproliferative effect of the complexes, mRNA expression of apoptosis and repair-related genes after treatment in cancer cells indicated that newly synthesized C2 exhibited highly selective cytotoxicity toward colon carcinoma HCT116 cells. Only treatment with trans analog C2 induced effect similar to the typical DNA damaging agent such as cisplatin, characterized by p53 mediated cell response, cell cycle arrest and certain induction of apoptotic related genes. Both cis- and trans-isomers C1 and C2 showed potency to elicit expression of PARP1 mRNA and in vitro DNA binding.
Collapse
Affiliation(s)
- Tanja V Soldatović
- Department of Natural-Mathematical Sciences, State University of Novi Pazar, Vuka Karadžića bb, Novi Pazar 36300, Serbia.
| | - Biljana Šmit
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, Kragujevac 34000, Serbia
| | - Emina M Mrkalić
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, Kragujevac 34000, Serbia
| | - Sanja Lj Matić
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, Kragujevac 34000, Serbia
| | - Ratomir M Jelić
- Faculty of Medical Sciences, Department of Pharmacy, University of Kragujevac, Svetozara Markovića 69, Kragujevac 34000, Serbia
| | - Marina Ćendić Serafinović
- Faculty of Science, Department of Chemistry, University of Kragujevac, Radoja Domanovića 12, Kragujevac 34000, Serbia
| | - Nevenka Gligorijević
- Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade 11000, Serbia
| | - Milena Čavić
- Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade 11000, Serbia
| | - Sandra Aranđelović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade 11000, Serbia
| | - Sanja Grgurić-Šipka
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade 11000, Serbia.
| |
Collapse
|
12
|
Sabithakala T, Reddy CVR. DNA-binding, cleavage, antibacterial and in vitro anticancer activity of copper(II) mixed ligand complexes of 2-(((6-chloro-1H-benzo[d]imidazol-2-yl)methyl)amino)aceticacid and polypyridyl ligands. J Biomol Struct Dyn 2023; 41:1309-1321. [PMID: 34963412 DOI: 10.1080/07391102.2021.2019121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A tridentate ligand(A), 2-(((6-chloro-1H-benzo[d]imidazol-2-yl)methyl)amino) aceticacid (Cl-BIGH) was synthesised by the Phillips condensation of 4-chlorobenzene-1,2-diamine and iminodiaceticacid in 1:2 molar ratio. Its Cu(II) mixed ligand complexes[Cu(II)-A-L] were obtained by involving other co-ligands(L): 2,2΄-bipyridine(L1), 4,4΄-dimethyl-2,2΄-bipyridyl(L2), 5,5΄-dimethyl-2,2΄-bipyridyl(L3) and 1,10 phenanthroline(L4). The complexes were characterized by elemental analysis, thermal analysis, molar conductance, magnetic moment measurements, X-ray diffraction, FTIR, UV-Visible, ESR spectroscopy, mass spectrometry and cyclic voltammetry. From the spectral and analytical data, the ternary complexes [Cu(Cl-BIGH)(L1-4)]ClO4 were found to form in 1:1:1(Cu(II): Cl-BIGH: L) molar ratio. The geometry of the mixed-ligand complexes were found to be 5-coordinated square pyramidal or trigonal bipyramidal with polycrystalline natures. The DNA binding and cleaving abilities, antibacterial and the in vitro cytotoxicity of the complexes were explored. The molecular docking was used to predict the efficiency of binding of the metal complexes with COX- 2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Thatituri Sabithakala
- Department of Chemistry, Jawaharlal Nehru Technological University Hyderabad, Hyderabad, India
| | | |
Collapse
|
13
|
Abd SS, Alkam HH, Al-Shemary RKR. Composition, depiction, antibacterial, antioxidant, and cytotoxicity activities studies of a new nano-sized binuclear metal (II) Schiff base complexes. INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021 2023. [DOI: 10.1063/5.0121776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
14
|
Interaction with bioligands and in vitro cytotoxicity of a new dinuclear dioxido vanadium(V) complex. J Inorg Biochem 2022; 237:111980. [PMID: 36109193 DOI: 10.1016/j.jinorgbio.2022.111980] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023]
Abstract
One centrosymmetric bis(μ-oxido)-bridged vanadium(V) dimer with molecular formula [(VVO2)2(pedf)2] (1) has been synthesized from the reaction of VOSO4·5H2O with a Schiff base ligand (abbreviated with pedf-) obtained from 2-acetylpyridine and 2-furoic hydrazide in methanol. Complex 1 was characterized by elemental analysis, UV-visible (UV-Vis), Fourier-transform infrared spectra (FT-IR), cyclic voltammetry (CV), electron paramagnetic resonance spectroscopy (EPR) and electrospray ionization-mass spectrometry (ESI-MS) techniques along with single crystal X-ray diffraction (SCXRD). The FT-IR spectral data of 1 indicated the involvement of oxygen and azomethine nitrogen in coordination to the central metal ion. The crystallographic studies revealed a dinuclear oxovanadium(V) complex with the Schiff base coordinated via the ONN donor set with formation of two five-membered chelate rings resulting in a distorted octahedral geometry. The interaction of 1 with calf thymus DNA (CT-DNA) was investigated by spectroscopic measurements and results suggested that the complex binds to CT-DNA via moderate intercalative mode with a binding constant (Kb) around 103 M-1. In addition, the in vitro protein binding behavior was studied by fluorescence spectrophotometric method using both bovine serum albumin (BSA) and human serum albumin (HSA) and a static quenching mechanism was observed for the interaction of the complex with both albumins that occurs with a Kb in the range (5-6) × 103 M-1. In vitro cytotoxicity of complex 1 on lung cancer cells (A549) and human skin carcinoma cell line (A431) demonstrated that the complex had a broad-spectrum of anti-proliferative activity with IC50 value of 64.2 μM and 56.2 μM.
