1
|
Han S, Zhang D, Kao Y, Zhou X, Guo X, Zhang W, Liu M, Chen H, Kong X, Wei Z, Liu H, Feng S. Trojan Horse Strategy for Wireless Electrical Stimulation-Induced Zn 2+ Release to Regulate Neural Stem Cell Differentiation for Spinal Cord Injury Repair. ACS NANO 2024; 18:32517-32533. [PMID: 39527695 DOI: 10.1021/acsnano.4c08863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Due to the uncertain differentiation of neural stem cells (NSCs), replenishing lost neurons by endogenous neural differentiation to repair spinal cord injury (SCI) remains challenging. The electrical stimulation-induced drug release is a promising approach for the localized and controlled release of drugs to regulate the differentiation of NSCs into neurons. Here, we developed Zn-PDA@BT nanoparticles acted as Trojan Horse to enter cells through endocytosis for Zn2+-controlled release therapy by the potentials generated by the piezoelectric effect. Due to the presence of polydopamine (PDA), under ultrasound stimulation, the electrical signal derived from the piezoelectric effect of barium titanate nanoparticles can be attracted to the surface of Trojan Horse nanoparticles to facilitate the controlled release of Zn2+. And Zn2+ bonded with PDA can increase the intracellular Zn2+ concentration within mouse-derived NSCs (mNSCs) to regulate the differentiation of mNSCs, which could enhance excitatory neuronal differentiation and inhibit astrocyte differentiation of mNSCs by activating the TGF-β and p53 pathways. More importantly, this Trojan Horse therapy allowed mNSCs to differentiate into mature neurons in 5 days, while the natural differentiation process took 10 days. Moreover, the transplantation of mNSC-ingested Zn-PDA@BT nanoparticles effectively replenished lost neurons at the damaged site and promoted function recovery after SCI in vivo, demonstrating the great potential of electrical stimulation-induced Zn2+ release for SCI repair.
Collapse
Affiliation(s)
- Shuwei Han
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P. R. China
| | - Dapeng Zhang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P. R. China
| | - Yanbing Kao
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P. R. China
| | - Xiaolong Zhou
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P. R. China
| | - Xianzheng Guo
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P. R. China
| | - Wencan Zhang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P. R. China
| | - Mingshan Liu
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P. R. China
| | - Haosheng Chen
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P. R. China
| | - Xiaohong Kong
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P. R. China
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P. R. China
| | - Zhijian Wei
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, 27 Shandanan Road, Jinan 250100 Shandong, P. R. China
| | - Shiqing Feng
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P. R. China
- Department of Orthopedics, Second Hospital of Shandong University, Jinan 250033 Shandong, P. R. China
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P. R. China
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300052, P. R. China
| |
Collapse
|
2
|
Eom T, Ozlu B, Ivanová L, Lee S, Lee H, Krajčovič J, Shim BS. Multifunctional Natural and Synthetic Melanin for Bioelectronic Applications: A Review. Biomacromolecules 2024; 25:5489-5511. [PMID: 39194016 DOI: 10.1021/acs.biomac.4c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Emerging material interest in bioelectronic applications has highlighted natural melanin and its derivatives as promising alternatives to conventional synthetic conductors. These materials, traditionally noted for their adhesive, antioxidant, biocompatible, and biodegradable properties, have barely been used as conductors due to their extremely low electrical activities. However, recent studies have demonstrated good conductive properties in melanin materials that promote electronic-ionic hybrid charge transfer, attributed to the formation of an extended conjugated backbone. This review examines the multifunctional properties of melanin materials, focusing on their chemical and electrochemical synthesis and their resulting structure-property-function relationship. The wide range of bioelectronic applications will also be presented to highlight their importance and potential to expand into new design concepts for high-performance electronic functional materials. The review concludes by addressing the current challenges in utilizing melanin for biodegradable bioelectronics, providing a perspective on future developments.
Collapse
Affiliation(s)
- Taesik Eom
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- KIURI Center for Hydrogen Based Next Generation Mechanical System, Inha University, 36 Gaetbeol-ro, Yeonsu-gu, Incheon 21999, South Korea
| | - Busra Ozlu
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| | - Lucia Ivanová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, CZ-612 00 Brno, Czech Republic
| | - Seunghyeon Lee
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| | - HyeonJeong Lee
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| | - Jozef Krajčovič
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, CZ-612 00 Brno, Czech Republic
| | - Bong Sup Shim
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| |
Collapse
|
3
|
Madiyar F, Stewart GE, Ghate S, Jafari A, Nielsen K, Paget L, Hartnett A, Veracka J. Nomination for-Electrosprayed Thin Films of Multifunctional Melanin Nanoparticles for Photoprotective and Antioxidant Properties. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-5. [PMID: 40039258 DOI: 10.1109/embc53108.2024.10781697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Melanin is an organic dark pigment that is naturally produced in mammalian epithelial tissues, as well as in certain bacterial and fungal species. This study investigates the creation of multifunctional thin films using melanin nanoparticles (MNPs), focusing on their photoprotective and antioxidant capabilities. The MNPs were synthesized via spontaneous oxidation of dopamine hydrochloride, followed by freeze-drying to produce a dry powder. This powder was then combined with polyvinyl alcohol and electrosprayed onto glass substrates to form thin films for four intervals (2, 4, 12, and 16 minutes). These films were characterized using spectroscopic and microscopic methods, confirming their uniformity and melanin-like composition. The films exhibited strong photoprotective properties against UV radiation and significant antioxidant activity, indicating their potential for various applications including protective coatings and biomedical devices. The study highlights the utility of MNPs as a versatile, bioinspired material, offering insights into their potential for advancing technology in fields requiring radiation shielding and oxidative stress mitigation.
Collapse
|
4
|
Medina-Armijo C, Yousef I, Berná A, Puerta A, Esteve-Núñez A, Viñas M, Prenafeta-Boldú FX. Characterization of melanin from Exophiala mesophila with the prospect of potential biotechnological applications. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1390724. [PMID: 38812984 PMCID: PMC11134573 DOI: 10.3389/ffunb.2024.1390724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024]
Abstract
Introducion Fungal melanin is an underexplored natural biomaterial of great biotechnological interest in different areas. This study investigated the physical, chemical, electrochemical, and metal-binding properties of melanin extracted from the metallotolerant black fungus Exophiala mesophila strain IRTA-M2-F10. Materials and methods Specific inhibitory studies with tricyclazole and biochemical profiling of whole cells by synchrotron radiation-based Fourier-transform infrared spectral microscopy (SR-FTIRM) were performed. An optimized extraction protocol was implemented, and purified fungal melanin was characterized using an array of spectrophotometric techniques (UV-Vis, FTIR, and EPR) and by cyclic voltammetry (CV) experiments. The metal-binding capacity of melanin extracts was also assessed by using Cr(VI) as a model heavy metal. Results Inhibitory studies indicated that 1,8-dihydroxynaphthalene may be the main precursor molecule of E. mesophila melanin (DHN-melanin). The biochemical characterization of fungal melanin extracts were benchmarked against those from two melanins comprising the precursor molecule L-3,4-dihydroxiphenylalanine (DOPA-melanin): extracts from the ink of the cephalopod Sepia officinalis and DOPA-melanin synthesized in the laboratory. The CV results of melanin extracts incubated with and without cell suspensions of the electroconductive bacterium Geobacter sulfurreducens were indicative of novel semiquinone/hydroquinone redox transformations specific for each melanin type. These interactions may play an important role in cation exchange for the adsorption of metals and in microbial interspecies electron transfer processes. Discussion The obtained results provided further evidence for the DHN-nature of E. mesophila melanin. The FTIR profiling of melanin extracts exposed to Cr(VI), compared to unexposed melanin, resulted in useful information on the distinct surface-binding properties of fungal melanin. The parameters of the Langmuir and Freundlicht isotherms for the adsorption of Cr(VI) were determined and compared to bibliographic data. Altogether, the inherent properties of fungal melanin suggest its promising potential as a biomaterial for environmental applications.
