1
|
Degjoni A, Campolo F, Stefanini L, Venneri MA. The NO/cGMP/PKG pathway in platelets: The therapeutic potential of PDE5 inhibitors in platelet disorders. J Thromb Haemost 2022; 20:2465-2474. [PMID: 35950928 PMCID: PMC9805178 DOI: 10.1111/jth.15844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 01/09/2023]
Abstract
Platelets are the "guardians" of the blood circulatory system. At sites of vessel injury, they ensure hemostasis and promote immunity and vessel repair. However, their uncontrolled activation is one of the main drivers of thrombosis. To keep circulating platelets in a quiescent state, the endothelium releases platelet antagonists including nitric oxide (NO) that acts by stimulating the intracellular receptor guanylyl cyclase (GC). The latter produces the second messenger cyclic guanosine-3',5'-monophosphate (cGMP) that inhibits platelet activation by stimulating protein kinase G, which phosphorylates hundreds of intracellular targets. Intracellular cGMP pools are tightly regulated by a fine balance between GC and phosphodiesterases (PDEs) that are responsible for the hydrolysis of cyclic nucleotides. Phosphodiesterase type 5 (PDE5) is a cGMP-specific PDE, broadly expressed in most tissues in humans and rodents. In clinical practice, PDE5 inhibitors (PDE5i) are used as first-line therapy for erectile dysfunction, pulmonary artery hypertension, and lower urinary tract symptoms. However, several studies have shown that PDE5i may ameliorate the outcome of various other conditions, like heart failure and stroke. Interestingly, NO donors and cGMP analogs increase the capacity of anti-platelet drugs targeting the purinergic receptor type Y, subtype 12 (P2Y12) receptor to block platelet aggregation, and preclinical studies have shown that PDE5i inhibits platelet functions. This review summarizes the molecular mechanisms underlying the effect of PDE5i on platelet activation and aggregation focusing on the therapeutic potential of PDE5i in platelet disorders, and the outcomes of a combined therapy with PDE5i and NO donors to inhibit platelet activation.
Collapse
Affiliation(s)
- Anisa Degjoni
- Department of Experimental MedicineSapienza University of RomeRomeItaly
| | - Federica Campolo
- Department of Experimental MedicineSapienza University of RomeRomeItaly
| | - Lucia Stefanini
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Mary Anna Venneri
- Department of Experimental MedicineSapienza University of RomeRomeItaly
| |
Collapse
|
2
|
Tawa M, Yamashita Y, Masuoka T, Nakano K, Yoshida J, Nishio M, Ishibashi T. Responsiveness of rat aorta and pulmonary artery to cGMP generators in the presence of thiol or heme oxidant. J Pharmacol Sci 2019; 140:43-47. [PMID: 31036520 DOI: 10.1016/j.jphs.2019.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022] Open
Abstract
This study investigated the effects of thiol and heme oxidants on responsiveness to cGMP generators in isolated rat aorta and pulmonary artery using an organ chamber. The nitric oxide (NO) donor sodium nitroprusside (SNP)-induced relaxation was impaired by exposure to the thiol oxidant diamide in both the aorta and the pulmonary artery, whereas the soluble guanylate cyclase (sGC) stimulator BAY 41-2272- or the sGC activator BAY 60-2770-induced relaxation was not affected. The impairment by diamide of SNP-induced aortic and pulmonary arterial relaxation was completely restored by post-treatment with the thiol reductant dithiothreitol. However, regardless of the vessel type, the relaxant response to SNP or BAY 41-2272 was impaired by exposure to the heme oxidant ODQ, whereas the response to BAY 60-2770 was enhanced. The ODQ-induced effects were reversed partially by post-treatment with the heme reductant dithionite. These findings indicate that thiol oxidation attenuates only the vascular responsiveness to NO donors and that heme oxidation attenuates the responsiveness to NO donors and sGC stimulators but augments that to sGC activators. Therefore, under oxidative stress, the order of usability of the vasodilators is suggested to be: NO donors < sGC stimulators < sGC activators.