Collapse
|
15
|
Ruthenium(III) and (II) complexes containing pyridine moiety: Synthesis, crystal structure and in vitro biological evaluation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Synthesis, structural investigations, XRD, DFT, anticancer and molecular docking study of a series of thiazole based Schiff base metal complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Synthesis, molecular docking and anticancer potential of azolium based salts and their silver complexes: DNA/BSA interaction studies and cell cycle analysis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Sayiner HS, Yilmazer MI, Abdelsalam AT, Ganim MA, Baloglu C, Altunoglu YC, Gür M, Saracoglu M, Attia MS, Mahmoud SA, Mohamed EH, Boukherroub R, Al-Shaalan NH, Alharthi S, Kandemirli F, Amin MA. Synthesis and characterization of new 1,3,4-thiadiazole derivatives: study of their antibacterial activity and CT-DNA binding. RSC Adv 2022; 12:29627-29639. [PMID: 36321093 PMCID: PMC9574523 DOI: 10.1039/d2ra02435g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
1,3,4-Thiadiazole molecules (1-4) were synthesized by the reaction of phenylthiosemicarbazide and methoxy cinnamic acid molecules in the presence of phosphorus oxychloride, and characterized with UV, FT-IR, 13C-NMR, and 1H-NMR methods. DFT calculations (b3lyp/6-311++G(d,p)) were performed to investigate the structures' geometry and physiochemical properties. Their antibacterial activity was screened for various bacteria strains such as Enterobacter aerogenes, Escherichia coli ATCC 13048, Salmonella kentucky, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus and Gram positive such as Staphylococcus aureus ATCC 25923, Listeria monocytogenes ATCC 7644, Enterococcus faecium, Enterococcus durans, Staphylococcus aureus ATCC, Serratia marcescens, Staphylococcus hominis, Staphylococcus epidermidis, alfa Streptococcus haemolyticus, Enterococcus faecium and found to have an inhibitory effect on Klebsiella pneumoniae and Staphylococcus hominis, while molecules 1, 3 and 4 had an inhibitory effect on Staphylococcus epidermidis and alpha Streptococcus haemolyticus. The experimental results were supported by the docking study using the Kinase ThiM from Klebsiella pneumoniae. All the investigated compounds showed an inhibitory effect for the Staphylococcus epidermidis protein. In addition, the mechanism of the 1-4 molecule interaction with calf thymus-DNA (CT-DNA) was investigated by UV-vis spectroscopic methods.
Collapse
Affiliation(s)
- Hakan S. Sayiner
- Department of Infectious Diseases, Faculty of Medicine, Adiyaman UniversityAdiyamanTurkey
| | | | - Aisha. T. Abdelsalam
- Department of Genetic & Bioengineering, Faculty of Engineering & Architecture, Kastamonu University37150KastamonuTurkey
| | - Mohamed A. Ganim
- Department of Genetic & Bioengineering, Faculty of Engineering & Architecture, Kastamonu University37150KastamonuTurkey
| | - Cengiz Baloglu
- Department of Genetic & Bioengineering, Faculty of Engineering & Architecture, Kastamonu University37150KastamonuTurkey
| | - Yasemin Celik Altunoglu
- Department of Genetic & Bioengineering, Faculty of Engineering & Architecture, Kastamonu University37150KastamonuTurkey
| | - Mahmut Gür
- Department of Forest Industrial Engineering, Faculty of Forestry, Kastamonu University37150KastamonuTurkey
| | | | - Mohamed S. Attia
- Chemistry Department, Faculty of Science, Ain Shams UniversityAbbassia 11566CairoEgypt
| | - Safwat A. Mahmoud
- Physics Department, Faculty of Science, Northern Border UniversityArarSaudi Arabia
| | - Ekram H. Mohamed
- Department of Analytical Chemistry, Faculty of Pharmacy, The British University in Egypt11837El-Sherouk CityEgypt
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 – IEMNF59000 LilleFrance
| | - Nora Hamad Al-Shaalan
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman UniversityP.O. Box 84428Riyadh 11671Saudi Arabia
| | - Sarah Alharthi
- Department of Chemistry, College of Science, Taif UniversityP.O. Box 11099Taif 21944Saudi Arabia
| | - Fatma Kandemirli
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Kastamonu University37150KastamonuTurkey
| | - Mohammed A. Amin
- Department of Chemistry, College of Science, Taif UniversityP.O. Box 11099Taif 21944Saudi Arabia
| |
Collapse
|
19
|
Copper(II) complexes with 4-(diethylamino)salicylaldehyde and α-diimines: Anticancer, antioxidant, antigenotoxic effects and interaction with DNA and albumins. J Inorg Biochem 2022; 235:111942. [DOI: 10.1016/j.jinorgbio.2022.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/26/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022]
|
20
|
NASKAR RAHUL, GHOSH PARAMITA, MANDAL SUBRATA, JANA SUBRATA, MURMU NABENDU, MONDAL TAPANKUMAR. Palladium(II) complex bearing benzothiazole based O,N,S donor pincer ligand: Study of in-vitro cytotoxicity, interaction with CT-DNA and BSA protein. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02101-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Stamou P, Hatzidimitriou AG, Psomas G. Manganese(II) complexes with 5-nitro-2-hydroxy-benzaldehyde or substituted 2-hydroxy-phenones: Structure and interaction with bovine serum albumin and calf-thymus DNA. J Inorg Biochem 2022; 235:111923. [PMID: 35834897 DOI: 10.1016/j.jinorgbio.2022.111923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/04/2022] [Indexed: 01/18/2023]
Abstract
A series of Mn(II) complexes of 5-nitro-salicyladehyde or substituted 2-hydroxy-phenones (HL) were synthesized in the absence or presence of a N,N'-donor co-ligand such as 2,2'-bipyridine, 1,10-phenanthroline, or 2,2'-bipyridylamine. The resultant coordination compounds were formulated as [Mn(L)2(CH3OH)2] (1-3) and [Mn(L)2(N,N'-donor)] (4-14), respectively, and characterized by diverse techniques. The crystal structures of three complexes were determined by single-crystal X-ray crystallography. Diverse techniques were employed to study the interaction of the complexes with calf-thymus DNA and showed intercalation as the most possible mode of their tight interaction. The affinity of the complexes for bovine serum albumin was investigated by fluorescence emission spectroscopy in order to calculate the binding constants which suggested a tight and reversible binding.
Collapse
Affiliation(s)
- Paraskevi Stamou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Antonios G Hatzidimitriou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece.