Collapse
Affiliation(s)
- Cristy Medina-Armijo
- Program of Sustainability in Biosystems, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Catalonia, Spain
- Faculty of Pharmacy and Food Sciences, University of Barcelona, Catalonia, Spain
| | - Ibraheem Yousef
- MIRAS Beamline, ALBA Synchrotron Light Source, Cerdanyola del Vallés, Catalonia, Spain
| | | | - Anna Puerta
- Program of Sustainability in Biosystems, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Catalonia, Spain
| | - Abraham Esteve-Núñez
- Department of Chemical Engineering, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Marc Viñas
- Program of Sustainability in Biosystems, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Catalonia, Spain
| | - Francesc X. Prenafeta-Boldú
- Program of Sustainability in Biosystems, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Catalonia, Spain
| |
Collapse
|
5
|
Le Thi HN, Le NT, Bui Thi TH, Nguyen Thi HL, Nguyen TT, Nguyen Thi Y, Ha MN, Nguyen DT. Novel melanin-derived stationary phase for immobilized metal ion affinity chromatography in recombinant His-tagged protein purification. Protein Expr Purif 2024; 217:106444. [PMID: 38365166 DOI: 10.1016/j.pep.2024.106444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/13/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
The matrix of the stationary phase is a crucial element in affinity chromatography for protein purification. Various materials, including polymer or magnetic materials, have been employed as the matrix in the purification of His-tagged protein. Here, for the first time, we utilized a combination of melanin and alginate, both natural polymer materials, to synthesize Ni-melanin/alginate (Ni-M/A) beads for His-tagged protein purification. We investigated the binding of His-tagged Mpro on the Ni-M/A beads, referred to as Ni-M/A-Mpro, and assessed the elution efficiency of Mpro from the beads. Our examination involved FTIR, EDS, XRD, SDS-PAGE, and Western blotting methods. FTIR spectra revealed notable changes in the stretching patterns and intensities of hydroxyl, amine, carbonyl, imine and amide chemical groups, when Mpro protein was present in the Ni-M/A sample. XRD spectra demonstrated the occurrence of two Nickel peaks at 35-40 deg and 40-45 deg in Ni-M/A, but only one nickel peak at 35-40 deg in Ni-M/A-Mpro, indicating the binding of Mpro on the Nickel ions. EDS analysis reported a decrease in the concentration of Nickel on the surface of Ni-M/A from 16% to 7% when Mpro protein was loaded into the stationary phase. Importantly, our data indicated that the purity of the His-tagged protein Mpro after purification reached 97% after just one-step purification using the Ni-M/A stationary phase. Moreover, the binding capacity of Ni-M/A for Mpro was approximately 5.2 mg/g with recovery efficiency of 40%. Our results suggested Ni-M/A as a highly potential solid phase for affinity chromatography in the purification of His-tagged protein.
Collapse
Affiliation(s)
- Hong-Nhung Le Thi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, VNU University of Science, Vietnam National University, 100000, Hanoi, Viet Nam
| | - Ngoc-Tram Le
- Department of Biochemistry and Molecular Biology, Faculty of Biology, VNU University of Science, Vietnam National University, 100000, Hanoi, Viet Nam
| | - Thu-Hoai Bui Thi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, VNU University of Science, Vietnam National University, 100000, Hanoi, Viet Nam
| | - Hong-Loan Nguyen Thi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, VNU University of Science, Vietnam National University, 100000, Hanoi, Viet Nam
| | - Thanh-Thuy Nguyen
- Department of Biochemistry and Molecular Biology, Faculty of Biology, VNU University of Science, Vietnam National University, 100000, Hanoi, Viet Nam
| | - Yen Nguyen Thi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, VNU University of Science, Vietnam National University, 100000, Hanoi, Viet Nam
| | - Minh-Ngoc Ha
- VNU Key Laboratory of Advanced Materials for Green Growth, VNU University of Science, Vietnam National University, 100000, Hanoi, Viet Nam
| | - Dinh-Thang Nguyen
- Faculty of Advanced Technology and Engineering, Vietnam-Japan University, Vietnam National University, 100000, Hanoi, Viet Nam.
| |
Collapse
|
6
|
Najeeb HA, Sanusi T, Saldanha G, Brown K, Cooke MS, Jones GD. Redox modulation of oxidatively-induced DNA damage by ascorbate enhances both in vitro and ex-vivo DNA damage formation and cell death in melanoma cells. Free Radic Biol Med 2024; 213:309-321. [PMID: 38262545 DOI: 10.1016/j.freeradbiomed.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Elevated genomic instability in cancer cells suggests a possible model-scenario for their selective killing via the therapeutic delivery of well-defined levels of further DNA damage. To examine this scenario, this study investigated the potential for redox modulation of oxidatively-induced DNA damage by ascorbate in malignant melanoma (MM) cancer cells, to selectively enhance both DNA damage and MM cell killing. DNA damage was assessed by Comet and ɣH2AX assays, intracellular oxidising species by dichlorofluorescein fluorescence, a key antioxidant enzymatic defence by assessment of catalase activity and cell survival was determined by clonogenic assay. Comet revealed that MM cells had higher endogenous DNA damage levels than normal keratinocytes (HaCaT cells); this correlated MM cells having higher intracellular oxidising species and lower catalase activity, and ranked with MM cell melanin pigmentation. Comet also showed MM cells more sensitive towards the DNA damaging effects of exogenous H2O2, and that ascorbate further enhanced this H2O2-induced damage in MM cells; again, with MM cell sensitivity to induced damage ranking with degree of cell pigmentation. Furthermore, cell survival data indicated that ascorbate enhanced H2O2-induced clonogenic cell death selectively in MM cells whilst protecting HaCaT cells. Finally, we show that ascorbate serves to enhance the oxidising effects of the MM therapeutic drug Elesclomol in both established MM cells in vitro and primary cell cultures ex vivo. Together, these results suggest that ascorbate selectively enhances DNA damage and cell-killing in MM cells. This raises the option of incorporating ascorbate into clinical oxidative therapies to treat MM.
Collapse
Affiliation(s)
- Hishyar A Najeeb
- Leicester Cancer Research Centre, Department of Genetics & Genome Biology, University of Leicester, UK
| | - Timi Sanusi
- Leicester Medical School, University of Leicester, UK
| | - Gerald Saldanha
- University Hospitals of Leicester NHS Trust, Leicester Royal Infirmary, UK
| | - Karen Brown
- Leicester Cancer Research Centre, Department of Genetics & Genome Biology, University of Leicester, UK
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, USA.
| | - George Dd Jones
- Leicester Cancer Research Centre, Department of Genetics & Genome Biology, University of Leicester, UK.
| |
Collapse
|
7
|
Wang L, Sun Y, Zhang H, Shi W, Huang H, Li Y. Selective sensing of catechol based on a fluorescent nanozyme with catechol oxidase activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123003. [PMID: 37336190 DOI: 10.1016/j.saa.2023.123003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Nanozymes, an unusual category of nanomaterials possessing enzymatic properties, and have generated considerable interest regarding their application feasibilities on several important fronts. In the present work, an innovative sensing device for catechol was established ground on a fluorescent nanozyme (Cu-BDC-NH2) that exhibited catechol oxidase activity. The fluorescent nanozyme combines both functions of catechol recognition and response signal output, and can realize the sensing of catechol without the addition of other chromogenic agents. In the existence of Cu-BDC-NH2, catechol can be oxidized efficiently to produce quinones or polymers with strong electron absorption capacity, which immediately results in efficient fluorescence quenching of Cu-BDC-NH2. However, other common phenolic compounds, such as phenol, the other two diphenols (hydroquinone and resorcinol), phloroglucinol, and chlorophenol, do not result in efficient fluorescence quenching of Cu-BDC-NH2. The method shows a nice linear relationship between catechol concentration prep the fluorescence intensity of Cu-BDC-NH2 in the scope of 0-10 μM, with a detection limit of 0.997 μM. The detection of catechol in actual water samples has also achieved the satisfactory consequences, which provides a new strategy for the convenient and selective detection of catechol.
Collapse
Affiliation(s)
- Le Wang
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Yue Sun
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Hao Zhang
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Wenqi Shi
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Yongxin Li
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| |
Collapse
|
8
|
Gonçalves C, Alves de Matos AP, Costa PM. Comparative analysis of the jaw apparatus of three marine annelids using scanning electron microscopy: Microstructure and elemental composition. J Anat 2023; 243:786-795. [PMID: 37278211 PMCID: PMC10557390 DOI: 10.1111/joa.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
Polychaeta are highly diversified invertebrates that inhabit marine, brackish or freshwater environments. They have acquired a unique range of adaptative features for securing food. However, the jaw apparatus may reveal not only defence and predation mechanisms, but also its relation to environmental chemistry. The present work compared the structure and chemical profile of the jaws of different estuarine Polychaeta: Nephtys hombergii (Nephtyidae), Hediste diversicolor (Nereididae) and Glycera alba (Glyceridae) using Scanning Electron Microscopy (SEM) and Scanning Electron Microscopy with Energy Dispersive X-Ray (SEM-EDX). Analyses revealed that N. hombergii possesses a muscular jawless proboscis with terminal sensorial papillae for detecting prey, whereas the G. alba proboscis exhibits four delicately sharp jaws with perforations for venom delivery and H. diversicolor bears two blunt denticulated jaws to grasp a wide variety of food items. Melanin and metals like copper provide hardness to the slender jaws of Glycera, while, in the absence of heavier metallic elements, halogens contribute to H. diversicolor jaws robustness. The more specific chemistry of the jaws of glycerids is associated with its more refined venom injection, whereas Hediste is an opportunistic omnivore and Nepthys an agile forager. Altogether, the chemistry of jaws is an adaptive feature for feeding, locomotion and even resilience to complex and often adverse chemical profiles of estuaries.