Collapse
Affiliation(s)
- Masashi Tawa
- Department of Pharmacology, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan.
| | - Yuka Yamashita
- Department of Pharmacology, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Takayoshi Masuoka
- Department of Pharmacology, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Katsuya Nakano
- Department of Pharmacology, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Junko Yoshida
- Department of Pharmacology, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Matomo Nishio
- Department of Pharmacology, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Takaharu Ishibashi
- Department of Pharmacology, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| |
Collapse
|
3
|
Drug discovery targeting heme-based sensors and their coupled activities. J Inorg Biochem 2017; 167:12-20. [DOI: 10.1016/j.jinorgbio.2016.11.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/08/2016] [Accepted: 11/16/2016] [Indexed: 01/10/2023]
|
4
|
Fluorescence dequenching makes haem-free soluble guanylate cyclase detectable in living cells. PLoS One 2011; 6:e23596. [PMID: 21858179 PMCID: PMC3157391 DOI: 10.1371/journal.pone.0023596] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 07/21/2011] [Indexed: 01/30/2023] Open
Abstract
In cardiovascular disease, the protective NO/sGC/cGMP signalling-pathway is impaired due to a decreased pool of NO-sensitive haem-containing sGC accompanied by a reciprocal increase in NO-insensitive haem-free sGC. However, no direct method to detect cellular haem-free sGC other than its activation by the new therapeutic class of haem mimetics, such as BAY 58-2667, is available. Here we show that fluorescence dequenching, based on the interaction of the optical active prosthetic haem group and the attached biarsenical fluorophor FlAsH can be used to detect changes in cellular sGC haem status. The partly overlap of the emission spectrum of haem and FlAsH allows energy transfer from the fluorophore to the haem which reduces the intensity of FlAsH fluorescence. Loss of the prosthetic group, e.g. by oxidative stress or by replacement with the haem mimetic BAY 58-2667, prevented the energy transfer resulting in increased fluorescence. Haem loss was corroborated by an observed decrease in NO-induced sGC activity, reduced sGC protein levels, and an increased effect of BAY 58-2667. The use of a haem-free sGC mutant and a biarsenical dye that was not quenched by haem as controls further validated that the increase in fluorescence was due to the loss of the prosthetic haem group. The present approach is based on the cellular expression of an engineered sGC variant limiting is applicability to recombinant expression systems. Nevertheless, it allows to monitor sGC's redox regulation in living cells and future enhancements might be able to extend this approach to in vivo conditions.
Collapse
|
5
|
Mechanisms of relaxant activity of the nitric oxide-independent soluble guanylyl cyclase stimulator BAY 41-2272 in rat tracheal smooth muscle. Eur J Pharmacol 2010; 645:158-64. [PMID: 20670622 DOI: 10.1016/j.ejphar.2010.07.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 06/20/2010] [Accepted: 07/12/2010] [Indexed: 01/10/2023]
Abstract
The soluble guanylyl cyclase is expressed in airway smooth muscle, and agents that stimulate this enzyme activity cause airway smooth muscle relaxation and bronchodilation. The compound 5-Cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine (BAY 41-2272) is a potent nitric oxide (NO)-independent soluble guanylyl cyclase stimulator, but little is known about its effects in airway smooth muscle. Therefore, this study aimed to investigate the mechanisms underlying the relaxations of rat tracheal smooth muscle induced by BAY 41-2272. Tracheal rings were mounted in 10-ml organ baths for isometric force recording. BAY 41-2272 concentration-dependently relaxed carbachol-precontracted tracheal rings (pEC(50)=6.68+/-0.14). Prior incubation with the NO synthesis inhibitor l-NAME (100 microM) or the soluble guanylyl cyclase inhibitor ODQ (10 microM) caused significant rightward shifts in the concentration-response curves to BAY 41-2272. Sodium nitroprusside caused concentration-dependent relaxations, which were greatly potentiated by BAY 41-2272 and completely inhibited by ODQ. In addition, BAY 41-2272 shifted to the right the tracheal contractile responses to either carbachol (0.01-1 microM) or electrical field stimulation (EFS, 1-32 Hz). BAY 41-2272 (1 microM) also caused a marked rightward shift and decreased the maximal contractile responses to extracellular CaCl2, and such effect was not modified by pretreatment with ODQ. In addition, BAY 41-2272 (up to 1 microM) significantly increased the cGMP levels, and that was abolished by ODQ. Our results indicate that BAY 41-2272 causes cGMP-dependent rat tracheal smooth muscle relaxations in a synergistic fashion with exogenous NO. BAY 41-2272 has also an additional mechanism independently of soluble guanylyl cyclase activation possibly involving Ca(2+) entry blockade.
