1
|
Aureliano M, De Sousa-Coelho AL, Dolan CC, Roess DA, Crans DC. Biological Consequences of Vanadium Effects on Formation of Reactive Oxygen Species and Lipid Peroxidation. Int J Mol Sci 2023; 24:ijms24065382. [PMID: 36982458 PMCID: PMC10049017 DOI: 10.3390/ijms24065382] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Lipid peroxidation (LPO), a process that affects human health, can be induced by exposure to vanadium salts and compounds. LPO is often exacerbated by oxidation stress, with some forms of vanadium providing protective effects. The LPO reaction involves the oxidation of the alkene bonds, primarily in polyunsaturated fatty acids, in a chain reaction to form radical and reactive oxygen species (ROS). LPO reactions typically affect cellular membranes through direct effects on membrane structure and function as well as impacting other cellular functions due to increases in ROS. Although LPO effects on mitochondrial function have been studied in detail, other cellular components and organelles are affected. Because vanadium salts and complexes can induce ROS formation both directly and indirectly, the study of LPO arising from increased ROS should include investigations of both processes. This is made more challenging by the range of vanadium species that exist under physiological conditions and the diverse effects of these species. Thus, complex vanadium chemistry requires speciation studies of vanadium to evaluate the direct and indirect effects of the various species that are present during vanadium exposure. Undoubtedly, speciation is important in assessing how vanadium exerts effects in biological systems and is likely the underlying cause for some of the beneficial effects reported in cancerous, diabetic, neurodegenerative conditions and other diseased tissues impacted by LPO processes. Speciation of vanadium, together with investigations of ROS and LPO, should be considered in future biological studies evaluating vanadium effects on the formation of ROS and on LPO in cells, tissues, and organisms as discussed in this review.
Collapse
Affiliation(s)
- Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), Universidade do Algarve, 8005-139 Faro, Portugal
- CCMar, Universidade do Algarve, 8005-139 Faro, Portugal
- Correspondence: (M.A.); (D.C.C.); Tel.: +351-289-900-805 (M.A.)
| | - Ana Luísa De Sousa-Coelho
- Escola Superior de Saúde, Universidade do Algarve (ESSUAlg), 8005-139 Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), 8005-139 Faro, Portugal
| | - Connor C. Dolan
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Deborah A. Roess
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Cellular and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
- Correspondence: (M.A.); (D.C.C.); Tel.: +351-289-900-805 (M.A.)
| |
Collapse
|
2
|
Highlighting the roles of transition metals and speciation in chemical biology. Curr Opin Chem Biol 2022; 69:102155. [DOI: 10.1016/j.cbpa.2022.102155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
|
3
|
Aureliano M, Gumerova NI, Sciortino G, Garribba E, McLauchlan CC, Rompel A, Crans DC. Polyoxidovanadates' interactions with proteins: An overview. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214344] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Aureliano M, Gumerova NI, Sciortino G, Garribba E, Rompel A, Crans DC. Polyoxovanadates with emerging biomedical activities. Coord Chem Rev 2021; 447:214143. [DOI: 10.1016/j.ccr.2021.214143] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Santos J, Barreto Â, Almeida C, Azevedo C, Domingues I, Amorim MJB, Maria VL. Toxicity of boron and vanadium nanoparticles on Danio rerio embryos - Phenotypical, biochemical, and behavioral alterations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 238:105930. [PMID: 34364155 DOI: 10.1016/j.aquatox.2021.105930] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Engineered nanoparticles (NPs) are emerging contaminants of concern and it is important to understand their environmental behavior and ecological risks to exposed organisms. Despite their ubiquitous presence in the environment, there is little information about the hazards of certain NPs, such as boron (BNPs) and vanadium (VNPs). The aim of the present research was to investigate the effects of commercial BNPs and VNPs (80 to 100 nm) to zebrafish embryos, at different levels of biological organization. A range of nominal concentrations for both NPs (0, 0.01, 0.1, 1, and 10 mg/L) was tested. Due to the presence of triton X-100 in the NPs' stock dispersions, an additional control group was included (0.001% triton X-100). Survival, hatching, and malformations of embryos were assessed for 96 hours (h) exposure. Locomotor behavior was evaluated at 120 h. Furthermore, embryos were exposed to 0, 1, and 10 mg/L of NPs to evaluate a set of biomarker responses after 96 h: cholinesterase (ChE) and glutathione S-transferase (GST) activities, total glutathione (TG) and energy budgets levels. VNPs induced malformations (10 mg/L), hyperactivity (10 mg/L), erratic swimming (0.01 mg/L), altered swimming pattern (>0.01 mg/L), delayed hatching (10 mg/L) and altered biochemical responses involved in antioxidant defense (GST and TG at >1 mg/L), neurotransmission (ChE at 10 mg/L) and energy metabolism (lipids at >1 mg/L and carbohydrates at 10 mg/L). BNPs caused malformations (10 mg/L), affected swimming pattern (>0.01 mg/L), induced erratic swimming (10 mg/L) and decreased TG content and GST activity (>1 mg/L). At the same concentrations, VNPs affected a greater number of endpoints than BNPs, demonstrating a greater toxicity to zebrafish embryos. The present study shows that BNPs and VNPs may affect aquatic organisms, albeit at relatively great non-environmentally relevant concentrations, reinforcing the importance of the risk assessment of different NPs.