Collapse
Affiliation(s)
- Cátia Gonçalves
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - António P Alves de Matos
- Egas Moniz Center for Interdisciplinary Research (CIIEM), Egas Moniz School of Health & Science, Caparica, Portugal
| | - Pedro M Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
9
|
Guo L, Li W, Gu Z, Wang L, Guo L, Ma S, Li C, Sun J, Han B, Chang J. Recent Advances and Progress on Melanin: From Source to Application. Int J Mol Sci 2023; 24:4360. [PMID: 36901791 PMCID: PMC10002160 DOI: 10.3390/ijms24054360] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Melanin is a biological pigment formed by indoles and phenolic compounds. It is widely found in living organisms and has a variety of unique properties. Due to its diverse characteristics and good biocompatibility, melanin has become the focus in the fields of biomedicine, agriculture, the food industry, etc. However, due to the wide range of melanin sources, complex polymerization properties, and low solubility of specific solvents, the specific macromolecular structure and polymerization mechanism of melanin remain unclear, which significantly limits the further study and application of melanin. Its synthesis and degradation pathways are also controversial. In addition, new properties and applications of melanin are constantly being discovered. In this review, we focus on the recent advances in the research of melanin in all aspects. Firstly, the classification, source, and degradation of melanin are summarized. Secondly, a detailed description of the structure, characterization, and properties of melanin is followed. The novel biological activity of melanin and its application is described at the end.
Collapse
Affiliation(s)
- Lili Guo
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Wenya Li
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Zhiyang Gu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Litong Wang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Lan Guo
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Saibo Ma
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Cuiyao Li
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Jishang Sun
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Baoqin Han
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Jing Chang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
10
|
Ito S, Napolitano A, Sarna T, Wakamatsu K. Iron and copper ions accelerate and modify dopamine oxidation to eumelanin: implications for neuromelanin genesis. J Neural Transm (Vienna) 2023; 130:29-42. [PMID: 36527527 DOI: 10.1007/s00702-022-02574-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Dopamine (DA) is a precursor of neuromelanin (NM) synthesized in the substantia nigra of the brain. NM is known to contain considerable levels of Fe and Cu. However, how Fe and Cu ions affect DA oxidation to DA-eumelanin (DA-EM) and modify its structure is poorly understood. EMs were prepared from 500 µM DA, dopaminechrome (DAC), or 5,6-dihydroxyindole (DHI). Autoxidation was carried out in the absence or presence of 50 µM Fe(II) or Cu(II) at pH 7.4 and 37 ℃. EMs were characterized by Soluene-350 solubilization analyzing absorbances at 500 nm (A500) and 650 nm (A650) and alkaline hydrogen peroxide oxidation (AHPO) yielding various pyrrole carboxylic acids. Pyrrole-2,3,4,5-tetracarboxylic acid (PTeCA) served as a molecular marker of cross-linked DHI units. Importantly, Fe and Cu accelerated DA oxidation to DA-EM and DHI oxidation to DHI-EM several-fold, whereas these metals only weakly affected the production of DAC-EM. The A500 values indicated that DA-EM contains considerable portions of uncyclized DA units. Analysis of the A650/A500 ratios suggests that Fe and Cu caused some degradation of DHI units of DA-EM during 72-h incubation. Results with AHPO were consistent with the A500 values and additionally revealed that (1) DA-EM is less cross-linked than DAC-EM and DHI-EM and (2) Fe and Cu promote cross-linking of DHI units. In conclusion, Fe and Cu not only accelerate the oxidation of DA to DA-EM but also promote cross-linking and degradation of DHI units. These results help to understand how Fe and Cu in the brain affect the production and properties of NM.
Collapse
Affiliation(s)
- Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan.
| | | | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
11
|
Khouqeer G, Alghrably M, Madkhali N, Dhahri M, Jaremko M, Emwas A. Preparation and characterization of natural melanin and its nanocomposite formed by copper doping. NANO SELECT 2022. [DOI: 10.1002/nano.202200095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ghada Khouqeer
- Department of Physics College of Science Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh Saudi Arabia
| | - Mawadda Alghrably
- Division of Biological and Environmental Sciences and Engineering (BESE) King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
| | - Nawal Madkhali
- Department of Physics College of Science Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh Saudi Arabia
| | - Manel Dhahri
- Biology Department, Faculty of Science Yanbu Taibah University Yanbu El Bahr Saudi Arabia
| | - Mariusz Jaremko
- Smart‐Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE) King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Saudi Arabia
| | - Abdul‐Hamid Emwas
- Core Labs King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
| |
Collapse
|
12
|
Hu Q, Zhou Z, Gao L, Zhou N, Chen Y, Wang S. Green Synthesis of Ag NP‐Decorated Poly(dopamine) Microcapsules for Antibacterial Applications. ChemistrySelect 2021. [DOI: 10.1002/slct.202102654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Qiyan Hu
- School of Pharmacy Wannan Medical College Wuhu 241002 PR China
| | - Zhiyuan Zhou
- School of Pharmacy Wannan Medical College Wuhu 241002 PR China
| | - Liwen Gao
- School of Pharmacy Wannan Medical College Wuhu 241002 PR China
| | - Naijun Zhou
- School of Pharmacy Wannan Medical College Wuhu 241002 PR China
| | - Yuanyan Chen
- School of Pharmacy Wannan Medical College Wuhu 241002 PR China
| | - Shaozhen Wang
- School of Pharmacy Wannan Medical College Wuhu 241002 PR China
| |
Collapse
|
13
|
Song W, Xing R, Yang H, Liu S, Li P. Optimization of extractions of eumelanin from cuttlefish ink and the hypoglycemic effects: In vitro enzyme inhibitory activity and glucose consumption in HepG2 cells. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wen Song
- AS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega‐Science, Institute of Oceanology Chinese Academy of Sciences Qingdao China
- Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao China
- School of Earth and Planetary University of Chinese Academy of Sciences Beijing China
| | - Rong‐e Xing
- AS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega‐Science, Institute of Oceanology Chinese Academy of Sciences Qingdao China
- Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao China
| | - Haoyue Yang
- AS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega‐Science, Institute of Oceanology Chinese Academy of Sciences Qingdao China
- Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao China
| | - Song Liu
- AS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega‐Science, Institute of Oceanology Chinese Academy of Sciences Qingdao China
- Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao China
| | - Pengcheng Li
- AS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega‐Science, Institute of Oceanology Chinese Academy of Sciences Qingdao China
- Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao China
| |
Collapse
|
14
|
|
15
|
Darwish ER, Kalil H, Alqahtani W, Moalla SMN, Hosny NM, Amin AS, Martin HB, Bayachou M. Fast and Reliable Synthesis of Melanin Nanoparticles with Fine-Tuned Metal Adsorption Capacities for Studying Heavy Metal Ions Uptake. Nanotechnol Sci Appl 2021; 14:101-111. [PMID: 34079238 PMCID: PMC8163724 DOI: 10.2147/nsa.s296722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/18/2021] [Indexed: 12/04/2022] Open
Abstract
Purpose Adsorption and uptake of heavy metals by polymeric nanoparticles is driven by a variety of physicochemical processes. In this work, we examined heavy metal uptake by synthetic melanin nanoparticles and analyzed physicochemical properties that affect the extent of metal uptake by the nanoparticles. Methods Eumelanin nanoparticles were synthesized in a one-pot fast process from a 5,6-diacetoxy indole precursor that is hydrolyzed in situ into dihydroxy indole (DHI). The method allows the possibility of changing the level of sodium ions that ends up in the nanoparticles. Two variants of synthetic DHI–melanin (low-sodium and high sodium variants) were evaluated and demonstrated different relative adsorption efficiencies for heavy metal cations. Results and Discussion For the low-sodium DHI–melanin and in terms of percentages of metal ion removal, the relative order of extraction from 50 ppm solutions was Zn2+ > Cd2+ > Ni2+ > Co2+ > Cu2+ > Pb2+, with the extraction percentages ranging from 90% down to 76%, for a 30-minute adsorption time before equilibrium. The lower-sodium DHI–melanin consistently removed more Zn2+ than the higher-sodium variant. Electron microscopy (SEM) showed an increase in melanin particle size after metal ions uptake. In addition, X-ray photoelectron spectroscopy (XPS) of DHI–melanin particles with depth profiling after Zn ions uptake supported particle swelling and ion transport within the particles. Conclusion These initial studies showed the potential of this straightforward synthesis to obtain synthetic DHI–melanin nanoparticles similar to those from biological sources with the possibility to fine-tune their metal adsorption capacity. These synthetic nanoparticles can be used either for the removal of a variety of metal ions or to mimic and study mechanisms of metal uptake by melanin deriving from biological sources, with the potential to understand, for instance, differential heavy metal uptake by various melanic pigments.
Collapse
Affiliation(s)
- Eman R Darwish
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA.,Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Chemical & Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, USA.,Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Haitham Kalil
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA.,Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Wafa Alqahtani
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA.,Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sayed M N Moalla
- Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Nasser M Hosny
- Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Alaa S Amin
- Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
| | - Heidi B Martin
- Department of Chemical & Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Mekki Bayachou
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA.,Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
16
|
Mostert AB. Melanin, the What, the Why and the How: An Introductory Review for Materials Scientists Interested in Flexible and Versatile Polymers. Polymers (Basel) 2021; 13:1670. [PMID: 34065580 PMCID: PMC8161012 DOI: 10.3390/polym13101670] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 01/13/2023] Open
Abstract
Today, western society is facing challenges to create new medical technologies to service an aging population as well as the ever-increasing e-waste of electronic devices and sensors. A key solution to these challenges will be the use of biomaterials and biomimetic systems. One material that has been receiving serious attention for its biomedical and device applications is eumelanin. Eumelanin, or commonly known as melanin, is nature's brown-black pigment and is a poly-indolequinone biopolymer, which possess unique physical and chemical properties for material applications. Presented here is a review, aimed at polymer and other materials scientists, to introduce eumelanin as a potential material for research. Covered here are the chemical and physical structures of melanin, an overview of its unique physical and chemical properties, as well as a wide array of applications, but with an emphasis on device and sensing applications. The review is then finished by introducing interested readers to novel synthetic protocols and post synthesis fabrication techniques to enable a starting point for polymer research in this intriguing and complex material.