Collapse
|
6
|
Efficient expression of human soluble guanylate cyclase in Escherichia coli and its signaling-related interaction with nitric oxide. Amino Acids 2010; 39:399-408. [DOI: 10.1007/s00726-009-0453-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Accepted: 12/17/2009] [Indexed: 01/02/2023]
|
7
|
Teixeira CE, Priviero FBM, Claudino MA, Baracat JS, De Nucci G, Webb RC, Antunes E. Stimulation of soluble guanylyl cyclase by BAY 41-2272 relaxes anococcygeus muscle: interaction with nitric oxide. Eur J Pharmacol 2005; 530:157-65. [PMID: 16371226 DOI: 10.1016/j.ejphar.2005.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 11/01/2005] [Accepted: 11/08/2005] [Indexed: 11/26/2022]
Abstract
The compound BAY 41-2272 stimulates the soluble guanylyl cyclase in a nitric oxide (NO)-independent manner. We have investigated the potency and efficacy of BAY 41-2272 in the rat anococcygeus muscle, as well as the effects of BAY 41-2272 on NO-mediated anococcygeus relaxations. BAY 41-2272 (0.01-10 microM) potently relaxed precontracted anococcygeus muscle strips, with a pEC(50) value of 6.44 +/- 0.03 and maximum response of 100 +/- 2%. The soluble guanylyl cyclase inhibitor 1H-[1,2,4]-oxidiazolo[4,3-a] quinoxalin-1-one (ODQ, 1 microM) and the NO inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME, 100 microM) caused significant rightward shifts in the concentration-response curves to BAY 41-2272. The phosphodiesterase type-5 inhibitor tadalafil (0.1 microM) markedly enhanced the relaxations evoked by BAY 41-2272. In addition, BAY 41-2272 increased the duration of nitrergic relaxations by approximately 55%. The relaxations induced by glyceryl trinitrate were also significantly potentiated by BAY 41-2272. In conclusion, BAY 41-2272 interacts with endogenous and exogenous NO causing a potent relaxation of rat anococcygeus muscle.
Collapse
Affiliation(s)
- Cleber E Teixeira
- Department of Pharmacology, Faculty of Medical Sciences, UNICAMP, Campinas (SP), Brazil
| | | | | | | | | | | | | |
Collapse
|
8
|
Sousa EHS, Garay PA, Tinianow JN, Gerber NC. Development of a spectrophotometric assay for cyclase activity. Anal Biochem 2005; 348:57-63. [PMID: 16289346 DOI: 10.1016/j.ab.2005.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 10/04/2005] [Accepted: 10/04/2005] [Indexed: 11/15/2022]
Abstract
We describe the development of a rapid colorimetric assay for soluble guanylate cyclase (sGC) activity adapted for a 96-well microplate. The assay greatly decreases the analysis time and cost over traditional methodologies based on radio- and immunoassays and high-performance liquid chromatography (HPLC) separations. The method does not demonstrate any significant interference with chemicals commonly used for sGC purification and reaction kinetics. The assay converts the inorganic pyrophosphate produced in the cyclase reaction to inorganic phosphate, which is then measured using a modified Fiske-Subbarow assay. We used the assay to compare the reaction kinetics of preparations of sGC from a commercial source with those from our lab with Mg(2+)-guanosine 5'-triphosphate (GTP) or Mn(2+)-GTP as a substrate. The commercial preparation was found to have a specific activity of around 1.5 micromol/min/mg, which is significantly lower than expected, as was the fold-activation upon addition of nitric oxide (NO). Our laboratory preparation had a higher specific activity that was consistent with results from HPLC assays. We determined that the human isoform of sGC is more active in the basal and NO forms with Mn(2)-GTP as a substrate than Mg(2+)-GTP, a feature more similar to rat lung sGC than the more commonly studied bovine lung.