| |
Collapse
|
22
|
Gladis EHE, Nagashri K, Anisha M, Joseph J. Synthesis, characterisation, DNA binding, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities and molecular docking studies of metal(II) complexes with 1,10-phenanthroline scaffold. J Biomol Struct Dyn 2022:1-19. [PMID: 35699274 DOI: 10.1080/07391102.2022.2078412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A series of metal complexes containing Phenanthroline scaffold [ML] (L-1,10-Phenanthroline derivative comprises conjugated aromatic core and selenol group); M = Cu(II), Zn(II), Co(II) and Zn(II) ions were designed and synthesised to obtain effective anti-cholinesterase efficiencies of metal chelates. Analytical and spectroscopic studies were used to determine the structural features. An octahedral structure with moderate distortion was attributed to the above metal chelates based on spectroscopic data. The distorted octahedral geometry of copper(II) complex to DNA (Kb = 4.05 × 105 M-1) is stronger than that of ethidium bromide (EB) to DNA (Kb = 3.2 × 105 M-1), other metal complexes, respectively. The synthesised 1,10-Phenanthroline derivative had the best inhibitory effects against acetylcholinesterase (AChE) and butyrylcholinesterase, with IC50 values of 0.45 and 3.6 M, respectively, which were lower than the reference molecules. As a result, nitrogen-containing heterocyclic compounds (H2L) showed significant inhibitory profiles against the metabolic enzymes. Therefore, we believe that these experimental results may contribute to the development of new drug molecules particularly in the treatment of neurological disorders including glaucoma, Alzheimer's disease (AD) and diabetes. Docking, AChE and BuChE inhibition activities results revealed that ligand may be used for AD. The prepared 1,10-phenanthroline analogue, which has a high selectivity for AChE, may be studied further to find potential candidates for treating early-stage Alzheimer's symptoms.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- E H Edinsha Gladis
- Department of Chemistry, Manonmaniam Sundaranar University, Tirunelveli, India
| | - K Nagashri
- Department of Chemistry, Manonmaniam Sundaranar University, Tirunelveli, India
| | - M Anisha
- Department of Biomedical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, India
| | - J Joseph
- Department of Chemistry, Noorul Islam Centre for Higher Education, Kumaracoil, India
| |
Collapse
|
23
|
Kar K, Ghosh D, Kabi B, Chandra A. A concise review on cobalt Schiff base complexes as anticancer agents. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Arumugham MN, Gopinathan H, Sumithra M, Baskaran S, Kumar R, Kaviani S. New cobalt(III) complex with triethylenetetramine and 2,2′-bipyridine: synthesis, crystal structure, DNA interaction, hirshfeld surface, DFT analysis, and cytotoxicity. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2059087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- M. N. Arumugham
- Department of Chemistry, Thiruvalluvar University, Vellore, Tamil Nadu, India
| | - H. Gopinathan
- Department of Chemistry, Thiruvalluvar University, Vellore, Tamil Nadu, India
| | - M. Sumithra
- Department of Chemistry, Thiruvalluvar University, Vellore, Tamil Nadu, India
| | - S. Baskaran
- Department of Chemistry, Arignar Anna Government Arts College, Cheyyar, Tamil Nadu, India
| | - R. Kumar
- Department of Chemistry, MCM DAV College, Kangra, Himachal Pradesh, India
| | - Sadegh Kaviani
- Research Cener for Modelling and Computational Sciences, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
25
|
Simon J, Horstmann Née Gruschka C, Mix A, Stammler A, Oldengott J, Bögge H, Glaser T. Evaluation of the binding mode of a cytotoxic dinuclear nickel complex to two neighboring phosphates of the DNA backbone. Dalton Trans 2022; 51:2863-2875. [PMID: 35098951 DOI: 10.1039/d1dt03813c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A family of dinuclear complexes based on 2,7-disubstituted 1,8-naphthalenediol-ligands has been designed to bind covalently to two neighboring phosphate diester groups in the backbone of DNA. The dinuclear CuII and NiII complexes bind to DNA resulting in the inhibition of DNA synthesis in PCR experiments and in a cytotoxicity that is stronger for human cancer cells than for human stem cells of the same proliferation rate. These experiments support but cannot prove that the dinuclear complexes bind as intended to two neighboring phosphate ester groups of the DNA backbone. Here, we evaluate the potential binding mode of the cytotoxic dinuclear NiII complex using simple phosphate diester models (dimethyl phosphate and diphenyl phosphate). Depending on the reaction conditions, the phosphate diesters bind to the NiII ions in a bridging or in a terminal coordination mode. The latter occurs by substitution of two coordinated acetates by the phosphate diesters. This reaction has been followed by NMR spectroscopy, which demonstrates that the substitution of acetate by phosphate is thermodynamically strongly favored, while the exchange with excess phosphate is fast on the NMR time scale. The molecular structure of the NiII complex with two coordinated diphenyl phosphates served as a model for the computational evaluation of the binding to the DNA backbone. This combined experimental and computational study suggests a monodentate coordination mode of the DNA phosphate diesters to the NiII ions that is assisted by hydrogen bonds with water ligands.
Collapse
Affiliation(s)
- Jasmin Simon
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | - Claudia Horstmann Née Gruschka
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | - Andreas Mix
- Lehrstuhl für Anorganische Chemie und Strukturchemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Anja Stammler
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | - Jan Oldengott
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | - Hartmut Bögge
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | - Thorsten Glaser
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| |
Collapse
|
26
|
Jana A, Aher A, Brandao P, Bera P, Sharda S, Phadikar U, Manna SK, Mahapatra AK, Bera P. Evaluation of the anticancer activities with various ligand substituents in Co(II/III)-picolyl phenolate derivatives: synthesis, characterization, DFT, DNA cleavage, and molecular docking studies. Dalton Trans 2022; 51:2346-2363. [PMID: 35043134 DOI: 10.1039/d1dt02825a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The reactions between 2-(pyridine-2-ylmethoxy)-benzaldehyde (L) and various primary amines furnish tridentate (L1 to L3) and tetradentate (L4) chelating ligands. The choice of different primary amines in the condensation reaction incorporates the chiral carbon atom in L2 and L3. A series of mononuclear cobalt(II) complexes, [CoII(L1)(Cl)2] (1), [CoII(L2)(Cl)2]·CH3CN (2), [CoII(L3)(Cl)2] (3), and [CoIII(L4)(N3)2] (4) are synthesized in the pure crystalline state from the resulting solution of cobalt(II) chloride and/or azide and respective ligand. The new ligands and cobalt complexes are characterized using spectral (UV-Vis, 1H-NMR, IR, and HRMS), cyclovoltammetric, and DFT studies. The structure of L1, L2, and all four cobalt complexes are determined by single X-ray crystallography. Cytotoxic activity of the compounds is evaluated using three different tissues of origin e.g., U-937 (histiocytic lymphoma), HEK293T (embryonic kidney), and A549 (lung carcinoma). The cobalt complexes are more active than the corresponding ligands against U-937 and HEK293T. The MTT assay demonstrates that the cobalt compounds are more effective anticancer agents against U-937 cancer cells than HEK293T and A549. The toxicity order, 1 (7.2 ± 0.3 μM) > 3 (11.4 ± 0.6 μM) > 2 (12 ± 0.1 μM) > 4 (29 ± 1 μM) is observed against U-937 cancer cells. All the compounds induce cell death through an apoptosis mechanism and all are ineffective against PBMCs. The mechanism of activity against U937 cancer cells involves caspase-3 activation and two different mitogen-activated protein kinases attesting the programmed cell death. Among the compounds, complexes 1, 2, and 3 show DNA cleavage activity both in oxidizing (H2O2) and reducing (GSH) environments. The mechanistic study reveals that singlet oxygen (1O2) is the major species involved in DNA cleavage. The absolute chemical hardness values of the ligands and 4 are relatively higher than 1, 2, and 3, which tacitly support the DNA cleavage experiment. The docking result indicates that the compounds under investigation strongly interact with DNA base pairs through a variety of interactions which attests successfully to the experimental results. A structure-activity relationship has been drawn to correlate the variation of antitumor activity with ligand conformations.