Collapse
Affiliation(s)
- A Bernardus Mostert
- Department of Chemistry, Swansea University, Singleton Park, Wales SA2 8PP, UK
| |
Collapse
|
17
|
Chen J, Zhao GC, Wei Y, Feng D, Zhang H. Construction of a novel photoelectrochemical sensor for detecting trace amount of copper (II) ion. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137736] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Fortuna L, González AG, Tretiach M, Pokrovsky OS. Influence of secondary metabolites on surface chemistry and metal adsorption of a devitalized lichen biomonitor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116500. [PMID: 33493767 DOI: 10.1016/j.envpol.2021.116500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Despite the broad use of lichens as biomonitors of airborne trace elements, the surface chemistry and metal adsorption parameters of these organisms are still poorly known. The current investigation is aimed at (i) quantifying the acid-base surface properties and the first-order physical-chemical parameters of Cu2+ and Zn2+ adsorption of devitalized Pseudevernia furfuracea, a lichen commonly used in biomonitoring of airborne trace elements, and (ii) comparing the results with those available for moss biomonitors. Equilibrium constants and metal-binding site concentrations were calculated with a thermodynamic model by taking into account the presence/absence of ancillary extracellular cell wall compounds, namely melanin and acetone-soluble lichen substances. An acid-base titration experiment performed in the pH range of 3-10 showed that melanised and non-melanised P. furfuracea samples have lower pHPZC (3.53-3.99) and higher metal-binding site concentrations (0.96-1.20 mmol g-1) compared to that of the mosses investigated so far at the same experimental conditions. Melanin biosynthesis increased the content of carboxyl and phosphoryl groups and reduces that of amine/polyphenols. Cu2+ and Zn2+ adsorption was unaffected by the degree of melanisation while the removal of extracellular lichen substances slightly decreased Zn2+ adsorption. Although Cu2+ and Zn2+ adsorption parameters related to P. furfuracea surfaces were 3 times lower than in the mosses, lichen samples adsorbed the same amount of Cu2+ and 30% more Zn2+. The present study contributes in understanding the role of ancillary cell wall compounds in Cu2+ and Zn2+ adsorption in a model lichen. It also provides a first comparison between the surface physico-chemical characteristics of lichens and mosses frequently used as biomonitors of trace elements.
Collapse
Affiliation(s)
- Lorenzo Fortuna
- Department of Chemistry and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri, 1, I-34127, Trieste, Italy.
| | - Aridane G González
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Unidad Asociada ULPGC-CSIC, Parque Científico Tecnológico Marino de Taliarte S/n, E-35214, Telde, Las Palmas, Spain
| | - Mauro Tretiach
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri, 10, I-34127, Trieste, Italy
| | - Oleg S Pokrovsky
- Geosciences Environment Toulouse (GET), CNRS, UMR 5563, Observatoire Midi-Pyrénées, 14 Avenue Edouard Belin, F-31400, Toulouse, France; N. Laverov Federal Center for Arctic Research, URoRAS, 23 Naberezhnaja Sev. Dviny, 163000, Arkhangelsk, Russia; BIO-GEO-CLIM Laboratory, Tomsk State University, Lenina Prs 36, Tomsk, Russia
| |
Collapse
|
19
|
Huang H, Bai J, Li J, Lei L, Zhang W, Yan S, Li Y. Fluorescence detection of dopamine based on the polyphenol oxidase–mimicking enzyme. Anal Bioanal Chem 2020; 412:5291-5297. [DOI: 10.1007/s00216-020-02742-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
|
20
|
Maher S, Mahmoud M, Rizk M, Kalil H. Synthetic melanin nanoparticles as peroxynitrite scavengers, photothermal anticancer and heavy metals removal platforms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19115-19126. [PMID: 30982188 DOI: 10.1007/s11356-019-05111-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Melanin is a ubiquitous natural polyphenolic pigment with versatile applications including physiological functions. This polymeric material is found in a diversity of living organisms from bacteria to mammals. The biocompatibility and thermal stability of melanin nanoparticles make them good candidates to work as free radical scavengers and photothermal anticancer substrates. Research studies have identified melanin as an antioxidative therapeutic agent and/or reactive oxygen species (ROS) scavenger that includes neutralization of peroxynitrite. In addition, melanin nanoparticles have emerged as an anticancer photothermal platform that has the capability to kill cancer cells. Recently, melanin nanoparticles have been successfully used as chelating agents to purify water from heavy metals, such as hexavalent chromium. This review article highlights some selected aspects of cutting-edge melanin applications. Herein, we will refer to the recent literature that addresses melanin nanoparticles and its useful physicochemical properties as a hot topic in biomaterial science. It is expected that the techniques of Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and time-resolved Electron Paramagnetic Resonance (EPR) will have a strong impact on the full characterization of melanin nanoparticles and the subsequent exploration of their physiological and chemical mechanisms.
Collapse
Affiliation(s)
- Shaimaa Maher
- Department of Chemistry, College of Science, Cleveland State University, Cleveland, OH, 44115, USA
| | - Marwa Mahmoud
- Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez, Egypt
| | - Moustafa Rizk
- Department of Chemistry, Faculty of Science and Arts, Najran University, Sharourah, Najran, Saudi Arabia
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Haitham Kalil
- Department of Chemistry, College of Science, Cleveland State University, Cleveland, OH, 44115, USA.
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt.
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, OH, 44601, USA.
| |
Collapse
|
21
|
Melanin-based nanomaterials: The promising nanoplatforms for cancer diagnosis and therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102211. [PMID: 32320736 DOI: 10.1016/j.nano.2020.102211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 01/16/2023]
Abstract
Melanin-based nanoplatforms are biocompatible nanomaterials with a variety of unique physicochemical properties such as strong photothermal conversion ability, excellent drug binding capacity, strong metal chelation capacity, high chemical reactivity and versatile adhesion ability. These innate talents not only make melanin-based nanoplatforms be an inborn theranostic nanoagent for photoacoustic imaging-guided photothermal therapy of cancers, but also enable them to be conveniently transferred into cancer-targeting drug delivery systems and multimodality imaging nanoprobes. Due to the intriguing properties, melanin-based nanoplatforms have attracted much attention in investigations of cancer diagnosis and therapy. This review provides an overview of recent research advances in applications of melanin-based nanoplatforms in the fields of cancer diagnosis and therapy including cancer photothermal therapy, anticancer drug delivery, cancer-specific multimodal imaging and theranostics, etc. The remaining challenges and prospects of melanin-based nanoplatforms in biomedical applications are discussed at the end of this review.
Collapse
|
22
|
Brummer-Holder M, Cassill BD, Hayes SH. Interrelationships Between Age and Trace Element Concentration in Horse Mane Hair and Whole Blood. J Equine Vet Sci 2020; 87:102922. [DOI: 10.1016/j.jevs.2020.102922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 11/28/2022]
|
23
|
Madkhali N, Alqahtani HR, Alterary S, Albrithen HA, Laref A, Hassib A. Characterization and electrochemical deposition of natural melanin thin films. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
24
|
|
25
|
Contreras-Moreno FJ, Muñoz-Dorado J, García-Tomsig NI, Martínez-Navajas G, Pérez J, Moraleda-Muñoz A. Copper and Melanin Play a Role in Myxococcus xanthus Predation on Sinorhizobium meliloti. Front Microbiol 2020; 11:94. [PMID: 32117124 PMCID: PMC7010606 DOI: 10.3389/fmicb.2020.00094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/16/2020] [Indexed: 12/15/2022] Open
Abstract
Myxococcus xanthus is a soil myxobacterium that exhibits a complex lifecycle with two multicellular stages: cooperative predation and development. During predation, myxobacterial cells produce a wide variety of secondary metabolites and hydrolytic enzymes to kill and consume the prey. It is known that eukaryotic predators, such as ameba and macrophages, introduce copper and other metals into the phagosomes to kill their prey by oxidative stress. However, the role of metals in bacterial predation has not yet been established. In this work, we have addressed the role of copper during predation of M. xanthus on Sinorhizobium meliloti. The use of biosensors, variable pressure scanning electron microscopy, high-resolution scanning transmission electron microscopy, and energy dispersive X ray analysis has revealed that copper accumulates in the region where predator and prey collide. This accumulation of metal up-regulates the expression of several mechanisms involved in copper detoxification in the predator (the P1B-ATPase CopA, the multicopper oxidase CuoA and the tripartite pump Cus2), and the production by the prey of copper-inducible melanin, which is a polymer with the ability to protect cells from oxidative stress. We have identified two genes in S. meliloti (encoding a tyrosinase and a multicopper oxidase) that participate in the biosynthesis of melanin. Analysis of prey survivability in the co-culture of M. xanthus and a mutant of S. meliloti in which the two genes involved in melanin biosynthesis have been deleted has revealed that this mutant is more sensitive to predation than the wild-type strain. These results indicate that copper plays a role in bacterial predation and that melanin is used by the prey to defend itself from the predator. Taking into consideration that S. meliloti is a nitrogen-fixing bacterium in symbiosis with legumes that coexists in soils with M. xanthus and that copper is a common metal found in this habitat as a consequence of several human activities, these results provide clear evidence that the accumulation of this metal in the soil may influence the microbial ecosystems by affecting bacterial predatory activities.
