1
|
Zhong F, Albert T, Moënne-Loccoz P, Pletneva EV. Influence of the Interdomain Interface on Structural and Redox Properties of Multiheme Proteins. Inorg Chem 2022; 61:20949-20963. [PMID: 36493379 PMCID: PMC11034829 DOI: 10.1021/acs.inorgchem.2c03427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiheme proteins are important in energy conversion and biogeochemical cycles of nitrogen and sulfur. A diheme cytochrome c4 (c4) was used as a model to elucidate roles of the interdomain interface on properties of iron centers in its hemes A and B. Isolated monoheme domains c4-A and c4-B, together with the full-length diheme c4 and its Met-to-His ligand variants, were characterized by a variety of spectroscopic and stability measurements. In both isolated domains, the heme iron is Met/His-ligated at pH 5.0, as in the full-length c4, but becomes His/His-ligated in c4-B at higher pH. Intradomain contacts in c4-A are minimally affected by the separation of c4-A and c4-B domains, and isolated c4-A is folded. In contrast, the isolated c4-B is partially unfolded, and the interface with c4-A guides folding of this domain. The c4-A and c4-B domains have the propensity to interact even without the polypeptide linker. Thermodynamic cycles have revealed properties of monomeric folded isolated domains, suggesting that ferrous (FeII), but not ferric (FeIII) c4-A and c4-B, is stabilized by the interface. This study illustrates the effects of the interface on tuning structural and redox properties of multiheme proteins and enriches our understanding of redox-dependent complexation.
Collapse
Affiliation(s)
- Fangfang Zhong
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Therese Albert
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR 97239, United States
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR 97239, United States
| | | |
Collapse
|
2
|
Uluisik RC, Akbas N, Lukat-Rodgers GS, Adrian SA, Allen CE, Schmitt MP, Rodgers KR, Dixon DW. Characterization of the second conserved domain in the heme uptake protein HtaA from Corynebacterium diphtheriae. J Inorg Biochem 2017; 167:124-133. [PMID: 27974280 PMCID: PMC5199035 DOI: 10.1016/j.jinorgbio.2016.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/19/2016] [Accepted: 11/22/2016] [Indexed: 11/20/2022]
Abstract
HtaA is a heme-binding protein that is part of the heme uptake system in Corynebacterium diphtheriae. HtaA contains two conserved regions (CR1 and CR2). It has been previously reported that both domains can bind heme; the CR2 domain binds hemoglobin more strongly than the CR1 domain. In this study, we report the biophysical characteristics of HtaA-CR2. UV-visible spectroscopy and resonance Raman experiments are consistent with this domain containing a single heme that is bound to the protein through an axial tyrosine ligand. Mutants of conserved tyrosine and histidine residues (Y361, H412, and Y490) have been studied. These mutants are isolated with very little heme (≤5%) in comparison to the wild-type protein (~20%). Reconstitution after removal of the heme with butanone gave an alternative form of the protein. The HtaA-CR2 fold is very stable; it was necessary to perform thermal denaturation experiments in the presence of guanidinium hydrochloride. HtaA-CR2 unfolds extremely slowly; even in 6.8M GdnHCl at 37°C, the half-life was 5h. In contrast, the apo forms of WT HtaA-CR2 and the aforementioned mutants unfolded at much lower concentrations of GdnHCl, indicating the role of heme in stabilizing the structure and implying that heme transfer is effected only to a partner protein in vivo.