Collapse
Affiliation(s)
- Joana Santos
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ângela Barreto
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Célia Almeida
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Cátia Azevedo
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Inês Domingues
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Vera L Maria
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
6
|
Keyster M, Niekerk LA, Basson G, Carelse M, Bakare O, Ludidi N, Klein A, Mekuto L, Gokul A. Decoding Heavy Metal Stress Signalling in Plants: Towards Improved Food Security and Safety. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1781. [PMID: 33339160 PMCID: PMC7765602 DOI: 10.3390/plants9121781] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
The mining of heavy metals from the environment leads to an increase in soil pollution, leading to the uptake of heavy metals into plant tissue. The build-up of toxic metals in plant cells often leads to cellular damage and senescence. Therefore, it is of utmost importance to produce plants with improved tolerance to heavy metals for food security, as well as to limit heavy metal uptake for improved food safety purposes. To achieve this goal, our understanding of the signaling mechanisms which regulate toxic heavy metal uptake and tolerance in plants requires extensive improvement. In this review, we summarize recent literature and data on heavy metal toxicity (oral reference doses) and the impact of the metals on food safety and food security. Furthermore, we discuss some of the key events (reception, transduction, and response) in the heavy metal signaling cascades in the cell wall, plasma membrane, and cytoplasm. Our future perspectives provide an outlook of the exciting advances that will shape the plant heavy metal signaling field in the near future.
Collapse
Affiliation(s)
- Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.C.); (O.B.)
- DST-NRF Centre of Excellence in Food Security, University of the Western Cape, Bellville 7530, South Africa;
| | - Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.C.); (O.B.)
| | - Gerhard Basson
- Plant Biotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa;
| | - Mogamat Carelse
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.C.); (O.B.)
| | - Olalekan Bakare
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.C.); (O.B.)
| | - Ndiko Ludidi
- DST-NRF Centre of Excellence in Food Security, University of the Western Cape, Bellville 7530, South Africa;
- Plant Biotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa;
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa;
| | - Lukhanyo Mekuto
- Department of Chemical Engineering, University of Johannesburg, Johannesburg 2028, South Africa;
| | - Arun Gokul
- Department of Chemical Engineering, University of Johannesburg, Johannesburg 2028, South Africa;
| |
Collapse
|
7
|
Margaritis I, Angelopoulou K, Lavrentiadou S, Mavrovouniotis IC, Tsantarliotou M, Taitzoglou I, Theodoridis A, Veskoukis A, Kerasioti E, Kouretas D, Zervos I. Effect of crocin on antioxidant gene expression, fibrinolytic parameters, redox status and blood biochemistry in nicotinamide-streptozotocin-induced diabetic rats. ACTA ACUST UNITED AC 2020; 27:4. [PMID: 32161725 PMCID: PMC7053078 DOI: 10.1186/s40709-020-00114-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/18/2020] [Indexed: 12/24/2022]
Abstract
Background Diabetes is regarded as an epidemiological threat for the twenty-first century. Phytochemicals with known pharmaceutical properties have gained interest in the field of alleviating secondary complications of diseases. Such a substance is crocin, a basic constituent of saffron (Crocus sativus). The present study aimed at examining the beneficial effects of per os crocin administration on the antioxidant status, blood biochemical profile, hepatic gene expression and plasminogen activator inhibitor-1 activity (PAI-1) in the liver, kidney and plasma (an important marker of pre-diabetic status and major factor of thrombosis in diabetes) of healthy rats, as well as of rats with nicotinamide-streptozotocin-induced diabetes. Results Diabetes disrupted the oxidation-antioxidation balance, while crocin improved the antioxidant state in the liver by significantly affecting SOD1 gene expression and/or by restoring SOD and total antioxidant capacity (TAC) levels. In the kidney, crocin improved hydrogen peroxide decomposing activity and TAC. In blood, hepatic transaminases ALT and AST decreased significantly, while there was a trend of decrease regarding blood urea nitrogen (BUN) levels. The expression of PAI-1 gene was affected in the liver by the dose of 50 mg kg−1. Conclusions Crocin treatment contributed in restoring some parameters after diabetes induction, primarily by affecting significantly hepatic transaminases ALT and AST, SOD1 and PAI-1 gene expression and nephric H2O2 decomposing activity. In conclusion, crocin did contribute to the alleviation of some complications of diabetes.
Collapse
Affiliation(s)
- Ioannis Margaritis
- 1Laboratory of Physiology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina Angelopoulou
- 2Laboratory of Biochemistry & Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sophia Lavrentiadou
- 1Laboratory of Physiology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Maria Tsantarliotou
- 1Laboratory of Physiology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Taitzoglou
- 1Laboratory of Physiology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Theodoridis
- 4Laboratory of Animal Production Economics, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aristidis Veskoukis
- 5Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Efthalia Kerasioti
- 5Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Dimitrios Kouretas
- 5Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Ioannis Zervos
- 1Laboratory of Physiology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
8
|
Ścibior A, Kurus J. Vanadium and Oxidative Stress Markers - In Vivo Model: A Review. Curr Med Chem 2019; 26:5456-5500. [PMID: 30621554 DOI: 10.2174/0929867326666190108112255] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/23/2018] [Accepted: 12/26/2018] [Indexed: 12/26/2022]
Abstract
This review article is an attempt to summarize the current state of knowledge of the impact of Vanadium (V) on Oxidative Stress (OS) markers in vivo. It shows the results of our studies and studies conducted by other researchers on the influence of different V compounds on the level of selected Reactive Oxygen Species (ROS)/Free Radicals (FRs), markers of Lipid peroxidation (LPO), as well as enzymatic and non-enzymatic antioxidants. It also presents the impact of ROS/peroxides on the activity of antioxidant enzymes modulated by V and illustrates the mechanisms of the inactivation thereof caused by this metal and reactive oxygen metabolites. It also focuses on the mechanisms of interaction of V with some nonenzymatic compounds of the antioxidative system. Furthermore, we review the routes of generation of oxygen-derived FRs and non-radical oxygen derivatives (in which V is involved) as well as the consequences of FR-mediated LPO (induced by this metal) together with the negative/ positive effects of LPO products. A brief description of the localization and function of some antioxidant enzymes and low-molecular-weight antioxidants, which are able to form complexes with V and play a crucial role in the metabolism of this element, is presented as well. The report also shows the OS historical background and OS markers (determined in animals under V treatment) on a timeline, collects data on interactions of V with one of the elements with antioxidant potential, and highlights the necessity and desirability of conducting studies of mutual interactions between V and antioxidant elements.