Collapse
Affiliation(s)
| | - José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Natalia Isabel García-Tomsig
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain.,Estación Experimental del Zaidín, Granada, Spain
| | | | - Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| |
Collapse
|
26
|
Chen G, Zhao J, Chen K, Liu S, Zhang M, He Y, Luo J. Ultrastable Lubricating Properties of Robust Self-Repairing Tribofilms Enabled by in Situ-Assembled Polydopamine Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:852-861. [PMID: 31898907 DOI: 10.1021/acs.langmuir.9b03214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aqueous lubrication in nature is attracting increasing attention in the tribological fields for reducing friction energy consumption and improving anti-wear durability. Generally, adding nanolubricant additives is one of the most important strategies to effectively enhance the interface performance under boundary lubrication via the formation of a protective tribofilm on rubbing surfaces. However, the adsorbed tribofilms are unstable and are prone to failure during friction, and the interaction mechanism between the tribofilms and frictional interfaces is partly disclosed. In this study, inspired by mussels, an in situ-assembled polydopamine (PDA) tribofilm is achieved with PDA nanoparticles as aqueous lubricant additives, which shows excellent lubrication properties. The coefficient of friction is interface-independent and is reduced by as much as 83%. The results show that the PDA tribofilm can not only form chemical bonding with metal interfaces but also present a synergistic lubrication effect with the upper ceramic surface. Especially, a self-repairing effect of the PAD tribofilm is observed, by which the ultrastable lubricating properties can be achieved during friction, and thus, the friction and wear can be effectively controlled. This work provides an effective method for improving the interface stability of friction pairs under aqueous lubrication and also shows great meaning for industrial applications.
Collapse
Affiliation(s)
- Guangyan Chen
- State Key Laboratory of Tribology , Tsinghua University , No. 30 Shuangqing Road, Haidian District , Beijing 100084 , China
| | - Jun Zhao
- College of Mechanical and Electrical Engineering , Beijing University of Chemical Technology , No. 15 North Third Ring Road East, Chaoyang District , Beijing 100029 , China
| | - Kai Chen
- School of Materials Science and Engineering , China University of Mining and Technology , No. 1 University Road, Quanshan District , Xuzhou 221116 , China
| | - Siyu Liu
- School of Materials Science and Engineering , China University of Mining and Technology , No. 1 University Road, Quanshan District , Xuzhou 221116 , China
| | - Minyi Zhang
- State Key Laboratory of Tribology , Tsinghua University , No. 30 Shuangqing Road, Haidian District , Beijing 100084 , China
| | - Yongyong He
- State Key Laboratory of Tribology , Tsinghua University , No. 30 Shuangqing Road, Haidian District , Beijing 100084 , China
| | - Jianbin Luo
- State Key Laboratory of Tribology , Tsinghua University , No. 30 Shuangqing Road, Haidian District , Beijing 100084 , China
| |
Collapse
|
27
|
The doping effect of Fe, Cu and Zn ions on the structural and electrochemical properties and the thermostability of natural melanin extracted from Nigella sativa L. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Salomäki M, Ouvinen T, Marttila L, Kivelä H, Leiro J, Mäkilä E, Lukkari J. Polydopamine Nanoparticles Prepared Using Redox-Active Transition Metals. J Phys Chem B 2019; 123:2513-2524. [PMID: 30813731 PMCID: PMC6727379 DOI: 10.1021/acs.jpcb.8b11994] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/27/2019] [Indexed: 01/01/2023]
Abstract
Autoxidation of dopamine to polydopamine by dissolved oxygen is a slow process that requires highly alkaline conditions. Polydopamine can be formed rapidly also in mildly acidic and neutral solutions by using redox-active transition-metal ions. We present a comparative study of polydopamine nanoparticles formed by autoxidation and aerobic or anaerobic oxidation in the presence of Ce(IV), Fe(III), Cu(II), and Mn(VII). The UV-vis spectra of the purified nanoparticles are similar, and dopaminechrome is an early intermediate species. At low pH, Cu(II) requires the presence of oxygen and chloride ions to produce polydopamine at a reasonable rate. The changes in dispersibility and surface charge take place at around pH 4, which indicates the presence of ionizable groups, especially carboxylic acids, on their surface. X-ray photoelectron spectroscopy shows the presence of three different classes of carbons, and the carbonyl/carboxylate carbons amount to 5-15 atom %. The N 1s spectra show the presence of protonated free amino groups, suggesting that these groups may interact with the π-electrons of the intact aromatic dihydroxyindole moieties, especially in the metal-induced samples. The autoxidized and Mn(VII)-induced samples do not contain metals, but the metal content is 1-2 atom % in samples prepared with Ce(IV) or Cu(II), and ca. 20 atom % in polydopamine prepared in the presence of Fe(III). These differences in the metal content can be explained by the oxidation and complexation properties of the metals using the general model developed. In addition, the nitrogen content is lower in the metal-induced samples. All of the metal oxidants studied can be used to rapidly prepare polydopamine at room temperature, but the possible influence of the metal content and nitrogen loss should be taken into account.
Collapse
Affiliation(s)
- Mikko Salomäki
- Department
of Chemistry, Department of Physics and Astronomy, Turku University Centre for Surfaces
and Materials (MatSurf), and Doctoral Programme in Physical and Chemical
Sciences, University of Turku, FI-20014 Turku, Finland
| | - Tuomo Ouvinen
- Department
of Chemistry, Department of Physics and Astronomy, Turku University Centre for Surfaces
and Materials (MatSurf), and Doctoral Programme in Physical and Chemical
Sciences, University of Turku, FI-20014 Turku, Finland
| | - Lauri Marttila
- Department
of Chemistry, Department of Physics and Astronomy, Turku University Centre for Surfaces
and Materials (MatSurf), and Doctoral Programme in Physical and Chemical
Sciences, University of Turku, FI-20014 Turku, Finland
| | - Henri Kivelä
- Department
of Chemistry, Department of Physics and Astronomy, Turku University Centre for Surfaces
and Materials (MatSurf), and Doctoral Programme in Physical and Chemical
Sciences, University of Turku, FI-20014 Turku, Finland
| | - Jarkko Leiro
- Department
of Chemistry, Department of Physics and Astronomy, Turku University Centre for Surfaces
and Materials (MatSurf), and Doctoral Programme in Physical and Chemical
Sciences, University of Turku, FI-20014 Turku, Finland
| | - Ermei Mäkilä
- Department
of Chemistry, Department of Physics and Astronomy, Turku University Centre for Surfaces
and Materials (MatSurf), and Doctoral Programme in Physical and Chemical
Sciences, University of Turku, FI-20014 Turku, Finland
| | - Jukka Lukkari
- Department
of Chemistry, Department of Physics and Astronomy, Turku University Centre for Surfaces
and Materials (MatSurf), and Doctoral Programme in Physical and Chemical
Sciences, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
29
|
Development of Cu-Modified PVC and PU for Catalytic Generation of Nitric Oxide. COLLOIDS AND INTERFACES 2019. [DOI: 10.3390/colloids3010033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nitric oxide (NO) generating surfaces are potentially promising for improving haemocompatibility of blood-contacting biomaterials. In the present report, Cu-modified poly(vinyl chloride) (PVC) and polyurethane (PU) were prepared via polydopamine (pDA)-assisted chelation. The copper content on the PVC and PU modified surfaces, assessed by inductively coupled plasma - optical emission spectrometry (ICP-OES), were about 3.86 and 6.04 nmol·cm−2, respectively. The Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) data suggest that copper is attached to the polymer surface through complex formation with pDA. The cumulative leaching of copper from modified PVC and PU during the five day incubation in phosphate buffered saline (PBS), measured by inductively coupled plasma mass spectrometry (ICP-MS), was about 50.7 ppb and 48 ppb, respectively which is within its physiological level. Modified polymers were tested for their ability to catalytically generate NO by decomposing of endogenous S-nitrosothiol (GSNO). The obtained data show that Cu-modified PVC and PU exhibited the capacity to generate physiological levels of NO which could be a foundation for developing new biocompatible materials with NO-based therapeutics.
Collapse
|
30
|
Yue X, Liu H, Liu P. Polymer grafted on carbon nanotubes as a flexible cathode for aqueous zinc ion batteries. Chem Commun (Camb) 2019; 55:1647-1650. [PMID: 30657493 DOI: 10.1039/c8cc10060h] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a free-standing, flexible cathode for an aqueous zinc ion battery by grafting cross-linked polydopamine on carbon nanotubes. The cathode is highly stable, with little capacity degradation for 500 cycles. The flexible cathode is environmentally benign and biocompatible which can enable applications from biomedical devices to grid storage.