Collapse
Affiliation(s)
- Rizvan C Uluisik
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, United States
| | - Neval Akbas
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, United States
| | - Gudrun S Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, United States
| | - Seth A Adrian
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, United States
| | - Courtni E Allen
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation, and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Michael P Schmitt
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation, and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Kenton R Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, United States.
| | - Dabney W Dixon
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, United States.
| |
Collapse
|
3
|
Akbas N, Draganova EB, Block DR, Sook BR, Chan YF, Zhuo J, Eichenbaum Z, Rodgers KR, Dixon DW. Heme-bound SiaA from Streptococcus pyogenes: Effects of mutations and oxidation state on protein stability. J Inorg Biochem 2016; 158:99-109. [PMID: 26746808 PMCID: PMC4943329 DOI: 10.1016/j.jinorgbio.2015.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/01/2015] [Accepted: 10/28/2015] [Indexed: 11/30/2022]
Abstract
The protein SiaA (HtsA) is part of a heme uptake pathway in Streptococcus pyogenes. In this report, we present the heme binding of the alanine mutants of the axial histidine (H229A) and methionine (M79A) ligands, as well as a lysine (K61A) and cysteine (C58A) located near the heme propionates (based on homology modeling) and a control mutant (C47A). pH titrations gave pKa values ranging from 9.0 to 9.5, close to the value of 9.7 for WT SiaA. Resonance Raman spectra of the mutants suggested that the ferric heme environment may be distinct from the wild-type; spectra of the ferrous states were similar. The midpoint reduction potential of the K61A mutant was determined by spectroelectrochemical titration to be 61±3mV vs. SHE, similar to the wild-type protein (68±3mV). The addition of guanidine hydrochloride showed two processes for protein denaturation, consistent with heme loss from protein forms differing by the orientation of the heme in the binding pocket (the half-life for the slower process ranged from less than half a day to two days). The ease of protein unfolding was related to the strength of interaction of the residues with the heme. We hypothesize that kinetically facile but only partial unfolding, followed by a very slow approach to the completely unfolded state, may be a fundamental attribute of heme trafficking proteins. Small motions to release/transfer the heme accompanied by resistance to extensive unfolding may preserve the three dimensional form of the protein for further uptake and release.
Collapse
Affiliation(s)
- Neval Akbas
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, USA
| | | | - Darci R Block
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Brian R Sook
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, USA
| | - Yau Fong Chan
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, USA
| | - Joy Zhuo
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, USA
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Kenton R Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Dabney W Dixon
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, USA.
| |
Collapse
|
4
|
De March M, Di Rocco G, Hickey N, Geremia S. High-resolution crystal structure of the recombinant diheme cytochrome c fromShewanella baltica(OS155). J Biomol Struct Dyn 2014; 33:395-403. [DOI: 10.1080/07391102.2014.880657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Equilibrium and kinetic studies of the counteraction of trehalose on acid-induced protein unfolding. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2012.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Chi Q, Zhang J, Arslan T, Borg L, Pedersen GW, Christensen HEM, Nazmudtinov RR, Ulstrup J. Approach to Interfacial and Intramolecular Electron Transfer of the Diheme Protein Cytochrome c4 Assembled on Au(111) Surfaces. J Phys Chem B 2010; 114:5617-24. [DOI: 10.1021/jp1007208] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qijin Chi
- Department of Chemistry and Nano•DTU, Technical University of Denmark, Kemitorvet, Building 207, DK-2800 Kongens Lyngby, Denmark, and Kazan State Technological University, 420015 Kazan, Republic of Tatarstan, Russian Federation
| | - Jingdong Zhang
- Department of Chemistry and Nano•DTU, Technical University of Denmark, Kemitorvet, Building 207, DK-2800 Kongens Lyngby, Denmark, and Kazan State Technological University, 420015 Kazan, Republic of Tatarstan, Russian Federation
| | - Taner Arslan
- Department of Chemistry and Nano•DTU, Technical University of Denmark, Kemitorvet, Building 207, DK-2800 Kongens Lyngby, Denmark, and Kazan State Technological University, 420015 Kazan, Republic of Tatarstan, Russian Federation
| | - Lotte Borg
- Department of Chemistry and Nano•DTU, Technical University of Denmark, Kemitorvet, Building 207, DK-2800 Kongens Lyngby, Denmark, and Kazan State Technological University, 420015 Kazan, Republic of Tatarstan, Russian Federation