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Joanna Kurus
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
9
|
Veskoukis AS, Goutianos G, Paschalis V, Margaritelis NV, Tzioura A, Dipla K, Zafeiridis A, Vrabas IS, Kyparos A, Nikolaidis MG. The rat closely mimics oxidative stress and inflammation in humans after exercise but not after exercise combined with vitamin C administration. Eur J Appl Physiol 2016; 116:791-804. [PMID: 26856335 DOI: 10.1007/s00421-016-3336-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 01/25/2016] [Indexed: 02/08/2023]
Abstract
PURPOSE The purpose of the present study was to directly compare oxidative stress and inflammation responses between rats and humans. METHODS We contrasted rat and human oxidative stress and inflammatory responses to exercise (pro-oxidant stimulus) and/or vitamin C (anti-oxidant stimulus) administration. Vitamin C was administered orally in both species (16 mg kg(-1) of body weight). Twelve redox biomarkers and seven inflammatory biomarkers were determined in plasma and erythrocytes pre- and post-exercise or pre- and post-exercise combined with vitamin C administration. RESULTS Exercise increased oxidative stress and induced an inflammatory state in rats and humans. There were only 1/19 significant species × exercise interactions (catalase), indicating similar responses to exercise between rats and humans in redox and inflammatory biomarkers. Vitamin C decreased oxidative stress and increased antioxidant capacity only in humans and did not affect the redox state of rats. In contrast, vitamin C induced an anti-inflammatory state only in rats and did not affect the inflammatory state of humans. There were 10/19 significant species × vitamin C interactions, indicating that rats poorly mimic human oxidative stress and inflammatory responses to vitamin C administration. Exercise after acute vitamin C administration altered redox state only in humans and did not affect the redox state of rats. On the contrary, inflammation biomarkers changed similarly after exercise combined with vitamin C in both rats and humans. CONCLUSIONS The rat adequately mimics human responses to exercise in basic blood redox/inflammatory profile, yet this is not the case after exercise combined with vitamin C administration.
Collapse
Affiliation(s)
- Aristidis S Veskoukis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece
| | - Georgios Goutianos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece
| | - Vassilis Paschalis
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, Greece.,Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece.,Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece
| | - Aikaterini Tzioura
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece.,Department of Hematology, Blood Bank, General Hospital of Serres, Serres, Greece
| | - Konstantina Dipla
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece
| | - Andreas Zafeiridis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece
| | - Ioannis S Vrabas
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece.
| |
Collapse
|
10
|
Veskoukis AS, Kyparos A, Paschalis V, Nikolaidis MG. Spectrophotometric assays for measuring redox biomarkers in blood. Biomarkers 2016; 21:208-17. [DOI: 10.3109/1354750x.2015.1126648] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Aureliano M. Decavanadate contribution to vanadium biochemistry: In vitro and in vivo studies. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2013.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Aureliano M, Ohlin CA. Decavanadate in vitro and in vivo effects: facts and opinions. J Inorg Biochem 2014; 137:123-30. [PMID: 24865633 DOI: 10.1016/j.jinorgbio.2014.05.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 05/03/2014] [Accepted: 05/03/2014] [Indexed: 02/07/2023]
Abstract
This review covers recent advances in the understanding of the in vitro and in vivo effects of decavanadate, (V10O28)(6-), particularly in mitochondria. In vivo toxicological studies involving vanadium rarely account for the fact that under physiological conditions some vanadium may be present in the form of the decavanadate ion, which may behave differently from ortho- and metavanadates. It has for example been demonstrated that vanadium levels in heart or liver mitochondria are increased upon decavanadate exposure. Additionally, in vitro studies have shown that mitochondrial depolarization (IC50, 40 nM) and oxygen consumption (IC50, 99 nM) are strongly affected by decavanadate, which causes reduction of cytochrome b (complex III). We review these recent findings which together suggest that the observed cellular targets, metabolic pathway and toxicological effects differ according to the species of vanadium present. Finally, the toxicological effects of decavanadate depend on several factors such as the mode of administration, exposure time and type of tissue.
Collapse
Affiliation(s)
- M Aureliano
- DCBB, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-135 Faro, Portugal; CCMar, University of Algarve, Campus de Gambelas, 8005-135 Faro, Portugal.
| | - C André Ohlin
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
13
|
Yang XG, Wang K. Chemical, biochemical, and biological behaviors of vanadate and its oligomers. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2014; 54:1-18. [PMID: 24420708 DOI: 10.1007/978-3-642-41004-8_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Vanadate is widely used as an inhibitor of protein tyrosine phosphatases (PTPase) and is routinely applied in cell lysis buffers or immunoprecipitations of phosphotyrosyl proteins. Additionally, vanadate has been extensively studied for its antidiabetic and anticancer effects. In most studies, orthovanadate or metavanadate was used as the starting compound, whereas these "vanadate" solutions may contain more or less oligomerized species. Whether and how different species of vanadium compounds formed in the biological media exert specific biological effect is still a mystery. In the present commentary, we focus on the chemical, biochemical, and biological behaviors of vanadate. On the basis of species formation of vanadate in chemical and biological systems, we compared the biological effects and working mechanism of monovanadate with that of its oligomers, especially the decamer. We propose that different oligomers may exert a specific biological effect, which depends on their structures and the context of the cell types, by different modes of action.