Collapse
Affiliation(s)
- Abhimanyu Jana
- Post Graduate Department of Chemistry, Panskura Banamali College (Autonomous) (Vidyasagar University), Panskura R. S, Midnapore (East), West Bengal, 721152, India.
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, 711103, India
| | - Abhishek Aher
- Centre for DNA Fingerprinting & Diagnostics (CDFD), Hyderabad, 500 039, Telangana, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana-121001, India
| | - Paula Brandao
- Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pradip Bera
- Post Graduate Department of Chemistry, Panskura Banamali College (Autonomous) (Vidyasagar University), Panskura R. S, Midnapore (East), West Bengal, 721152, India.
- Department of Chemistry, Kandi Raj College, Murshidabad, West Bengal, 742137, India
| | - Saphy Sharda
- Centre for DNA Fingerprinting & Diagnostics (CDFD), Hyderabad, 500 039, Telangana, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana-121001, India
| | - Ujjwal Phadikar
- Post Graduate Department of Chemistry, Panskura Banamali College (Autonomous) (Vidyasagar University), Panskura R. S, Midnapore (East), West Bengal, 721152, India.
| | - Sunil Kumar Manna
- Centre for DNA Fingerprinting & Diagnostics (CDFD), Hyderabad, 500 039, Telangana, India
- Adjunct Faculty, Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, 711103, India
| | - Pulakesh Bera
- Post Graduate Department of Chemistry, Panskura Banamali College (Autonomous) (Vidyasagar University), Panskura R. S, Midnapore (East), West Bengal, 721152, India.
| |
Collapse
|
27
|
Mani A, Belgaied JE, Gasser G, Blacque O. Crystal structure of tris-(4,7-diphenyl-1,10-phenanthroline-κ 2 N, N')cobalt(III) tris-(hexa-fluoro-phosphate) monohydrate. Acta Crystallogr E Crystallogr Commun 2022; 78:313-316. [PMID: 35371554 PMCID: PMC8900514 DOI: 10.1107/s2056989022001359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/03/2022] [Indexed: 11/25/2022]
Abstract
The title compound, [Co(C72H48N6)](PF6)3·H2O, crystallizes with one tripositive complex mol-ecule, three hexa-fluoro-phosphate anions and one solvent mol-ecule of water in the asymmetric unit. The N6 coordination set around the central CoIII atom defines a distorted octa-hedral environment. Four fluorine atoms of one hexa-fluoro-phosphate anion are disordered over two sets of positions with site-occupancy factors of 0.697 (5) and 0.303 (5). In the crystal, inter-molecular π-π stacking inter-actions, C-H⋯π, C-H⋯F and O-H⋯F and inter-actions are present.
Collapse
Affiliation(s)
- Asma Mani
- Carthage University, National Institute of Applied Sciences and Technology, EcoChimie Laboratory, Tunis, Tunisia
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and, Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France
| | - Jamel Eddine Belgaied
- Carthage University, National Institute of Applied Sciences and Technology, EcoChimie Laboratory, Tunis, Tunisia
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and, Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
28
|
Gladis EHE, Nagashri K, Krishnendu A. Synthesis, structural elucidation, DNA binding, cleavage, AChE and BuChE cholinesterase efficiencies of metal complexes with 1,10-phenanthroline scaffold. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:285-313. [PMID: 35080488 DOI: 10.1080/15257770.2021.2011915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/10/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
A series of metal complexes containing a 1,10-phenanthroline scaffold [ML] (L-1,10-Phenanthroline derivative comprises conjugated aromatic core and electron withdrawing -NO2 group); M = Cu(II), Zn(II), Co(II), and Zn(II) ions were designed and synthesized to obtain effective anti-cholinesterase efficiencies of metal chelates. Analytical and spectroscopic studies were used to determine the structural features. An octahedral structure with moderate distortion was attributed to the above metal chelates based on spectroscopic data. S. aureus, A. niger, C. albicans, B.subtilis, A. flavus, and E. coli were used to test the antibacterial efficacy of the synthesized ligands and metal complexes. Using agarose gel electrophoresis, the DNA fragmentation proficiency of prepared metal complexes was tested on pUC 18 DNA. The distorted octahedral geometry of the copper(II) complex to DNA (Kb = 4.11 × 105 M-1) is stronger than that of ethidium bromide (EB) to DNA (Kb = 3.3 × 105 M-1) and other metal complexes, respectively. The synthesized 1,10-phenanthroline derivative had the best inhibitory effects against acetylcholinesterase and butyrylcholinesterase, with IC50 values of 0.45 and 3.6 M, respectively, which were lower than the reference molecules. Our experimental results may contribute to the development of new drug molecules particularly in the treatment of neurological disorders including glaucoma, Alzheimer's disease and diabetes. The actions of inhibitors on the glycosidase enzyme help to delay the breakdown and release of sugar molecules into the bloodstream, and they can be used as therapeutic factors in the treatment of diabetes.
Collapse
Affiliation(s)
- E H Edinsha Gladis
- Department of Chemistry, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
- Department of Chemistry, Noorul Islam Centre for Higher Education, Kumaracoil, Tamil Nadu, India
| | - K Nagashri
- Department of Chemistry, Manonmaniam Sundaranar University, Tamil Nadu, Tirunelveli, India
| | - A Krishnendu
- Department of Chemistry, Noorul Islam Centre for Higher Education, Kumaracoil, Tamil Nadu, India
| |
Collapse
|
29
|
Zianna A, Vradi E, Hatzidimitriou AG, Kalogiannis S, Psomas G. Zinc( ii) complexes of 3-bromo-5-chloro-salicylaldehyde: characterization and biological activity. Dalton Trans 2022; 51:17629-17641. [DOI: 10.1039/d2dt02404g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Zinc(ii) complexes of 3-bromo-5-chloro-salicylaldehyde were isolated, and showed DNA- and albumin-binding affinity and antioxidant and antimicrobial properties.