| | - Gert W. Pedersen
- Department of Chemistry and Nano•DTU, Technical University of Denmark, Kemitorvet, Building 207, DK-2800 Kongens Lyngby, Denmark, and Kazan State Technological University, 420015 Kazan, Republic of Tatarstan, Russian Federation
| | - Hans E. M. Christensen
- Department of Chemistry and Nano•DTU, Technical University of Denmark, Kemitorvet, Building 207, DK-2800 Kongens Lyngby, Denmark, and Kazan State Technological University, 420015 Kazan, Republic of Tatarstan, Russian Federation
| | - Renat R. Nazmudtinov
- Department of Chemistry and Nano•DTU, Technical University of Denmark, Kemitorvet, Building 207, DK-2800 Kongens Lyngby, Denmark, and Kazan State Technological University, 420015 Kazan, Republic of Tatarstan, Russian Federation
| | - Jens Ulstrup
- Department of Chemistry and Nano•DTU, Technical University of Denmark, Kemitorvet, Building 207, DK-2800 Kongens Lyngby, Denmark, and Kazan State Technological University, 420015 Kazan, Republic of Tatarstan, Russian Federation
| |
Collapse
|
7
|
Monari S, Battistuzzi G, Borsari M, Rocco GD, Martini L, Ranieri A, Sola M. Heterogeneous Electron Transfer of a Two-Centered Heme Protein: Redox and Electrocatalytic Properties of Surface-Immobilized Cytochrome c4. J Phys Chem B 2009; 113:13645-53. [DOI: 10.1021/jp906339u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefano Monari
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Gianantonio Battistuzzi
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Marco Borsari
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Giulia Di Rocco
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Laura Martini
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Antonio Ranieri
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Marco Sola
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| |
Collapse
|
8
|
Electron transfer patterns of the di-heme protein cytochrome c4 from Pseudomonas stutzeri. J Inorg Biochem 2009; 103:717-22. [DOI: 10.1016/j.jinorgbio.2009.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 01/08/2009] [Accepted: 01/09/2009] [Indexed: 11/18/2022]
|
9
|
Physicochemical properties of diheme cytochrome c4 of unknown function from Vibrio parahaemolyticus strain RIMD2210633. Biosci Biotechnol Biochem 2008; 72:2791-4. [PMID: 18838782 DOI: 10.1271/bbb.80380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To characterize a diheme cytochrome c4 of unknown functional of the Vibrio genus for the first time, the Vibrio parahaemolyticus cytochrome c4 was overexpressed in Escherichia coli periplasm using the endogenous signal sequence. The physicochemical properties of the purified recombinant protein, viz., molecular mass, UV/Vis, and CD spectra, and the redox potentials of the N- and C-terminal domain hemes were determined.
Collapse
|
10
|
Chi Q, Zhang J, Jensen PS, Nazmudtinov RR, Ulstrup J. Surface-induced intramolecular electron transfer in multi-centre redox metalloproteins: the di-haem protein cytochrome c(4) in homogeneous solution and at electrochemical surfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2008; 20:374124. [PMID: 21694431 DOI: 10.1088/0953-8984/20/37/374124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Intramolecular electron transfer (ET) between transition metal centres is a core feature of biological ET and redox enzyme function. The number of microscopic redox potentials and ET rate constants is, however, mostly prohibitive for experimental mapping, but two-centre proteins offer simple enough communication networks for complete mapping to be within reach. At the same time, multi-centre redox proteins operate in a membrane environment where conformational dynamics and ET patterns are quite different from the conditions in a homogeneous solution. The bacterial respiratory di-haem protein Pseudomonas stutzeri cytochrome c(4) offers a prototype target for environmental gating of intra-haem ET. ET between P. stutzeri cyt c(4) and small molecular reaction partners in solution appears completely dominated by intermolecular ET of each haem group/protein domain, with no competing intra-haem ET, for which accompanying propionate-mediated proton transfer is a further barrier. The protein can, however, be immobilized on single-crystal, modified Au(111) electrode surfaces with either the low-potential N terminal or the high-potential C terminal domain facing the surface, clearly with fast intramolecular ET as a key feature in the electrochemical two-ET process. This dual behaviour suggests a pattern for multi-centre redox metalloprotein function. In a homogeneous solution, which is not the natural environment of cyt c(4), the two haem group domains operate largely independently with conformations prohibitive for intramolecular ET. Binding to a membrane or electrochemical surface, however, triggers conformational opening of intramolecular ET channels. The haem group orientation in P. stutzeri cyt c(4) is finally noted to offer a case for orientation dependent electronic rectification between a substrate and a tip in electrochemical in situ scanning tunnelling microscopy or nanoscale electrode configurations.