Collapse
Affiliation(s)
- Xiao-Gai Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | | |
Collapse
|
14
|
Ubeda-Manzanaro M, Merlo MA, Ortiz-Delgado JB, Rebordinos L, Sarasquete C. Expression profiling of the sex-related gene Dmrt1 in adults of the Lusitanian toadfish Halobatrachus didactylus (Bloch and Schneider, 1801). Gene 2013; 535:255-65. [PMID: 24275345 DOI: 10.1016/j.gene.2013.11.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/06/2013] [Accepted: 11/12/2013] [Indexed: 01/22/2023]
Abstract
Doublesex and mab-3 related transcription factor 1 (Dmrt1) gene is a widely conserved gene involved in sex determination and differentiation across phyla. To gain insights on Dmrt1 implication for fish gonad cell differentiation and gametogenesis development, its mRNA was isolated from testis and ovary from the Lusitanian toadfish (Halobatrachus didactylus). The cDNA from Dmrt1 was synthesized and cloned, whereas its quantitative and qualitative gene expression, as well as its protein immunolocalization, were analyzed. A main product of 1.38 kb, which encodes a protein of 295 aa, was reported, but other minority Dmrt1 products were also identified by RACE-PCR. This gene is predominantly expressed in testis (about 20 times more than in other organs or tissues), specially in spermatogonia, spermatocytes and spermatids, as well as in somatic Sertoli cells, indicating that Dmrt1 plays an important role in spermatogenesis. Although Dmrt1 transcripts also seem to be involved in oogenesis development, and it cannot be excluded that toadfish Dmrt1 could be functionally involved in other processes not related to sex.
Collapse
Affiliation(s)
- María Ubeda-Manzanaro
- Institute of Marine Sciences of Andalusia (ICMAN.CSIC), University Campus, 11519 Puerto Real, Cadiz, Spain.
| | - Manuel A Merlo
- Laboratory of Genetics, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus Río San Pedro, 11510, Puerto Real, Cadiz, Spain.
| | - Juan B Ortiz-Delgado
- Institute of Marine Sciences of Andalusia (ICMAN.CSIC), University Campus, 11519 Puerto Real, Cadiz, Spain.
| | - Laureana Rebordinos
- Laboratory of Genetics, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus Río San Pedro, 11510, Puerto Real, Cadiz, Spain.
| | - Carmen Sarasquete
- Institute of Marine Sciences of Andalusia (ICMAN.CSIC), University Campus, 11519 Puerto Real, Cadiz, Spain.
| |
Collapse
|
15
|
Kioseoglou E, Gabriel C, Petanidis S, Psycharis V, Raptopoulou CP, Terzis A, Salifoglou A. Binary Decavanadate-Betaine Composite Materials of Potential Anticarcinogenic Activity. Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201300144] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Srikanth K, Pereira E, Duarte AC, Ahmad I. Glutathione and its dependent enzymes' modulatory responses to toxic metals and metalloids in fish--a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:2133-2149. [PMID: 23334549 DOI: 10.1007/s11356-012-1459-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/27/2012] [Indexed: 06/01/2023]
Abstract
Toxic metals and metalloid are being rapidly added from multiple pathways to aquatic ecosystem and causing severe threats to inhabiting fauna including fish. Being common in all the type of aquatic ecosystems such as freshwater, marine and brackish water fish are the first to get prone to toxic metals and metalloids. In addition to a number of physiological/biochemical alterations, toxic metals and metalloids cause enhanced generation of varied reactive oxygen species (ROS) ultimately leading to a situation called oxidative stress. However, as an important component of antioxidant defence system in fish, the tripeptide glutathione (GSH) directly or indirectly regulates the scavenging of ROS and their reaction products. Additionally, several other GSH-associated enzymes such as GSH reductase (GR, EC 1.6.4.2), GSH peroxidase (EC 1.11.1.9), and GSH sulfotransferase (glutathione-S-transferase (GST), EC 2.5.1.18) cumulatively protect fish against ROS and their reaction products accrued anomalies under toxic metals and metalloids stress conditions. The current review highlights recent research findings on the modulation of GSH, its redox couple (reduced glutathione/oxidised glutathione), and other GSH-related enzymes (GR, glutathione peroxidase, GST) involved in the detoxification of harmful ROS and their reaction products in toxic metals and metalloids-exposed fish.
Collapse
Affiliation(s)
- K Srikanth
- Department of Chemistry, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | |
Collapse
|
17
|
Fraqueza G, Ohlin CA, Casey WH, Aureliano M. Sarcoplasmic reticulum calcium ATPase interactions with decaniobate, decavanadate, vanadate, tungstate and molybdate. J Inorg Biochem 2012; 107:82-9. [PMID: 22178669 DOI: 10.1016/j.jinorgbio.2011.10.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/08/2011] [Accepted: 10/20/2011] [Indexed: 02/07/2023]
Abstract
Over the last few decades there has been increasing interest in oxometalate and polyoxometalate applications to medicine and pharmacology. This interest arose, at least in part, due to the properties of these classes of compounds as anti-cancer, anti-diabetic agents, and also for treatment of neurodegenerative diseases, among others. However, our understanding of the mechanism of action would be improved if biological models could be used to clarify potential toxicological effects in main cellular processes. Sarcoplasmic reticulum (SR) vesicles, containing a large amount of Ca(2+)-ATPase, an enzyme that accumulates calcium by active transport using ATP, have been suggested as a useful model to study the effects of oxometalates on calcium homeostasis. In the present article, it is shown that decavanadate, decaniobate, vanadate, tungstate and molybdate, all inhibited SR Ca(2+)-ATPase, with the following IC(50) values: 15, 35, 50, 400 μM and 45 mM, respectively. Decaniobate (Nb(10)), is the strongest P-type enzyme inhibitor, after decavanadate (V(10)). Atomic-absorption spectroscopy (AAS) analysis, indicates that decavanadate binds to the protein with a 1:1 decavanadate:Ca(2+)-ATPase stoichiometry. Furthermore, V(10) binds with similar extension to all the protein conformations, which occur during calcium translocation by active transport, namely E1, E1P, E2 and E2P, as analysed by AAS. In contrast, it was confirmed that the binding of monomeric vanadate (H(2)VO(4)(2-); V(1)) to the calcium pump is favoured only for the E2 and E2P conformations of the ATPase, whereas no significant amount of vanadate is bound to the E1 and E1P conformations. Scatchard plot analysis, confirmed a 1:1 ratio for decavanadate-Ca(2+)-ATPase, with a dissociation constant, k(d) of 1 μM(-1). The interaction of decavanadate V(10)O(28)(6-) (V(10)) with Ca(2+)-ATPase is prevented by the isostructural and isoelectronic decaniobate Nb(10)O(28)(6-) (Nb(10)), whereas no significant effects were detected with ATP or with heparin, a known competitive ATP binding molecule, suggesting that V(10) binds non-competitively, with respect to ATP, to the protein. Finally, it was shown that decaniobate inhibits SR Ca(2+)-ATPase activity in a non competitive type of inhibition, with respect to ATP. Taken together, these data demonstrate that decameric niobate and vanadate species are stronger inhibitors of the SR calcium ATPase than simple monomeric vanadate, tungstate and molybdate oxometalates, thus affecting calcium homeostasis, cell signalling and cell bioenergetics, as well many other cellular processes. The ability of these oxometalates to act either as phosphate analogues, as a transition-state analogue in enzyme-catalysed phosphoryl group transfer processes and as potentially nucleotide-dependent enzymes modulators or inhibitors, suggests that different oxometalates may reveal different mechanistic preferences in these classes of enzymes.