Collapse
Affiliation(s)
- Ariadni Zianna
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Ellie Vradi
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, GR-57400 Thessaloniki, Greece
| | - Antonios G. Hatzidimitriou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Stavros Kalogiannis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, GR-57400 Thessaloniki, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
30
|
Jozefíková F, Perontsis S, Koňáriková K, Švorc Ľ, Mazúr M, Psomas G, Moncol J. In vitro biological activity of copper(II) complexes with NSAIDs and nicotinamide: Characterization, DNA- and BSA-interaction study and anticancer activity. J Inorg Biochem 2021; 228:111696. [PMID: 35030390 DOI: 10.1016/j.jinorgbio.2021.111696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 11/28/2022]
Abstract
Through the reaction of copper(II) acetate with nicotinamide (pyridine-3-carboxylic acid amide, niacinamide) and some derivatives of N-phenylanthranilic acid (fenamates), seven new mixed-ligand copper(II) compounds were isolated: [Cu(tolf-O)(tolf-O,O')nia-N)2(EtOH)] (1), [Cu(tolf-O)(tolf-O,O')(nia-N)2(MeOH)] (2), [Cu(meclf-O)(meclf-O,O')(nia-N)2(EtOH)] (3), [Cu(meclf-O)(meclf-O,O')(nia-N)2(MeOH)] (4), [Cu(meclf-O)(meclf-O,O')(nia-N)2(ACN)] (5), [Cu(mef-O)(mef-O,O')(nia-N)2(EtOH)] (6) and [Cu(mef-O)(mef-O,O')(nia-N)2(ACN)] (7) containing a molecule of relevant solvent as ligand in their primary crystal structure (tolf = tolfenamate, meclf = meclofenamate, mef = mefenamate, nia = nicotinamide, EtOH = ethanol, MeOH = methanol, ACN = acetonitrile). The structures of the complexes were determined by single-crystal X-ray analysis. The intermolecular interactions were studied by Hirshfeld surface analysis. The complexes were characterized by IR, UV-vis and EPR spectroscopy and their redox properties were determined by cyclic voltammetry. The interaction of the complexes with bovine serum albumin was studied by fluorescence emission spectroscopy and the albumin-binding constants of the compounds were calculated. The interaction of the complexes with calf-thymus DNA was monitored by diverse techniques (UV-vis spectroscopy, cyclic voltammetry, viscosity measurements) suggesting intercalation as the most possible mode of binding. DNA-competitive studies of the complexes with ethidium bromide were monitored by fluorescence emission spectroscopy. The cytotoxic effects of copper(II) complexes on lung carcinoma cells and healthy cells were determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] colorimetric technique.
Collapse
Affiliation(s)
- Flóra Jozefíková
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Spyros Perontsis
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Katarína Koňáriková
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 81372 Bratislava, Slovakia
| | - Ľubomír Švorc
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Milan Mazúr
- Department of Physical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| | - Ján Moncol
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia.
| |
Collapse
|
31
|
Simić D, Zarić M, Nikolić I, Živković-Zarić R, Čanović P, Kočović A, Radojević I, Raković I, Jovičić Milić S, Petrović Đ, Stojković D, Vuković N, Kačániová M, Vukić M, Jevtić V. Newly synthesized palladium(II) complexes with aminothiazole derivatives: in vitro study of antimicrobial activity and antitumor activity on the human prostate cancer cell line. Dalton Trans 2021; 51:1191-1205. [PMID: 34951416 DOI: 10.1039/d1dt03364f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Five new complexes of the palladium(II) ion (C1-C5) having the general formula [(PdL2)]Cl2 with some 2-aminothiazoles (L1-L5), where L1 = 2-amino-4-(3,4-difluorophenyl)thiazole, L2 = 2-amino-5-methyl-4-phenylthiazole, L3 = 2-amino-4-phenylthiazole, L4 = 2-amino-4-(4-chlorophenyl)thiazole, and L5 = 2-amino-4-(2,4-difluorophenyl)thiazole, have been synthesized and characterized by elemental microanalysis and infrared, 1H NMR and 13C NMR spectroscopy. The in vitro antimicrobial activity of the five ligands and the corresponding Pd(II) complexes is investigated. Testing is performed by the microdilution method and the minimum inhibitory concentration (MIC) and minimum microbicidal concentration (MMC) have been determined. Testing is conducted against 11 microorganisms (nine strains of pathogenic bacteria and two yeast species). The tested ligands and palladium(II) complexes show selective, high and moderate activity. There is a difference in antimicrobial activity between the ligands and the corresponding palladium(II) complexes. The complexes have significant anti-staphylococcal activity and activity on Pseudomonas aeruginosa which is better than the positive control. The interactions of newly synthesized palladium(II) complexes with calf thymus DNA (CT-DNA) were investigated using UV-Vis absorption and fluorescence spectroscopy. Analysis of UV-absorption and fluorescence spectra indicates the formation of a complex between the palladium(II) complexes and DNA. The high values of intrinsic binding constants, Kb, of the order 104 M-1 and Stern-Volmer quenching constants, KSV, of the order 105 M-1 indicated very good binding of all complexes to CT-DNA. Also, the new Pd(II) complexes show high cytotoxic activity towards the human prostate cancer cell line and insignificant activity towards non-cancerous human fibroblasts. Future research could additionally explore the biological activity of Pd(II) complexes presented in this paper and investigate the possibility of their implementation in clinical practice.
Collapse
Affiliation(s)
- Dejan Simić
- University of Defence, Belgrade, Serbia, Military Medical Academy, Department of Urology, Crnotravska 17, 11040 Belgrade, Serbia
| | - Milan Zarić
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Biochemistry, Svetozara Markovica 69, 34000 Kragujevac, Serbia.
| | - Ivana Nikolić
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Biochemistry, Svetozara Markovica 69, 34000 Kragujevac, Serbia.
| | - Radica Živković-Zarić
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Pharmacology and Toxicology, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Petar Čanović
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Biochemistry, Svetozara Markovica 69, 34000 Kragujevac, Serbia.
| | - Aleksandar Kočović
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Ivana Radojević
- University of Kragujevac, Serbia, Faculty of Science, Department of Biology, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Ivana Raković
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Infectious diseases, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Sandra Jovičić Milić
- University of Kragujevac, Serbia, Faculty of Science, Department of Chemistry, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Đorđe Petrović
- University of Kragujevac, Serbia, Faculty of Science, Department of Chemistry, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Danijela Stojković
- University of Kragujevac, Serbia, Institute for Information Technologies, Jovana Cvijica bb, 34000 Kragujevac, Serbia
| | - Nenad Vuković
- University of Kragujevac, Serbia, Faculty of Science, Department of Chemistry, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Miroslava Kačániová
- Slovak University of Agriculture, Faculty of Horticulture and Landscape Engineering, Department of Fruit sciences, Viticulture and Enology, Trieda Andreja Hlinku 2, 949 76 Nitra-Chrenová, Slovakia
| | - Milena Vukić
- University of Kragujevac, Serbia, Faculty of Science, Department of Chemistry, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Verica Jevtić
- University of Kragujevac, Serbia, Faculty of Science, Department of Chemistry, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| |
Collapse
|
32
|
Mansour AM. Pd(ii) and Pt(ii) complexes of tridentate ligands with selective toxicity against Cryptococcus neoformans and Candida albicans. RSC Adv 2021; 11:39748-39757. [PMID: 35494132 PMCID: PMC9044551 DOI: 10.1039/d1ra06559a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Novel Pd(ii) and Pt(ii) complexes of the tridentate 2,6-bis(1-ethyl-benzimidazol-2'-yl)pyridine (LBZ), and 4'-(2-pyridyl)-2,2':6',2''-terpyridine (LPY) ligands were synthesized, characterized using a variety of analytical and spectroscopic tools, and screened for their potential antimicrobial properties against some bacterial and fungal strains as well as cytotoxicity against healthy human embryonic kidney (HEK293) cells. The electronic structures of the complexes were investigated by time-dependent density functional theory calculations. The free ligand LPY and benzimidazole complexes exhibited selective toxicity against Cryptococcus neoformans and Candida albicans, while displaying no cytotoxicity against HEK293. In the case of Cryptococcus neoformans, the antifungal activities of the benzimidazole-based complexes (MIC = 1.58-2.62 μM) are higher than those of the reference drug fluconazole (26.1 μM).