Collapse
Affiliation(s)
- Qijin Chi
- Department of Chemistry, Technical University of Denmark, Building 207, DK-2800 Kongens Lyngby, Denmark
| | | | | | | | | |
Collapse
|
11
|
Di Rocco G, Battistuzzi G, Borsari M, De Rienzo F, Ranieri A, Tutino ML, Sola M. Cloning, expression and physicochemical characterization of a di-heme cytochrome c (4) from the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC 125. J Biol Inorg Chem 2008; 13:789-99. [PMID: 18386080 DOI: 10.1007/s00775-008-0366-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 03/14/2008] [Indexed: 11/25/2022]
Abstract
The 20-kDa di-heme cytochrome c (4) from the psycrophilic bacterium Pseudoalteromonas haloplanktis TAC 125 was cloned and expressed in Escherichia coli and investigated through UV-vis and (1)H NMR spectroscopies and protein voltammetry. The model structure was computed using the X-ray structure of Pseudomonas stutzeri cytochrome c (4) as a template. The protein shows unprecedented properties within the cytochrome c (4) family, including (1) an almost nonpolar surface charge distribution, (2) the absence of high-spin heme Fe(III) states, indicative of a thermodynamically stable and kinetically inert axial heme His,Met coordination, and (3) identical E degrees ' values for the two heme centers (+0.322 V vs the standard hydrogen elecrode). At pH extremes, both heme groups undergo the "acid" and "alkaline" conformational transitions typical of class I cytochromes c, involving ligand-exchange equilibria, whereas at intermediate pH values their electronic properties are sensitive to several residue ionizations.
Collapse
Affiliation(s)
- Giulia Di Rocco
- Department of Chemistry, Università di Modena and Reggio Emilia, Via Campi 183, 41100, Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Branca RM, Bodó G, Várkonyi Z, Debreczeny M, Ősz J, Bagyinka C. Oxygen and temperature-dependent structural and redox changes in a novel cytochrome c4 from the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina. Arch Biochem Biophys 2007; 467:174-84. [DOI: 10.1016/j.abb.2007.07.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 07/16/2007] [Accepted: 07/18/2007] [Indexed: 10/22/2022]
|
13
|
Marie Jørgensen A, Parak F, M Christensen HE. Reduced and oxidized cytochrome c4 exhibit differences in dynamics. Phys Chem Chem Phys 2005; 7:3472-7. [PMID: 16273148 DOI: 10.1039/b504955e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The temperature-dependent dynamics of the fully reduced and fully oxidized forms of Pseudomonas stutzeri cytochrome c4 have been studied by Mössbauer spectroscopy. Prior to the dynamic analysis, an efficient labelling strategy has been developed for the expression of highly enriched (57)Fe recombinant cytochrome c4. Subsequently, the protein has been purified to apparent homogeneity. Mössbauer measurements were recorded in the temperature range 77-240 K for both protein forms. A detailed analysis of the high quality spectra is presented. Based on the information obtained from Mössbauer spectroscopy, similarities and differences between cytochrome c4, cytochrome c and HiPIP are discussed. The obtained results reveal that (a) cytochrome c4 exists in pure low spin electronic configuration in both oxidation states in the temperature range 77-240 K, (b) the heme pocket is more relaxed in cytochrome c4 than in cytochrome c, (c) the reduced cytochrome c4 is the most flexible at low temperatures, and (d) protein specific dynamics are most distinct in the oxidized protein.