Collapse
Affiliation(s)
- Gil Fraqueza
- Department of Food Engineering, ISE, University of Algarve, 8005-139 Faro, Portugal
| | | | | | | |
Collapse
|
18
|
Ramos S, Moura JJG, Aureliano M. Recent advances into vanadyl, vanadate and decavanadate interactions with actin. Metallomics 2012; 4:16-22. [PMID: 22012168 DOI: 10.1039/c1mt00124h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although the number of papers about "vanadium" has doubled in the last decade, the studies about "vanadium and actin" are scarce. In the present review, the effects of vanadyl, vanadate and decavanadate on actin structure and function are compared. Decavanadate (51)V NMR signals, at -516 ppm, broadened and decreased in intensity upon actin titration, whereas no effects were observed for vanadate monomers, at -560 ppm. Decavanadate is the only species inducing actin cysteine oxidation and vanadyl formation, both processes being prevented by the natural ligand of the protein, ATP. Vanadyl titration with monomeric actin (G-actin), analysed by EPR spectroscopy, reveals a 1:1 binding stoichiometry and a K(d) of 7.5 μM(-1). Both decavanadate and vanadyl inhibited G-actin polymerization into actin filaments (F-actin), with a IC(50) of 68 and 300 μM, respectively, as analysed by light scattering assays, whereas no effects were detected for vanadate up to 2 mM. However, only vanadyl (up to 200 μM) induces 100% of G-actin intrinsic fluorescence quenching, whereas decavanadate shows an opposite effect, which suggests the presence of vanadyl high affinity actin binding sites. Decavanadate increases (2.6-fold) the actin hydrophobic surface, evaluated using the ANSA probe, whereas vanadyl decreases it (15%). Both vanadium species increased the ε-ATP exchange rate (k = 6.5 × 10(-3) s(-1) and 4.47 × 10(-3) s(-1) for decavanadate and vanadyl, respectively). Finally, (1)H NMR spectra of G-actin treated with 0.1 mM decavanadate clearly indicate that major alterations occur in protein structure, which are much less visible in the presence of ATP, confirming the preventive effect of the nucleotide on the decavanadate interaction with the protein. Putting it all together, it is suggested that actin, which is involved in many cellular processes, might be a potential target not only for decavanadate but above all for vanadyl. By affecting actin structure and function, vanadium can regulate many cellular processes of great physiological significance.
Collapse
Affiliation(s)
- S Ramos
- REQUIMTE/CQFB, Dpto Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | |
Collapse
|
19
|
Aureliano M. Recent perspectives into biochemistry of decavanadate. World J Biol Chem 2011; 2:215-25. [PMID: 22031844 PMCID: PMC3202125 DOI: 10.4331/wjbc.v2.i10.215] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/07/2011] [Accepted: 09/14/2011] [Indexed: 02/05/2023] Open
Abstract
The number of papers about decavanadate has doubled in the past decade. In the present review, new insights into decavanadate biochemistry, cell biology, and antidiabetic and antitumor activities are described. Decameric vanadate species (V10) clearly differs from monomeric vanadate (V1), and affects differently calcium pumps, and structure and function of myosin and actin. Only decavanadate inhibits calcium accumulation by calcium pump ATPase, and strongly inhibits actomyosin ATPase activity (IC50 = 1.4 μmol/L, V10), whereas no such effects are detected with V1 up to 150 μmol/L; prevents actin polymerization (IC50 of 68 μmol/L, whereas no effects detected with up to 2 mmol/L V1); and interacts with actin in a way that induces cysteine oxidation and vanadate reduction to vanadyl. Moreover, in vivo decavanadate toxicity studies have revealed that acute exposure to polyoxovanadate induces different changes in antioxidant enzymes and oxidative stress parameters, in comparison with vanadate. In vitro studies have clearly demonstrated that mitochondrial oxygen consumption is strongly affected by decavanadate (IC50, 0.1 μmol/L); perhaps the most relevant biological effect. Finally, decavanadate (100 μmol/L) increases rat adipocyte glucose accumulation more potently than several vanadium complexes. Preliminary studies suggest that decavanadate does not have similar effects in human adipocytes. Although decavanadate can be a useful biochemical tool, further studies must be carried out before it can be confirmed that decavanadate and its complexes can be used as anticancer or antidiabetic agents.