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, Faculty of Science, Cairo University Gamma Street Giza Cairo 12613 Egypt
| |
Collapse
|
33
|
Ntanatsidis S, Perontsis S, Konstantopoulou S, Kalogiannis S, Hatzidimitriou AG, Papadopoulos AN, Psomas G. Manganese(II) complexes of substituted salicylaldehydes and α-diimines: Synthesis, characterization and biological activity. J Inorg Biochem 2021; 227:111693. [PMID: 34915237 DOI: 10.1016/j.jinorgbio.2021.111693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 01/18/2023]
Abstract
The interaction of Mn+2 with substituted salicylaldehydes (X-saloH) led to the formation of five manganese(II) complexes formulated as [Μn(X-salo)2(MeOH)2]. When the reactions took place in the presence of an α-diimine such as 2,2'-bipyridine, 1,10-phenanthroline or 2,2'-bipyridylamine, five manganese(II) complexes of the formula [Mn(X-salo)2(α-diimine)] were isolated. The characterization of the complexes was accomplished by various spectroscopic techniques and single-crystal X-ray crystallography. The antioxidant activity of the compounds was evaluated via the scavenging of 1,1-diphenyl-picrylhydrazyl, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) and hydroxyl free radicals. The antibacterial activity of the complexes was tested in vitro against Staphylococcus aureus and Xanthomonas campestris bacterial strains and was found moderate. Diverse techniques were employed to examine the interaction of the complexes with calf-thymus DNA which showed intercalation as the most possible interaction mode. The affinity of the complexes for bovine serum albumin was investigated by fluorescence emission spectroscopy and the binding constants were determined.
Collapse
Affiliation(s)
- Savvas Ntanatsidis
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Spyros Perontsis
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Sofia Konstantopoulou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, Thessaloniki, Greece
| | - Stavros Kalogiannis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, Thessaloniki, Greece
| | - Antonios G Hatzidimitriou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Athanasios N Papadopoulos
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, Thessaloniki, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece.
| |
Collapse
|
34
|
Petrović ĐS, Milić SSJ, Đukić MB, Radojević ID, Jelić RM, Jurišević MM, Radić GP, Gajović NM, Arsenijević NN, Jovanović IP, Marković NV, Lj. Stojković D, Jevtić VV. Synthesis, characterization, HSA/DNA binding, cytotoxicity study, and antimicrobial activity of new palladium(II) complexes with some esters of (S,S)-propylenediamine-N,N'-di-2-(3-methyl)butanoic acid. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Zianna A, Geromichalou E, Geromichalos G, Fiotaki AM, Hatzidimitriou AG, Kalogiannis S, Psomas G. Zinc(II) complexes of 3,5-dibromo-salicylaldehyde and α-diimines: Synthesis, characterization and in vitro and in silico biological profile. J Inorg Biochem 2021; 226:111659. [PMID: 34801971 DOI: 10.1016/j.jinorgbio.2021.111659] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
The synthesis of five neutral zinc(II) complexes of 3,5-dibromo-salicyladehyde (3,5-diBr-saloH) in the presence of nitrogen-donor co-ligands 2,2'-bipyridine (bipy), 1,10-phenanthroline (phen), 2,9-dimethyl-1,10-phenanthroline (neoc), or 2,2'-bipyridylamine (bipyam) was undertaken and complexes [Zn(3,5-diBr-salo)2(H2O)2] (1), [Zn(3,5-diBr-salo)2(bipy)] (2), [Zn(3,5-diBr-salo)2(phen)].3,5-diBr-saloΗ (3), [Zn(3,5-diBr-salo)2(neoc)] (4) and [Zn(3,5-diBr-salo)2(bipyam)] (5) were characterized by various techniques. The crystal structures of complexes 3 and 5 were determined by X-ray crystallography, revealing the co-existence of two different coordination modes of 3,5-diBr-salo- ligands. The new complexes show selective in vitro antibacterial activity against two Gram-positive and two Gram-negative bacterial strains. The complexes may scavenge 1,1-diphenyl-picrylhydrazyl and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radicals and reduce H2O2. The complexes may intercalate in-between the calf-thymus DNA-bases and have exhibited low-to-moderate ability to cleave supercoiled circular pBR322 plasmid DNA. The complexes may bind tightly and reversibly to bovine and human serum albumins. In order to explain the in vitro activity of the compounds, molecular docking studies were adopted on the crystal structure of calf-thymus DNA, human and bovine serum albumin, Escherichia coli and Staphylococcus aureus DNA-gyrase, 5-lipoxygenase, and 5-lipoxygenase activating protein. The employed in silico studies aimed to explore the ability of the compounds to bind to these target biomacromolecules, establishing a possible mechanism of action and were in accordance with the in vitro studies.
Collapse
Affiliation(s)
- Ariadni Zianna
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, GR 54124, Greece.
| | - Elena Geromichalou
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Athens 11527, Greece
| | - George Geromichalos
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, GR 54124, Greece
| | - Augusta-Maria Fiotaki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, Thessaloniki, Greece
| | - Antonios G Hatzidimitriou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, GR 54124, Greece
| | - Stavros Kalogiannis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, Thessaloniki, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, GR 54124, Greece.