Collapse
Affiliation(s)
- Eduardo H S Sousa
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA 94132, USA
| | | | | | | |
Collapse
|
9
|
Inhibitory effects on human eosinophil chemotaxis in vitro by BAY 41-2272, an activator of nitric oxide-independent site of soluble guanylate cyclase. Biochem Pharmacol 2005; 69:875-82. [PMID: 15748699 DOI: 10.1016/j.bcp.2004.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 12/13/2004] [Indexed: 10/25/2022]
Abstract
This study was designed to investigate the effects of the 5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine (BAY 41-2272) on formyl-methionyl-leucyl-phenylalanine (fMLP; 10(-7)M)-induced human eosinophil chemotaxis, cyclic guanosine-3',5'-monophosphate (cGMP) and cyclic adenosine-3',5'-monophosphate (cAMP) levels. Human eosinophils were pretreated or not with 3-isobutyl-l-methyl-xanthine (IBMX; 500microM), and then exposed to BAY 41-2272 (0.1-10.0microM) for either short (10min) or prolonged (90min) time periods. Exposition of eosinophils with BAY 41-2272 for either 10min or 90min markedly inhibited the eosinophil chemotaxis, independently of IBMX pretreatment. Inhibition of fMLP-induced eosinophil chemotaxis by BAY 41-2272 (in absence of prior treatment with IBMX) was about of the same irrespective if cells were exposed for 10min or 90min with this compound. In IBMX-pretreated eosinophils, the inhibition of fMLP-induced chemotaxis by BAY 41-2272 in the 10-min exposure protocols was even higher in comparison with the 90-min protocols. Incubation of IBMX-treated eosinophils for 90min with BAY 41-2272 resulted in 2.0-2.5 times higher levels of cGMP and cAMP compared with the 10-min protocols. The BAY 41-2272-induced cGMP increases were abolished by pre-incubation of eosinophils with the soluble guanylate cyclase inhibitor 1H-[1,2,4]-oxidiazolo[4,3-a] quinoxalin-1-one (ODQ). No eosinophil toxicity was observed in any experimental condition, according to 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) assay. Our findings show that inhibitory effects of fMLP-induced human eosinophil chemotaxis by BAY 41-2272 at short-term or prolonged exposition time are accompanied by significant elevations of cGMP and cAMP, but we could not detect a clear correlation between chemotaxis inhibition and elevation of cyclic nucleotide levels.
Collapse
|
10
|
Pal B, Kitagawa T. Interactions of soluble guanylate cyclase with diatomics as probed by resonance Raman spectroscopy. J Inorg Biochem 2005; 99:267-79. [PMID: 15598506 DOI: 10.1016/j.jinorgbio.2004.09.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 09/24/2004] [Accepted: 09/27/2004] [Indexed: 10/26/2022]
Abstract
Soluble guanylate cyclase (sGC, EC 4.6.1.2) acts as a sensor for nitric oxide (NO), but is also activated by carbon monoxide in the presence of an allosteric modulator. Resonance Raman studies on the structure-function relations of sGC are reviewed with a focus on the CO-adduct in the presence and absence of allosteric modulator, YC-1, and substrate analogues. It is demonstrated that the sGC isolated from bovine lung contains one species with a five-coordinate (5c) ferrous high-spin heme with the Fe-His stretching mode at 204 cm(-1), but its CO adduct yields two species with different conformations about the heme pocket with the Fe-CO stretching (nuFe-CO) mode at 473 and 489 cm(-1), both of which are His- and CO-coordinated 6c ferrous adducts. Addition of YC-1 to it changes their population and further addition of GTP yields one kind of 6c (nuFe-CO=489 cm(-1)) in addition to 5c CO-adduct (nuFe-CO=521 cm(-1)). Under this condition the enzymatic activity becomes nearly the same level as that of NO adduct. Addition of gamma-S-GTP yields the same effect as GTP does but cGMP and GDP gives much less effects. Unexpectedly, ATP cancels the effects of GTP. The structural meaning of these spectroscopic observations is discussed in detail.