Collapse
|
20
|
Lei W, Wang L, Liu D, Xu T, Luo J. Histopathological and biochemical alternations of the heart induced by acute cadmium exposure in the freshwater crab Sinopotamon yangtsekiense. CHEMOSPHERE 2011; 84:689-694. [PMID: 21529889 DOI: 10.1016/j.chemosphere.2011.03.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 03/01/2011] [Accepted: 03/14/2011] [Indexed: 05/30/2023]
Abstract
Cadmium (Cd) is a highly toxic element in water. Its toxicity has been attributed to oxidative stress mediated by free radicals. Here we investigated the effects of Cd on the histopathology, antioxidant enzymes and lipid peroxidation of crustacean heart. The freshwater crabs Sinopotamon yangtsekiense were exposed to different concentrations of Cd for 1, 3, 5 and 7d. After exposure, histological abnormalities were discovered, including myocardial edema, vacuolar and vitreous degeneration, and infiltration of inflammatory cells. Additionally, alterations in nuclei, mitochondria, rough endoplasmic reticulum as well as myofibrils were observed. Meanwhile, superoxide dismutase (SOD) activity was significantly increased after Cd exposure. Catalase (CAT) activity was only increased in the group exposed to 14.50 mg L(-1) Cd on day 5 and decreased with increasing Cd concentration and exposure time. Glutathione peroxidase (GPx) activity was increased in groups treated with 29.00, 58.00 and 116.00 mg L(-1) on days 1 and 3, and decreased thereafter. Besides, malondialdehyde (MDA) levels were significantly increased after 3d of Cd exposure at all the indicated concentrations. These results showed that acute Cd exposure led to harmful effects on the histology of crab heart, which are most likely linked to Cd-induced oxidative stress.
Collapse
Affiliation(s)
- Wenwen Lei
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | | | | | | | | |
Collapse
|
21
|
Marouane W, Soussi A, Murat JC, Bezzine S, El Feki A. The protective effect of Malva sylvestris on rat kidney damaged by vanadium. Lipids Health Dis 2011; 10:65. [PMID: 21513564 PMCID: PMC3104358 DOI: 10.1186/1476-511x-10-65] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/23/2011] [Indexed: 12/15/2022] Open
Abstract
Background The protective effect of the common mallow (Malva sylvestris) decoction on renal damages in rats induced by ammonium metavanadate poisoning was evaluated. On the one hand, vanadium toxicity is associated to the production of reactive oxygen species, causing a lipid peroxidation and an alteration in the enzymatic antioxidant defence. On the other hand, many medicinal plants are known to possess antioxidant and radical scavenging properties, thanks to the presence of flavonoids. These properties were confirmed in Malva sylvestris by two separate methods; namely, the Diphenyl-2-picrylhydrazyl assay and the Nitroblue Tetrazolium reduction assay. Results In 80 rats exposed to ammonium metavanadate (0.24 mmol/kg body weight in drinking water) for 90 days, lipid peroxidation levels and superoxide dismutase, catalase and glutathione peroxidase activities were measured in kidney. A significant increase in the formation of free radicals and antioxidant enzyme activities was noticed. In addition, a histological examination of kidney revealed a structural deterioration of the renal cortical capsules and a shrinking of the Bowman space. In animals intoxicated by metavanadate but also given a Malva sylvestris decoction (0.2 g dry mallow/kg body weight), no such pathologic features were observed: lipid peroxidation levels, antioxidant enzyme activities and histological features appeared normal as compared to control rats. Conclusion Malva sylvestris is proved to have a high antioxidative potential thanks to its richness in phenolic compounds.
Collapse
Affiliation(s)
- Wafa Marouane
- Laboratoire d’Ecophysiologie Animale, Faculté des Sciences, Route de Soukra 3038 Sfax-University of Sfax-Tunisia
| | | | | | | | | |
Collapse
|
22
|
Monteiro DA, Rantin FT, Kalinin AL. Inorganic mercury exposure: toxicological effects, oxidative stress biomarkers and bioaccumulation in the tropical freshwater fish matrinxã, Brycon amazonicus (Spix and Agassiz, 1829). ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:105-123. [PMID: 19636703 DOI: 10.1007/s10646-009-0395-1] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 07/16/2009] [Indexed: 05/28/2023]
Abstract
Alterations in the antioxidant cellular system have often been proposed as biomarkers of pollutant-mediated toxicity. This study evaluated the effects of mercury on oxidative stress biomarkers and bioaccumulation in the liver, gills, white muscle and heart of the freshwater fish matrinxã, Brycon amazonicus, exposed to a nominal and sub-lethal concentration (~20% of 96 h-LC(50)) of 0.15 mg L(-1) of mercury chloride (HgCl(2)) for 96 h in a static system. Increases in superoxide dismutase, catalase, glutathione peroxidase (GPx), glutathione S-transferase (GST) and glutathione reductase (GR) were observed in all tissues after HgCl(2) exposure, except for white muscle GR activity and hepatic GPx. In the liver and gills, the exposure to HgCl(2) also induced significant increases in reduced glutathione (GSH). Conversely, exposure to HgCl(2) caused a significant decrease in the GSH levels and an increase in the oxidized glutathione (GSSG) content in the white muscle, while both GSH and GSSG levels increased significantly in the heart muscle. Metallothionein concentrations were significantly high after HgCl(2) exposure in the liver, gills and heart, but remained at control values in the white muscle. HgCl(2) exposure induced oxidative damage, increasing the lipid peroxidation and protein carbonyl content in all tissues. Mercury accumulated significantly in all the fish tissue. The pattern of accumulation follows the order gills > liver >> heart > white muscle. In conclusion, these data suggest that oxidative stress in response to inorganic mercury exposure could be the main pathway of toxicity induced by this metal in fish.
Collapse
Affiliation(s)
- Diana Amaral Monteiro
- Department of Physiological Sciences, Federal University of São Carlos, UFSCar, São Carlos, SP, Brazil
| | | | | |
Collapse
|
23
|
Abstract
Currently, efforts have been directed towards using decavanadate as a tool for the understanding of several biochemical processes such as muscle contraction, calcium homeostasis, in vivo changes of oxidative stress markers, mitochondrial oxygen consumption, mitochondrial membrane depolarization, actin polymerization and glucose uptake, among others. In addition, studies have been conducted in order to make vanadium available and safe for clinical use, for instance with decavanadate compounds that present interesting pharmacological properties, eventually useful for the treatment of diabetes. Here, recent contributions of decavanadate to the effects of vanadium in biological systems, not only in vitro, but also in vivo, are analysed.