Collapse
Affiliation(s)
- Anne Marie Jørgensen
- Department of Chemistry, Technical University of Denmark, 2800, Lyngby, Denmark.
| | | | | |
Collapse
|
14
|
Jiménez HR, Ruiz de Sola E, Moratal JM, Arbona M. Protein Unfolding:1H-NMR Studies of Paramagnetic Ferricytochrome c-550 from Horse Heart. Z Anorg Allg Chem 2005. [DOI: 10.1002/zaac.200570009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Malarte G, Leroy G, Lojou E, Abergel C, Bruschi M, Giudici-Orticoni MT. Insight into Molecular Stability and Physiological Properties of the Diheme Cytochrome CYC41 from the Acidophilic Bacterium Acidithiobacillus ferrooxidans. Biochemistry 2005; 44:6471-81. [PMID: 15850381 DOI: 10.1021/bi048425b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cyc1 gene encoding the soluble dihemic cytochrome c CYC(41) from Acidithiobacillus ferrooxidans, an acidophilic organism, has been cloned and expressed in Escherichia coli as the host organism. The cytochrome was successfully produced and folded only in fermentative conditions: this allowed us to determine the molecular basis of the heme insertion at extreme pH. Point mutations at two sequence positions (E121 and Y63) were introduced near the two hemes in order to assign individual redox potentials to the hemes and to identify the interaction sites with the redox partners, rusticyanin and cytochrome oxidase. Characterization of mutants E121A, Y63A, and Y63F CYC(41) with biochemical and biophysical techniques were carried out. Substitution of tyrosine 63 by phenylalanine alters the environment of heme B. This result indicates that heme B has the lower redox potential. Interaction studies with the two physiological partners indicate that CYC(41) functions as an electron wire between RCy and cytochrome oxidase. A specific glutamate residue (E121) located near heme A is directly involved in the interaction with RCy. A docking analysis of CYC(41), RCy, and cytochrome oxidase allowed us to propose a model for the complex in agreement with our experimental data.
Collapse
Affiliation(s)
- Guillaume Malarte
- Bioénergétique et Ingénierie des Protéines, CNRS, IBSM, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
16
|
Wang YC, Lin MC, Wang DM, Hsieh HJ. Fabrication of a novel porous PGA-chitosan hybrid matrix for tissue engineering. Biomaterials 2003; 24:1047-57. [PMID: 12504527 DOI: 10.1016/s0142-9612(02)00434-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Polyglycolide (PGA) and chitosan mixture solution was prepared using solvents of low toxicity to create novel, porous, biocompatible, degradable, and modifiable hybrid matrices for biomedical applications. The porosity of these PGA-chitosan hybrid matrices (P/C matrices) was created by a thermally induced phase separation method. Two types of the P/C hybrid matrices containing 70 wt% PGA (P/C-1 matrix) and 30 wt% PGA (P/C-2 matrix) were fabricated. Chitosan matrix was also prepared for comparison. A 35-day in vitro degradation revealed that the weight losses for the P/C-1 and P/C-2 matrices were similar ( approximately 61%), but the releases of glycolic acid from the P/C-1 and P/C-2 matrices were 95% and 60%, respectively. The P/C-1 matrix had higher porosity and higher mechanical strength than the P/C-2 and chitosan matrices. Fibroblast cells cultivated in these matrices proliferated well and the cell density was the highest in the P/C-1 matrix, followed by the chitosan and P/C-2 matrices, suggesting good biocompatibility for the P/C-1 matrix. We thereby concluded that the P/C-1 matrix, due to its high strength, porosity, biocompatibility and degradability, is a promising biomaterial. The presence of chitosan in the P/C matrices provides many amino groups for further modifications such as biomolecule conjugation and thus enhances the application potential of the P/C hybrid matrices in tissue engineering.
Collapse
Affiliation(s)
- Yu Chi Wang
- Department of Chemical Engineering, National Taiwan University, 106, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|