| |
Collapse
|
36
|
Gao J, Guo L, Wu Y, Cheng Y, Hu X, Liu J, Liu Z. 16-Electron Half-Sandwich Rhodium(III), Iridium(III), and Ruthenium(II) Complexes as Lysosome-Targeted Anticancer Agents. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jie Gao
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lihua Guo
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yuting Wu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yihan Cheng
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xueyan Hu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Jinfeng Liu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhe Liu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
37
|
Ćoćić D, Jovanović-Stević S, Jelić R, Matić S, Popović S, Djurdjević P, Baskić D, Petrović B. Homo- and hetero-dinuclear Pt(II)/Pd(II) complexes: studies of hydrolysis, nucleophilic substitution reactions, DNA/BSA interactions, DFT calculations, molecular docking and cytotoxic activity. Dalton Trans 2021; 49:14411-14431. [PMID: 33043330 DOI: 10.1039/d0dt02906h] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Three dinuclear complexes [Pd2(tpbd)Cl2]Cl2 (PP1), [Pt2(tpbd)Cl2]Cl2 (PP2) and [PdPt(tpbd)Cl2]Cl2 (PP3) (tpbd = N,N,N',N'-tetrakis(2-pyridylmethyl)benzene-1,4-diamine) have been synthesized and characterized and the protonation constants of their corresponding diaqua analogues have been determined. Also, in water solution, the aqua analogues of these complexes exist as mono-hydroxo, di-hydroxo and dimer μ-hydroxo complexes in the pH between 3.0 and 11.0. Substitution reactions with sulfur- and nitrogen-donor nucleophiles, such as thiourea (Tu), l-methionine (l-Met), glutathione (GSH) and guanosine-5'-monophosphate (5'-GMP), were studied at pH 7.2 by conventional and stopped-flow UV-Vis spectrophotometry and the observed reactivity follows the order: Tu > l-Met > GSH > 5'-GMP. Also, the interactions with calf thymus DNA (CT-DNA) and bovine serum albumin (BSA) were investigated. Competitive studies with DNA were performed in the presence of ethidium bromide and Hoechst dye 33258 as well. The complexes possess the strong ability to react with CT-DNA exhibiting intercalation and more preferable minor groove binding. Nevertheless, all complexes showed a good binding affinity toward BSA with relatively high binding constants. The nature of the binding forces between complexes and biomolecules has been identified as hydrophobic. Experimental results were compared with the molecular docking results, while the relative stability and thermodynamic properties of dinuclear complexes were compared with their mononuclear units by DFT calculations. Among three tested complexes, PP2 showed the most powerful cytotoxic effect on HTB140 and H460 cancer cell lines after 48 h of treatment and exerted a strong long-term influence on the proliferation potential of both tested cell lines. PP2 induced the inhibition of autophagy, G2/M cell cycle arrest and mitotic catastrophe.
Collapse
Affiliation(s)
- Dušan Ćoćić
- University of Kragujevac, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - SneŽana Jovanović-Stević
- University of Kragujevac, Institute of Information Technologies, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Ratomir Jelić
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Sanja Matić
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Suzana Popović
- University of Kragujevac, Faculty of Medical Sciences, Centre for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Predrag Djurdjević
- University of Kragujevac, Faculty of Medical Sciences, Department of Internal medicine, Svetozara Markovića 69, 34000 Kragujevac, Serbia and Clinic for Haematology, Clinical Centre Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia
| | - Dejan Baskić
- University of Kragujevac, Faculty of Medical Sciences, Centre for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Serbia and Public Health Institute, Nikole Pašića 1, 34000 Kragujevac, Serbia
| | - Biljana Petrović
- University of Kragujevac, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| |
Collapse
|
38
|
Perontsis S, Chasapis CT, Hatzidimitriou AG, Psomas G. Synthesis, characterization and (in vitro and in silico) biological activity of a series of dioxouranium(VI) complexes with non-steroidal anti-inflammatory drugs. J Inorg Biochem 2021; 223:111534. [PMID: 34273715 DOI: 10.1016/j.jinorgbio.2021.111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
The reaction of the dioxouranium(VI) ion with a series of non-steroidal anti-inflammatory drugs (NSAIDs), namely mefenamic acid, indomethacin, diclofenac, diflunisal and tolfenamic acid, as ligands in the absence or presence of diverse N,N'-donors (1,10-phenanthroline,2,2'-bipyridine or 2,2'-bipyridylamine) as co-ligands led to the formation of ten complexes bearing the formulas [UO2(NSAID-O,O')2(O-donor)2] or [UO2(NSAID-O,O')2(N,N'-donor)], respectively. The complexes were characterized with diverse spectroscopic techniques and the crystal structures of three complexes were determined by single-crystal X-ray crystallography. The biological profile of the resultant complexes was assessed in vitro and in silico. The in vitro studies include their antioxidant properties (ability to scavenge free radicals 1,1-diphenyl-picrylhydrazyl and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) and to reduce H2O2), their interaction with DNA (linear calf-thymus DNA or supercoiled circular pBR322 plasmid DNA) and their affinity for serum albumins (bovine and human serum albumin). In silico molecular docking calculations were performed regarding the behavior of the complexes towards DNA and their binding to both albumins.
Collapse
Affiliation(s)
- Spyros Perontsis
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Christos T Chasapis
- NMR Facility, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, Greece
| | - Antonios G Hatzidimitriou
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
39
|
Antioxidant, antimicrobial, DNA binding and cleavage studies of novel Co(II), Ni(II) and Cu(II) complexes of N, O donor Schiff bases: Synthesis and spectral characterization. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
40
|
Structure and Interaction with CT-DNA of Two Quinolone-Metal Complexes Containing Helical Channels. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01771-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Unraveling the binding mechanism of an Oxovanadium(IV) - Curcumin complex on albumin, DNA and DNA gyrase by in vitro and in silico studies and evaluation of its hemocompatibility. J Inorg Biochem 2021; 221:111402. [PMID: 33975249 DOI: 10.1016/j.jinorgbio.2021.111402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 11/20/2022]
Abstract
An oxovanadium(IV) - curcumin based complex, viz. [VO(cur)(2,2´-bipy)(H2O)] where cur is curcumin and bipy is bipyridine, previously synthesized, has been studied for interaction with albumin and DNA. Fluorescence emission spectroscopy was used to evaluate the interaction of the complex with bovine serum albumin (BSA) and the BSA-binding constant (Kb) was calculated to be 2.56 x 105 M-1, whereas a single great-affinity binding site was revealed. Moreover, the hemocompatibility test demonstrated that the complex presented low hemolytic fraction (mostly below 1%), in all concentrations tested (0-250 μΜ of complex, 5% DMSO) assuring a safe application in interaction with blood. The binding of the complex to DNA was also investigated using absorption, fluorescence, and viscometry methods indicating a binding through a minor groove mode. From competitive studies with ethidium bromide the apparent binding constant value to DNA was estimated to be 4.82 x 106 M-1. Stern-Volmer quenching phenomenon gave a ΚSV constant [1.92 (± 0.05) x 104 M-1] and kq constant [8.33 (± 0.2) x 1011 M-1s-1]. Molecular docking simulations on the crystal structure of BSA, calf thymus DNA, and DNA gyrase, as well as pharmacophore analysis for BSA target, were also employed to study in silico the ability of [VO(cur)(2,2´-bipy)(H2O)] to bind to these target bio-macromolecules and explain the observed in vitro activity.