Collapse
Affiliation(s)
- Biswajit Pal
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Higashiyama 5-1, Okazaki 444-8787, Japan
| | | |
Collapse
|
11
|
Baracat JS, Teixeira CE, Okuyama CE, Priviero FBM, Faro R, Antunes E, De Nucci G. Relaxing effects induced by the soluble guanylyl cyclase stimulator BAY 41-2272 in human and rabbit corpus cavernosum. Eur J Pharmacol 2004; 477:163-9. [PMID: 14519420 DOI: 10.1016/j.ejphar.2003.08.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
5-Cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine (BAY 41-2272) is a potent soluble guanylyl cyclase stimulator in a nitric oxide (NO)-independent manner. The relaxant effect of BAY 41-2272 was investigated in rabbit and human corpus cavernosum in vitro. BAY 41-2272 (0.01-10 microM) relaxed both rabbit (pEC(50)=6.82+/-0.06) and human (pEC(50)=6.12+/-0.10) precontracted cavernosal strips. The guanylyl cyclase inhibitor (ODQ, 10 microM) caused significant rightward shifts in the concentration-response curves for BAY 41-2272 in rabbit (4.7-fold) and human (2.3-fold) tissues. The NO synthesis inhibitor (N-nitro-L-arginine methyl ester (L-NAME), 100 microM) also produced similar rightward shifts, revealing that BAY 41-2272 acts synergistically with endogenous NO to elicit its relaxant effect. The results also indicate that ODQ is selective for the NO-stimulated enzyme, since relaxations evoked by BAY 41-2272 were only partly attenuated by ODQ. The present study shows that both BAY 41-2272 and sildenafil evoke relaxations independent of inhibition of haem in soluble guanylate cyclase. Moreover, there is no synergistic effect of the two compounds in corpus cavernosum.
Collapse
Affiliation(s)
- Juliana S Baracat
- Department of Pharmacology, Faculty of Medical Sciences, UNICAMP, P.O. Box 6111, SP 13081-970, Campinas, Brazil
| | | | | | | | | | | | | |
Collapse
|
12
|
Schmidt PM, Schramm M, Schröder H, Wunder F, Stasch JP. Identification of residues crucially involved in the binding of the heme moiety of soluble guanylate cyclase. J Biol Chem 2003; 279:3025-32. [PMID: 14570894 DOI: 10.1074/jbc.m310141200] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Soluble guanylate cyclase (sGC), a heterodimeric hemeprotein, is the only receptor for the biological messenger nitric oxide (NO) identified to date and is intimately involved in various signal transduction pathways. By using the recently discovered NO- and heme-independent sGC activator BAY 58-2667 and a novel cGMP reporter cell, we could distinguish between heme-containing and heme-free sGC in an intact cellular system. Using these novel tools, we identified the invariant amino acids tyrosine 135 and arginine 139 of the beta(1)-subunit as crucially important for both the binding of the heme moiety and the activation of sGC by BAY 58-2667. The heme is displaced by BAY 58-2667 due to a competition between the carboxylic groups of this compound and the heme propionic acids for the identified residues tyrosine 135 and arginine 139. This displacement results in the release of the axial heme ligand histidine 105 and to the observed activation of sGC. Based on these findings we postulate a signal transmission triad composed of histidine 105, tyrosine 135, and arginine 139 responsible for the enzyme activation by this compound and probably also for transducing changes in heme status and porphyrin geometry upon NO binding into alterations of sGC catalytic activity.
Collapse
Affiliation(s)
- Peter M Schmidt
- Institute of Cardiovascular Research, Bayer AG, Aprather Weg 18a, D-42096 Wuppertal
| | | | | | | | | |
Collapse
|