Collapse
Affiliation(s)
- Xiujun Yue
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
31
|
Amdursky N, Głowacki ED, Meredith P. Macroscale Biomolecular Electronics and Ionics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802221. [PMID: 30334284 DOI: 10.1002/adma.201802221] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/25/2018] [Indexed: 05/18/2023]
Abstract
The conduction of ions and electrons over multiple length scales is central to the processes that drive the biological world. The multidisciplinary attempts to elucidate the physics and chemistry of electron, proton, and ion transfer in biological charge transfer have focused primarily on the nano- and microscales. However, recently significant progress has been made on biomolecular materials that can support ion and electron currents over millimeters if not centimeters. Likewise, similar transport phenomena in organic semiconductors and ionics have led to new innovations in a wide variety of applications from energy generation and storage to displays and bioelectronics. Here, the underlying principles of conduction on the macroscale in biomolecular materials are discussed, highlighting recent examples, and particularly the establishment of accurate structure-property relationships to guide rationale material and device design. The technological viability of biomolecular electronics and ionics is also discussed.
Collapse
Affiliation(s)
- Nadav Amdursky
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Eric Daniel Głowacki
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Bredgatan 33, SE-60174, Norrköping, Sweden
- Wallenberg Centre for Molecular Medicine, Linköping University, 58183, Linköping, Sweden
| | - Paul Meredith
- Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| |
Collapse
|
32
|
Yacout SM, McIlwain KL, Mirza SP, Gaillard ER. Characterization of Retinal Pigment Epithelial Melanin and Degraded Synthetic Melanin Using Mass Spectrometry and In Vitro Biochemical Diagnostics. Photochem Photobiol 2018; 95:183-191. [PMID: 29752877 DOI: 10.1111/php.12934] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022]
Abstract
With increasing age, there is an observable loss of melanin in retinal pigment epithelial (RPE) cells. It is possible that degradation of the pigment contributes to the pathogenesis of retinal disease, as the cellular antioxidant material is depleted. Functionally, intact melanin maintains protective qualities, while oxidative degradation of melanin promotes reactive oxygen species (ROS) generation and formation of metabolic byproducts, such as melanolipofuscin. Understanding the structural and functional changes to RPE melanin with increasing age may contribute to a better understanding of disease progression and risk factors for conditions such as age-related macular degeneration (AMD). In this study, human donor RPE melanin is characterized using MALDI mass spectrometry to follow melanin degradation trends. In vitro models using ARPE-19 cells are used to assess photo-reactivity in repigmented cells. Significant protection against intracellular ROS produced by blue light is observed in calf melanin-pigmented cells versus unpigmented and black latex bead controls (P < 0.0001). UV-B exposure to aged human melanin-pigmented cells results in a significant increase in nitric oxide production versus control cells (P < 0.001). Peroxide-treated synthetic melanin is characterized to elucidate degradation products that may contribute to RPE cell damage.
Collapse
Affiliation(s)
- Sally M Yacout
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL
| | - Kelsey L McIlwain
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL
| | - Shama P Mirza
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI
| | - Elizabeth R Gaillard
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL.,Department of Biological Sciences, Northern Illinois University, DeKalb, IL
| |
Collapse
|
33
|
Salomäki M, Marttila L, Kivelä H, Ouvinen T, Lukkari J. Effects of pH and Oxidants on the First Steps of Polydopamine Formation: A Thermodynamic Approach. J Phys Chem B 2018; 122:6314-6327. [PMID: 29787272 PMCID: PMC6150685 DOI: 10.1021/acs.jpcb.8b02304] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We present a general thermodynamic top-down analysis of the effects of oxidants and pH on dopamine oxidation and cyclization, supplemented with UV-vis and electrochemical studies. The model is applicable to other catecholamines and various experimental conditions. The results show that the decisive physicochemical parameters in autoxidation are the p K values of the semiquinone and the amino group in the oxidized quinone. Addition of Ce(IV) or Fe(III) enhances dopamine oxidation in acidic media in aerobic and anaerobic conditions by the direct oxidation of dopamine and, in the presence of oxygen, also by the autoxidation of the formed semiquinone. At pH 4.5, the enhancement of the one-electron oxidation of dopamine explains the overall reaction enhancement, but at a lower pH, cyclization becomes rate-determining. Oxidation by Cu(II) at reasonable rates requires the presence of oxygen or chloride ions.
Collapse
Affiliation(s)
- Mikko Salomäki
- Department of Chemistry , University of Turku , FI-20014 Turku , Finland.,Turku University Centre for Surfaces and Materials (MatSurf) , FI-20014 Turku , Finland
| | - Lauri Marttila
- Department of Chemistry , University of Turku , FI-20014 Turku , Finland.,Doctoral Programme in Physical and Chemical Sciences , University of Turku Graduate School (UTUGS) , FI-20014 Turku , Finland
| | - Henri Kivelä
- Department of Chemistry , University of Turku , FI-20014 Turku , Finland.,Turku University Centre for Surfaces and Materials (MatSurf) , FI-20014 Turku , Finland
| | - Tuomo Ouvinen
- Department of Chemistry , University of Turku , FI-20014 Turku , Finland.,Doctoral Programme in Physical and Chemical Sciences , University of Turku Graduate School (UTUGS) , FI-20014 Turku , Finland
| | - Jukka Lukkari
- Department of Chemistry , University of Turku , FI-20014 Turku , Finland.,Turku University Centre for Surfaces and Materials (MatSurf) , FI-20014 Turku , Finland
| |
Collapse
|
34
|
Han X, Tang F, Jin Z. Free-standing polydopamine films generated in the presence of different metallic ions: the comparison of reaction process and film properties. RSC Adv 2018; 8:18347-18354. [PMID: 35541137 PMCID: PMC9080560 DOI: 10.1039/c8ra02930j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/11/2018] [Indexed: 12/20/2022] Open
Abstract
Polydopamine is widely used in surface modification, nanofiltration, photonic devices and drug delivery. The formation mechanism and properties of polydopamine are modified by the experimental conditions. Herein we demonstrated a comparison study of free-standing polydopamine films generated at the air-solution interface and their corresponding nanoparticles in solutions, in the presence of various metallic cations, Na+, Ca2+, Mg2+ and Co2+. Adding metallic ions influenced the intermediates in dopamine polymerization, and in turn the morphology and properties of the produced free-standing polydopamine films. Moreover, we observed that the polymerization process accompanying the stratification determines the formation of free-standing films at the air-solution interface: the fast polymerization of dopamine in a Co2+ environment leads to a rugged film surface and porous film body, whereas the comparatively slow polymerization of dopamine under conditions of other metallic ions results in a smooth and solid film. In addition, the water contact angles of the upper and lower surface of the polydopamine films were different. This investigation enriches our knowledge of dopamine polymerization in different environments, which is particularly useful for further application of free-standing polydopamine films.
Collapse
Affiliation(s)
- Xuwen Han
- Department of Chemistry, Renmin University of China Beijing 100872 People's Republic of China
| | - Feng Tang
- Department of Chemistry, Renmin University of China Beijing 100872 People's Republic of China
| | - Zhaoxia Jin
- Department of Chemistry, Renmin University of China Beijing 100872 People's Republic of China
| |
Collapse
|
35
|
Cuong AM, Le Na NT, Thang PN, Diep TN, Thuy LB, Thanh NL, Thang ND. Melanin-embedded materials effectively remove hexavalent chromium (Cr VI) from aqueous solution. Environ Health Prev Med 2018; 23:9. [PMID: 29471789 PMCID: PMC5824532 DOI: 10.1186/s12199-018-0699-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/18/2018] [Indexed: 12/11/2022] Open
Abstract
Background Currently, it is recognized that water polluted with toxic heavy metal ions may cause serious effects on human health. Therefore, the development of new materials for effective removal of heavy metal ions from water is still a widely important area. Melanin is being considered as a potential material for removal of heavy metal from water. Methods In this study, we synthesized two melanin-embedded beads from two different melanin powder sources and named IMB (Isolated Melanin Bead originated from squid ink sac) and CMB (Commercial Melanin Bead originated from sesame seeds). These beads were of globular shape and 2–3 mm in diameter. We investigated and compared the sorption abilities of these two bead materials toward hexavalent-chromium (CrVI) in water. The isotherm sorption curves were established using Langmuir and Freundlich models in the optimized conditions of pH, sorption time, solid/liquid ratio, and initial concentration of CrVI. The FITR analysis was also carried out to show the differences in surface properties of these two beads. Results The optimized conditions for isotherm sorption of CrVI on IMB/CMB were set at pH values of 2/2, sorption times of 90/300 min, and solid-liquid ratios of 10/20 mg/mL. The maximum sorption capacities calculated based on the Langmuir model were 19.60 and 6.24 for IMB and CMB, respectively. However, the adsorption kinetic of CrVI on the beads fitted the Freundlich model with R2 values of 0.992 for IMB and 0.989 for CMB. The deduced Freundlich constant, 1/n, in the range of 0.2–0.8 indicated that these beads are good adsorption materials. In addition, structure analysis data revealed great differences in physical and chemical properties between IMB and CMB. Interestingly, FTIR analysis results showed strong signals of –OH (3295.35 cm− 1) and –C=O (1608.63 cm− 1) groups harboring on the IMB but not CMB. Moreover, loading of CrVI on the IMB caused a shift of broad peaks from 3295.35 cm− 1 and 1608.63 cm− 1 to 3354.21 cm− 1 and 1597.06 cm− 1, respectively, due to –OH and –C=O stretching. Conclusions Taken together, our study suggests that IMB has great potential as a bead material for the elimination of CrVI from aqueous solutions and may be highly useful for water treatment applications.