Collapse
Affiliation(s)
- Manuel Aureliano
- Faculty of Sciences and Technology, University of Algarve, Portugal.
| |
Collapse
|
24
|
Bošnjaković-Pavlović N, Spasojević-de Biré A, Tomaz I, Bouhmaida N, Avecilla F, Mioč UB, Pessoa JC, Ghermani NE. Electronic Properties of a Cytosine Decavanadate: Toward a Better Understanding of Chemical and Biological Properties of Decavanadates. Inorg Chem 2009; 48:9742-53. [DOI: 10.1021/ic9008575] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nada Bošnjaković-Pavlović
- Laboratoire Structures, Propriétés et Modélisation des Solides (SPMS), UMR CNRS 8580, Ecole Centrale Paris, Grande Voie des Vignes, 92295 Châtenay-Malabry, France
- Faculty of Physical Chemistry, University of Belgrade, P.O. Box 47, 11158 Belgrade, PAC 105305, Serbia
| | - Anne Spasojević-de Biré
- Laboratoire Structures, Propriétés et Modélisation des Solides (SPMS), UMR CNRS 8580, Ecole Centrale Paris, Grande Voie des Vignes, 92295 Châtenay-Malabry, France
| | - Isabel Tomaz
- Centro de Quimica Estrutural, Instituto Superior Tecnico, TU Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Nouzha Bouhmaida
- Laboratoire des Sciences des Matériaux (LSM) Université Cadi Ayyad, Faculté des Sciences Semlalia, Boulevard Prince Moulay Abdallah, BP 2390, 40000 Marrakech, Morocco
| | - Fernando Avecilla
- Departamento de Química Fundamental, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain
| | - Ubavka B. Mioč
- Faculty of Physical Chemistry, University of Belgrade, P.O. Box 47, 11158 Belgrade, PAC 105305, Serbia
| | - João Costa Pessoa
- Centro de Quimica Estrutural, Instituto Superior Tecnico, TU Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Nour Eddine Ghermani
- Laboratoire Structures, Propriétés et Modélisation des Solides (SPMS), UMR CNRS 8580, Ecole Centrale Paris, Grande Voie des Vignes, 92295 Châtenay-Malabry, France
- Laboratoire de Physique Pharmaceutique, UMR CNRS 8612, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| |
Collapse
|
25
|
Aureliano M, Crans DC. Decavanadate (V10 O28 6-) and oxovanadates: oxometalates with many biological activities. J Inorg Biochem 2009; 103:536-46. [PMID: 19110314 DOI: 10.1016/j.jinorgbio.2008.11.010] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 11/10/2008] [Accepted: 11/18/2008] [Indexed: 02/07/2023]
Abstract
The decameric vanadate species V(10)O(28)(6-), also referred to as decavanadate, impact proteins, lipid structures and cellular function, and show some effects in vivo on oxidative stress processes and other biological properties. The mode of action of decavanadate in many biochemical systems depends, at least in part, on the charge and size of the species and in some cases competes with the simpler oxovanadate species. The orange decavanadate that contains 10 vanadium atoms is a stable species for several days at neutral pH, but at higher pH immediately converts to the structurally and functionally distinct lower oxovanadates such as the monomer, dimer or tetramer. Although the biological effects of vanadium are generally assumed to derive from monomeric vanadate or the vanadyl cation, we show in this review that not all effects can be attributed to these simple oxovanadate forms. This topic has not previously been reviewed although background information is available [D.C. Crans, Comments Inorg. Chem. 16 (1994) 35-76; M. Aureliano (Ed.), Vanadium Biochemistry, Research Signpost Publs., Kerala, India, 2007]. In addition to pumps, channels and metabotropic receptors, lipid structures represent potential biological targets for decavanadate and some examples have been reported. Decavanadate interact with enzymes, polyphosphate, nucleotide and inositol 3-phosphate binding sites in the substrate domain or in an allosteric site, in a complex manner. In mitochondria, where vanadium was shown to accumulate following decavanadate in vivo administration, nM concentration of decavanadate induces membrane depolarization in addition to inhibiting oxygen consumption, suggesting that mitochondria may be potential targets for decameric toxicity. In vivo effects of decavanadate in piscine models demonstrated that antioxidant stress markers, lipid peroxidation and vanadium subcellular distribution is dependent upon whether or not the solutions administered contain decavanadate. The present review summarizes the reports on biological effects of decavanadate and highlights the importance of considering decavanadate in evaluations of the biological effects of vanadium.
Collapse
Affiliation(s)
- Manuel Aureliano
- CCMar and Dept. Chemistry, Biochemistry and Pharmacy, FCT, University of Algarve, Faro, Portugal.
| | | |
Collapse
|
26
|
Qiu T, Xie P, Liu Y, Li G, Xiong Q, Hao L, Li H. The profound effects of microcystin on cardiac antioxidant enzymes, mitochondrial function and cardiac toxicity in rat. Toxicology 2008; 257:86-94. [PMID: 19135122 DOI: 10.1016/j.tox.2008.12.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 12/09/2008] [Accepted: 12/09/2008] [Indexed: 10/21/2022]
Abstract
Deaths from microcystin toxication have widely been attributed to hypovolemic shock due to hepatic interstitial hemorrhage, while some recent studies suggest that cardiogenic complication is also involved. So far, information on cardiotoxic effects of MC has been rare and the underlying mechanism is still puzzling. The present study examined toxic effects of microcystins on heart muscle of rats intravenously injected with extracted MC at two doses, 0.16LD(50) (14 microg MC-LReq kg(-1) body weight) and 1LD(50) (87 microg MC-LReq kg(-1) body weight). In the dead rats, both TTC staining and maximum elevations of troponin I levels confirmed myocardial infarction after MC exposure, besides a serious interstitial hemorrhage in liver. In the 1LD(50) dose group, the coincident falls in heart rate and blood pressure were related to mitochondria dysfunction in heart, while increases in creatine kinase and troponin I levels indicated cardiac cell injury. The corresponding pathological alterations were mainly characterized as loss of adherence between cardiac myocytes and swollen or ruptured mitochondria at the ultrastructural level. MC administration at a dose of 1LD(50) not only enhanced activities and up-regulated mRNA transcription levels of antioxidant enzymes, but also increased GSH content. At both doses, level of lipid peroxides increased obviously, suggesting serious oxidative stress in mitochondria. Simultaneously, complex I and III were significantly inhibited, indicating blocks in electron flow along the mitochondrial respiratory chain in heart. In conclusion, the findings of this study implicate a role for MC-induced cardiotoxicity as a potential factor that should be considered when evaluating the mechanisms of death associated with microcystin intoxication in Brazil.