Collapse
|
42
|
Kakoulidou C, Hatzidimitriou AG, Fylaktakidou KC, Psomas G. Interaction of manganese(II) with the hybrid molecule (E)-4-(2-(pyridin-2-ylmethylene)hydrazinyl)quinazoline: Structure and biological profile. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Synthesis and Characterization of Serendipitous Dioxovanadates and Their DNA/BSA Interaction Studies and In Vitro Cytotoxic activity. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01815-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
44
|
Rashidipour A, Alizadeh R, Sadeghi Mohammadi S, Tohidlou M, Amani V, Seyfi S. Synthesis, crystal structures and biological activity of palladium(II) complexes with 1-methyl-1H-1,2,3,4-tetrazole-5-thiol and substituted 2,2′-bipyridines. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1844883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | | | - Sanam Sadeghi Mohammadi
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Tohidlou
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Vahid Amani
- Department of Chemistry, Farhangian University, Tehran, Iran
| | - Sara Seyfi
- School of Chemistry, Damghan University, Damghan, Iran
| |
Collapse
|
45
|
Đukić MB, Jeremić MS, Filipović IP, Klisurić OR, Kojić VV, Jakimov DS, Jelić RM, Onnis V, Matović ZD. Synthesis, characterization, HSA/DNA interactions and antitumor activity of new [Ru(η 6-p-cymene)Cl 2(L)] complexes. J Inorg Biochem 2020; 213:111256. [PMID: 32980642 DOI: 10.1016/j.jinorgbio.2020.111256] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022]
Abstract
Three new ruthenium(II) complexes were synthesized from different substituted isothiazole ligands 5-(methylamino)-3-pyrrolidine-1-ylisothiazole-4-carbonitrile (1), 5-(methylamino)-3-(4-methylpiperazine-1-yl)isothiazole-4-carbonitrile (2) and 5-(methylamino)-3-morpholine-4-ylisothiazole-4-carbonitrile (3): [Ru(η6-p-cymene)Cl2(L1)]·H2O (4), [Ru(η6-p-cymene)Cl2(L2)] (5) and [Ru(η6-p-cymene)Cl2(L3)] (6). All complexes were characterized by IR, UV-Vis, NMR spectroscopy, and elemental analysis. The molecular structures of all ligands and complexes 4 and 6 were determined by an X-ray. The results of the interactions of CT-DNA (calf thymus deoxyribonucleic acid) and HSA (human serum albumin) with ruthenium (II) complexes reveal that complex 4 binds well to CT-DNA and HSA. Kinetic and thermodynamic parameters for the reaction between complex and HSA confirmed the associative mode of interaction. The results of Quantum mechanics (QM) modelling and docking experiments toward DNA dodecamer and HSA support the strongest binding of the complex 4 to DNA major groove, as well as its binding to IIa domain of HSA with the lowest ΔG energy, which agrees with the solution studies. The modified GOLD docking results are indicative for Ru(p-cymene)LCl··(HSA··GLU292) binding and GOLD/MOPAC(QM) docking/modelling of DNA/Ligand (Ru(II)-N(7)dG7) covalent binding. The cytotoxic activity of compounds was evaluated by MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) assay. Neither of the tested compounds shows activity against a healthy MRC-5 cell line while the MCF-7 cell line is the most sensitive to all. Compounds 3, 4 and 5 were about two times more active than cisplatin, while the antiproliferative activity of 6 was almost the same as with cisplatin. Flow cytometry analysis showed the apoptotic death of the cells with a cell cycle arrest in the subG1 phase.
Collapse
Affiliation(s)
- Maja B Đukić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Marija S Jeremić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Ignjat P Filipović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Olivera R Klisurić
- University of Novi Sad, Faculty of Sciences, Department of Physics, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
| | - Vesna V Kojić
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put Doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Dimitar S Jakimov
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put Doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Ratomir M Jelić
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Valentina Onnis
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, University Campus, S.P. n° 8, Km 0.700, I-09042 Monserrato (CA), Italy
| | - Zoran D Matović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| |
Collapse
|
46
|
Auria-Luna F, Fernández-Moreira V, Marqués-López E, Gimeno MC, Herrera RP. Ultrasound-assisted multicomponent synthesis of 4H-pyrans in water and DNA binding studies. Sci Rep 2020; 10:11594. [PMID: 32665694 PMCID: PMC7360557 DOI: 10.1038/s41598-020-68076-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022] Open
Abstract
A simple approach to synthesize new highly substituted 4H-pyran derivatives is described. Efficient Et3N acts as a readily accessible catalyst of this process performed in pure water and with only a 20 mol% of catalyst loading. The extremely simple operational methodology, short reaction times, clean procedure and excellent product yields render this new approach extremely appealing for the synthesis of 4H-pyrans, as potentially biological scaffolds. Additionally, DNA interaction analysis reveals that 4H-pyran derivatives behave preferably as minor groove binders over major groove or intercalators. Therefore, this is one of the scarce examples where pyrans have resulted to be interesting DNA binders with high binding constants (Kb ranges from 1.53 × 104 M-1 to 2.05 × 106 M-1).
Collapse
Affiliation(s)
- Fernando Auria-Luna
- Departamento de Química Orgánica, Laboratorio de Organocatálisis Asimétrica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, Nº12, 50009, Zaragoza, Spain
| | - Vanesa Fernández-Moreira
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, Nº12, 50009, Zaragoza, Spain
| | - Eugenia Marqués-López
- Departamento de Química Orgánica, Laboratorio de Organocatálisis Asimétrica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, Nº12, 50009, Zaragoza, Spain
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, Nº12, 50009, Zaragoza, Spain
| | - Raquel P Herrera
- Departamento de Química Orgánica, Laboratorio de Organocatálisis Asimétrica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, Nº12, 50009, Zaragoza, Spain.
| |
Collapse
|
47
|
Nunes P, Marques F, Cavaco I, Costa Pessoa J, Correia I. Exploring the therapeutic potential of Cu(II)-complexes with ligands derived from pyridoxal. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Imidazo[4,5-f][1,10]phenanthroline complexes with Fe2+, Cd2+, Co2+ and Zn2+ ions. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Elsayed SA, El‐Gharabawy HM, Butler IS, Atlam FM. Novel metal complexes of 3‐acetylcoumarin‐2‐hydrazinobenzothiazole Schiff base: Design, structural characterizations, DNA binding, DFT calculations, molecular docking and biological studies. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5643] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Shadia A. Elsayed
- Chemistry Department, Faculty of ScienceDamietta University New Damietta 34517 Egypt
| | - Hoda M. El‐Gharabawy
- Botany and Microbiology Department, Faculty of ScienceDamietta University New Damietta 34517 Egypt
| | - Ian S. Butler
- Department of ChemistryMcGill University Montreal QC H3A 0B8 Canada
| | - Faten M. Atlam
- Chemistry Department, Faculty of ScienceTanta University Tanta 31527 Egypt
| |
Collapse
|
50
|
Yadhukrishnan VO, Muralisankar M, Dheepika R, Konakanchi R, Bhuvanesh NSP, Nagarajan S. Structurally different domains embedded half-sandwich arene Ru(II) complex: DNA/HSA binding and cytotoxic studies. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1782895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- V. O. Yadhukrishnan
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, Tamilnadu, India
| | - Mathiyan Muralisankar
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, Tamilnadu, India
| | - Ramachandran Dheepika
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, Tamilnadu, India
| | - Ramaiah Konakanchi
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, India
| | | | - Samuthira Nagarajan
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, Tamilnadu, India
| |
Collapse
|