Collapse
Affiliation(s)
- An Manh Cuong
- Department of Biochemistry and Molecular Biology, Faculty of Biology, VNU University of Science, Vietnam National University, 334 Nguyen Trai St., Thanh Xuan Dist, Hanoi, Vietnam
| | - Nguyen Thi Le Na
- Department of Biochemistry and Molecular Biology, Faculty of Biology, VNU University of Science, Vietnam National University, 334 Nguyen Trai St., Thanh Xuan Dist, Hanoi, Vietnam
| | - Pham Nhat Thang
- High school for Gifted Students, VNU University of Science, Hanoi, Vietnam
| | - Trinh Ngoc Diep
- High school for Gifted Students, VNU University of Science, Hanoi, Vietnam
| | - Ly Bich Thuy
- Institute for Environmental Science and Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Nguyen Lai Thanh
- Department of Biochemistry and Molecular Biology, Faculty of Biology, VNU University of Science, Vietnam National University, 334 Nguyen Trai St., Thanh Xuan Dist, Hanoi, Vietnam
| | - Nguyen Dinh Thang
- Department of Biochemistry and Molecular Biology, Faculty of Biology, VNU University of Science, Vietnam National University, 334 Nguyen Trai St., Thanh Xuan Dist, Hanoi, Vietnam. .,Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Hanoi, Vietnam.
| |
Collapse
|
36
|
Micillo R, Iacomino M, Perfetti M, Panzella L, Koike K, D'Errico G, d'Ischia M, Napolitano A. Unexpected impact of esterification on the antioxidant activity and (photo)stability of a eumelanin from 5,6-dihydroxyindole-2-carboxylic acid. Pigment Cell Melanoma Res 2018; 31:475-483. [DOI: 10.1111/pcmr.12689] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/03/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Raffaella Micillo
- Department of Chemical Sciences; University of Naples “Federico II”; Naples Italy
| | - Mariagrazia Iacomino
- Department of Chemical Sciences; University of Naples “Federico II”; Naples Italy
| | - Marco Perfetti
- Department of Chemical Sciences; University of Naples “Federico II”; Naples Italy
| | - Lucia Panzella
- Department of Chemical Sciences; University of Naples “Federico II”; Naples Italy
| | - Kenzo Koike
- Hair Care Products Research Laboratories; Kao Corporation; Sumida, Tokyo Japan
| | - Gerardino D'Errico
- Department of Chemical Sciences; University of Naples “Federico II”; Naples Italy
| | - Marco d'Ischia
- Department of Chemical Sciences; University of Naples “Federico II”; Naples Italy
| | | |
Collapse
|
37
|
Abstract
Melanins are ancient biological pigments found in all kingdoms of life. In fungi, their role in microbial pathogenesis is well established; however, these complex biomolecules also confer upon fungal microorganisms the faculty to tolerate extreme environments such as the Earth's poles, the International Space Station and places contaminated by toxic metals and ionizing radiation. A remarkable property of melanin is its capacity to interact with a wide range of electromagnetic radiation frequencies, functioning as a protecting and energy harvesting pigment. Other roles of fungal melanin include scavenging of free radical, thermo-tolerance, metal ion sequestration, cell development, and mechanical-chemical cellular strength. In this review, we explore the various functions ascribed to this biological pigment in fungi and its remarkable physicochemical properties.
Collapse
Affiliation(s)
- Radames JB Cordero
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| |
Collapse
|
38
|
Li H, Jia Y, Feng X, Li J. Facile fabrication of robust polydopamine microcapsules for insulin delivery. J Colloid Interface Sci 2017; 487:12-19. [DOI: 10.1016/j.jcis.2016.10.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 12/19/2022]
|
39
|
Klosterman L, Bettinger CJ. Calcium-Mediated Control of Polydopamine Film Oxidation and Iron Chelation. Int J Mol Sci 2016; 18:E14. [PMID: 28025498 PMCID: PMC5297649 DOI: 10.3390/ijms18010014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 11/17/2022] Open
Abstract
The facile preparation of conformal polydopamine (PDA) films on broad classes of materials has prompted extensive research into a wide variety of potential applications for PDA. The constituent molecular species in PDA exhibit diverse chemical moieties, and therefore highly variable properties of PDA-based devices may evolve with post-processing conditions. Here we report the use of redox-inactive cations for oxidative post-processing of deposited PDA films. PDA films incubated in alkaline CaCl₂ solutions exhibit accelerated oxidative evolution in a dose-dependent manner. PDA films incubated in CaCl₂ solutions exhibit 53% of the oxidative charge transfer compared to pristine PDA films. Carboxylic acid groups generated from the oxidation process lower the isoelectric point of PDA films from pH = 4.0 ± 0.2 to pH = 3.1 ± 0.3. PDA films exposed to CaCl₂ solutions during post-processing also enhance Fe2+/Fe3+ chelation compared to pristine PDA films. These data illustrate that the molecular heterogeneity and non-equilibrium character of as-deposited PDA films afford control over the final composition by choosing post-processing conditions, but also demands forethought into how the performance of PDA-incorporated devices may change over time in salt solutions.
Collapse
Affiliation(s)
- Luke Klosterman
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Christopher J Bettinger
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
40
|
Jeppe KJ, Yang J, Long SM, Carew ME, Zhang X, Pettigrove V, Hoffmann AA. Detecting copper toxicity in sediments: from the subindividual level to the population level. J Appl Ecol 2016. [DOI: 10.1111/1365-2664.12840] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Katherine J. Jeppe
- Centre for Aquatic Pollution Identification and Management (CAPIM) School of BioSciences The University of Melbourne Royal Pde Parkville Vic. 3010 Australia
| | - Jianghua Yang
- State Key Laboratory of Pollution Control & Resource Reuse School of the Environment Nanjing University Nanjing 210046 China
| | - Sara M. Long
- Centre for Aquatic Pollution Identification and Management (CAPIM) School of BioSciences The University of Melbourne Royal Pde Parkville Vic. 3010 Australia
| | - Melissa E. Carew
- School of BioSciences The University of Melbourne Bio21 Molecular Science and Biotechnology Institute 30 Flemington Rd Parkville Vic. 3010 Australia
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse School of the Environment Nanjing University Nanjing 210046 China
| | - Vincent Pettigrove
- Centre for Aquatic Pollution Identification and Management (CAPIM) School of BioSciences The University of Melbourne Royal Pde Parkville Vic. 3010 Australia
| | - Ary A. Hoffmann
- School of BioSciences The University of Melbourne Bio21 Molecular Science and Biotechnology Institute 30 Flemington Rd Parkville Vic. 3010 Australia
| |
Collapse
|
41
|
Park H, Kim YJ, Kwon IS, Klosterman L, Bettinger CJ. Lithium purification from aqueous solutions using bioinspired redox‐active melanin membranes. POLYM INT 2016. [DOI: 10.1002/pi.5184] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hang‐Ah Park
- Department of Materials Science and Engineering Carnegie Mellon University 5000 Forbes Avenue Pittsburgh PA 15213 USA
| | - Young Jo Kim
- Department of Materials Science and Engineering Carnegie Mellon University 5000 Forbes Avenue Pittsburgh PA 15213 USA
| | - Ik Soo Kwon
- Department of Materials Science and Engineering Carnegie Mellon University 5000 Forbes Avenue Pittsburgh PA 15213 USA
| | - Luke Klosterman
- Department of Materials Science and Engineering Carnegie Mellon University 5000 Forbes Avenue Pittsburgh PA 15213 USA
| | - Christopher J Bettinger
- Department of Materials Science and Engineering Carnegie Mellon University 5000 Forbes Avenue Pittsburgh PA 15213 USA
- Department of Biomedical Engineering Carnegie Mellon University 5000 Forbes Avenue Pittsburgh PA 15213 USA
- McGowan Institute of Regenerative Medicine 450 Technology Drive, Suite 300 Pittsburgh PA 15219 USA
| |
Collapse
|
42
|
Xiang S, Wang D, Zhang K, Liu W, Wu C, Meng Q, Sun H, Yang B. Chelation competition induced polymerization (CCIP): construction of integrated hollow polydopamine nanocontainers with tailorable functionalities. Chem Commun (Camb) 2016; 52:10155-8. [DOI: 10.1039/c6cc05489g] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel CCIP strategy is exploited to construct integrated hollow polydopamine nanocontainers, and Au NRs@PDA NCTs constructed through this method show excellent performance in cancer eradication.
Collapse
Affiliation(s)
- Siyuan Xiang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Dandan Wang
- Department of Oral Pathology
- School and Hospital of Stomatology
- Jilin University
- Changchun 130021
- P. R. China
| | - Kai Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Wendong Liu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Ce Wu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Qingnan Meng
- School of Material Science & Engineering
- Xi'an University of Technology
- Xi'an 710048
- P. R. China
| | - Hongchen Sun
- Department of Oral Pathology
- School and Hospital of Stomatology
- Jilin University
- Changchun 130021
- P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
43
|
Zheng W, Fan H, Wang L, Jin Z. Oxidative Self-Polymerization of Dopamine in an Acidic Environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11671-11677. [PMID: 26442969 DOI: 10.1021/acs.langmuir.5b02757] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A weak alkaline condition (pH > 8) is a general requirement for oxidative self-polymerization of dopamine. Here, we first demonstrated the generation of polydopamine in an acidic environment via a hydrothermal method. The pH scope of self-polymerization of dopamine is extended to pH ∼ 1 in a hydrothermal process. Polydopamine generated via a hydrothermal method shows similar chemical features and radical scavenging activity with that generated in a basic environment.
Collapse
Affiliation(s)
- Weichao Zheng
- Department of Chemistry, Renmin University of China , Beijing 100872, People's Republic of China
| | - Hailong Fan
- Department of Chemistry, Renmin University of China , Beijing 100872, People's Republic of China
| | - Le Wang
- Department of Chemistry, Renmin University of China , Beijing 100872, People's Republic of China
| | - Zhaoxia Jin
- Department of Chemistry, Renmin University of China , Beijing 100872, People's Republic of China
| |
Collapse
|
44
|
Klosterman L, Riley JK, Bettinger CJ. Control of heterogeneous nucleation and growth kinetics of dopamine-melanin by altering substrate chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3451-3458. [PMID: 25741573 DOI: 10.1021/acs.langmuir.5b00105] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Dopamine-melanin (DM or "polydopamine") can be deposited on virtually any substrate from solution through autoxidation of dopamine. The versatility of this process has allowed surface-mediated assembly of DM for a wide variety of functional coatings. Here we report the impact of well-defined surface chemistries on the nucleation and growth of such films. DM was deposited on silicon dioxide (SiO2) and SiO2 substrates modified with self-assembled monolayers (SAMs) bearing octadecyl (C18), phenethyl, and aminopropyl functional groups. Atomic force microscopy revealed three-dimensional islands whose areal density and surface coverage are lowest on bare SiO2 substrates and highest on the neutral aromatic and aliphatic substrates. Increasing the pH of the solution from 8.2 to 10 dissociates catechol moieties in DM and inhibits adsorption on negatively charged SiO2 substrates. The growth rate of DM films on SAM-modified SiO2 is maximized at pH 9.5 and almost completely abolished at pH 10 because of increased DM solubility. The initial rates of DM adsorption were measured using quartz crystal microbalance with dissipation measurements. The initial adsorption rate is proportional to the nucleation density, which increases as the hydrophobicity of the substrate increases. Taken together, these data provide insight into the rates of heterogeneous nucleation and growth of DM on substrates with well-defined chemistries.
Collapse
Affiliation(s)
- Luke Klosterman
- †Department of Materials Science and Engineering, ‡Department of Chemical Engineering, and §Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - John K Riley
- †Department of Materials Science and Engineering, ‡Department of Chemical Engineering, and §Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Christopher John Bettinger
- †Department of Materials Science and Engineering, ‡Department of Chemical Engineering, and §Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
45
|
Kim YJ, Wu W, Chun SE, Whitacre JF, Bettinger CJ. Catechol-mediated reversible binding of multivalent cations in eumelanin half-cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:6572-6579. [PMID: 25155817 DOI: 10.1002/adma.201402295] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/19/2014] [Indexed: 06/03/2023]
Abstract
Electrochemical storage systems that utilize divalent cations such as Mg2+ can improve the volumetric charge storage capacities compared to those that use monovalent ions. Here, a cathode based on naturally derived melanin pigments is used in secondary Mg2+ batteries. Redox active catechol groups in melanins permit efficient and reversible exchange of divalent Mg2+ cations to preserve charge storage capacity in biopolymer cathodes for more than 500 cycles.
Collapse
Affiliation(s)
- Young Jo Kim
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | | | | | | | | |
Collapse
|
46
|
Qin C, Cheng K, Chen K, Hu X, Liu Y, Lan X, Zhang Y, Liu H, Xu Y, Bu L, Su X, Zhu X, Meng S, Cheng Z. Tyrosinase as a multifunctional reporter gene for Photoacoustic/MRI/PET triple modality molecular imaging. Sci Rep 2014; 3:1490. [PMID: 23508226 PMCID: PMC3603217 DOI: 10.1038/srep01490] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/25/2013] [Indexed: 01/15/2023] Open
Abstract
Development of reporter genes for multimodality molecular imaging is highly important. In contrast to the conventional strategies which have focused on fusing several reporter genes together to serve as multimodal reporters, human tyrosinase (TYR)--the key enzyme in melanin production--was evaluated in this study as a stand-alone reporter gene for in vitro and in vivo photoacoustic imaging (PAI), magnetic resonance imaging (MRI) and positron emission tomography (PET). Human breast cancer cells MCF-7 transfected with a plasmid that encodes TYR (named as MCF-7-TYR) and non-transfected MCF-7 cells were used as positive and negative controls, respectively. Melanin targeted N-(2-(diethylamino)ethyl)-18F-5-fluoropicolinamide was used as a PET reporter probe. In vivo PAI/MRI/PET imaging studies showed that MCF-7-TYR tumors achieved significant higher signals and tumor-to-background contrasts than those of MCF-7 tumor. Our study demonstrates that TYR gene can be utilized as a multifunctional reporter gene for PAI/MRI/PET both in vitro and in vivo.
Collapse
Affiliation(s)
- Chunxia Qin
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, Stanford, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Costa TG, Szpoganicz B, Caramori GF, de Almeida VR, Mangrich AS, Mangoni AP. Spectroscopy and theoretical studies of natural melanin (eumelanin) and its complexation by iron(III). J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.905686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Thiago G. Costa
- Laboratório de Equilíbrio Químico, Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Bruno Szpoganicz
- Laboratório de Equilíbrio Químico, Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Giovanni F. Caramori
- Grupo de Estrutura Eletrônica Molecular, Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Vicente R. de Almeida
- Laboratório de Equilíbrio Químico, Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Antônio S. Mangrich
- Laboratório de Química Inorgânica, Universidade Federal do Paraná, Curitiba, Brazil
| | - Ana P. Mangoni
- Laboratório de Química Inorgânica, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
48
|
Determination of uric acid in human urine by eliminating ascorbic acid interference on copper(II)-polydopamine immobilized electrode surface. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.12.158] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Yeroslavsky G, Richman M, Dawidowicz LO, Rahimipour S. Sonochemically produced polydopamine nanocapsules with selective antimicrobial activity. Chem Commun (Camb) 2013; 49:5721-3. [PMID: 23364289 DOI: 10.1039/c3cc37762h] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile, versatile, and one-pot sonochemical synthesis of polydopamine (PDA)-nanocapsules from dopamine is reported. The nanocapsules (227 ± 25 nm) can encapsulate hydrophobic substances while retaining the reactivity of PDA toward nucleophilic reactions, enabling facile surface modification for different applications. PDA nanocapsules are nontoxic to mammalian cells while Cu-containing PDA capsules demonstrate strong (99.9%) and rapid (15 min) bactericidal activity.
Collapse
Affiliation(s)
- Gil Yeroslavsky
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel.
| | | | | | | |
Collapse
|
50
|
Ball V, Gracio J, Vila M, Singh MK, Metz-Boutigue MH, Michel M, Bour J, Toniazzo V, Ruch D, Buehler MJ. Comparison of synthetic dopamine-eumelanin formed in the presence of oxygen and Cu2+ cations as oxidants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:12754-12761. [PMID: 24015825 DOI: 10.1021/la4029782] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Eumelanin is not only a ubiquitous pigment among living organisms with photoprotective and antioxidant functions, but is also the subject of intense interest in materials science due to its photoconductivity and as a possible universal coating platform, known as "polydopamine films". The structure of eumelanin remains largely elusive, relying either on a polymeric model or on a heterogeneous aggregate structure. The structure of eumelanin as well as that of the closely related "polydopamine films" can be modified by playing on the nature of the oxidant used to oxidize dopamine or related compounds. In this investigation, we show that dopamine-eumelanins produced from dopamine in the presence of either air (O2 being the oxidant) or Cu(2+) cations display drastically different optical and colloidal properties in relation with a different supramolecular assembly of the oligomers of 5,6 dihydroxyindole, the final oxidation product of dopamine. The possible origin of these differences is discussed on the basis of Cu(2+) incorporation in Cu dopamine-eumelanin.
Collapse
Affiliation(s)
- Vincent Ball
- Faculté de Chirurgie Dentaire, Université de Strasbourg , 1 Place de l'Hôpital, 67000 Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|