Collapse
Affiliation(s)
- Tong Qiu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, PR China
| | | | | | | | | | | | | |
Collapse
|
27
|
Aureliano M, Henao F, Tiago T, Duarte RO, Moura JJG, Baruah B, Crans DC. Sarcoplasmic reticulum calcium ATPase is inhibited by organic vanadium coordination compounds: pyridine-2,6-dicarboxylatodioxovanadium(V), BMOV, and an amavadine analogue. Inorg Chem 2008; 47:5677-84. [PMID: 18510311 DOI: 10.1021/ic702405d] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The general affinity of the sarcoplasmic reticulum (SR) Ca (2+)-ATPase was examined for three different classes of vanadium coordination complexes including a vanadium(V) compound, pyridine-2,6-dicarboxylatodioxovanadium(V) (PDC-V(V)), and two vanadium(IV) compounds, bis(maltolato)oxovanadium(IV) (BMOV), and an analogue of amavadine, bis( N-hydroxylamidoiminodiacetato)vanadium(IV) (HAIDA-V(IV)). The ability of vanadate to act either as a phosphate analogue or as a transition-state analogue with enzymes' catalysis phosphoryl group transfer suggests that vanadium coordination compounds may reveal mechanistic preferences in these classes of enzymes. Two of these compounds investigated, PDC-V(V) and BMOV, were hydrolytically and oxidatively reactive at neutral pH, and one, HAIDA-V(IV), does not hydrolyze, oxidize, or otherwise decompose to a measurable extent during the enzyme assay. The SR Ca (2+)-ATPase was inhibited by all three of these complexes. The relative order of inhibition was PDC-V(V) > BMOV > vanadate > HAIDA-V(IV), and the IC 50 values were 25, 40, 80, and 325 microM, respectively. Because the observed inhibition is more potent for PDC-V(V) and BMOV than that of oxovanadates, the inhibition cannot be explained by oxovanadate formation during enzyme assays. Furthermore, the hydrolytically and redox stable amavadine analogue HAIDA-V(IV) inhibited the Ca (2+)-ATPase less than oxovanadates. To gauge the importance of the lipid environment, studies of oxidized BMOV in microemulsions were performed and showed that this system remained in the aqueous pool even though PDC-V(V) is able to penetrate lipid interfaces. These findings suggest that the hydrolytic properties of these complexes may be important in the inhibition of the calcium pump. Our results show that two simple coordination complexes with known insulin enhancing effects can invoke a response in calcium homeostasis and the regulation of muscle contraction through the SR Ca (2+)-ATPase.
Collapse
Affiliation(s)
- Manuel Aureliano
- Dept. Química, Bioquímica e Farmácia, FCT, Universidade do Algarve, 8005-139 Faro, Portugal.
| | | | | | | | | | | | | |
Collapse
|
28
|
Tiago DM, Laizé V, Cancela ML, Aureliano M. Impairment of mineralization by metavanadate and decavanadate solutions in a fish bone-derived cell line. Cell Biol Toxicol 2008; 24:253-63. [PMID: 17899405 DOI: 10.1007/s10565-007-9034-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 08/23/2007] [Indexed: 02/07/2023]
Abstract
Vanadium, a trace metal known to accumulate in bone and to mimic insulin, has been shown to regulate mammalian bone formation using in vitro and in vivo systems. In the present work, short- and long-term effects of metavanadate (containing monomeric, dimeric, tetrameric and pentameric vanadate species) and decavanadate (containing decameric vanadate species) solutions on the mineralization of a fish bone-derived cell line (VSa13) were studied and compared to that of insulin. After 2 h of incubation with vanadate (10 microM in monomeric vanadate), metavanadate exhibited higher accumulation rates than decavanadate (6.85 +/- 0.40 versus 3.95 +/- 0.10 microg V/g of protein, respectively) in fish VSa13 cells and was also shown to be less toxic when applied for short periods. In longer treatments with both metavanadate and decavanadate solutions, similar effects were promoted: stimulation of cell proliferation and strong impairment (75%) of extracellular matrix (ECM) mineralization. The effect of both vanadate solutions (5 microM in monomeric vanadate), on ECM mineralization was increased in the presence of insulin (10 nM). It is concluded that chronic treatment with both vanadate solutions stimulated fish VSa13 cells proliferation and prevented ECM mineralization. Newly developed VSa13 fish cells appeared to be appropriate in the characterization of vanadate effects on vertebrate bone formation, representing a good alternative to mammalian systems.
Collapse
Affiliation(s)
- Daniel M Tiago
- Centre of Marine Sciences, University of Algarve, Campus Gambelas, 8005-139, Faro, Portugal
| | | | | | | |
Collapse
|
29
|
Soares SS, Martins H, Gutiérrez-Merino C, Aureliano M. Vanadium and cadmium in vivo effects in teleost cardiac muscle: metal accumulation and oxidative stress markers. Comp Biochem Physiol C Toxicol Pharmacol 2008; 147:168-78. [PMID: 17920336 DOI: 10.1016/j.cbpc.2007.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 09/09/2007] [Accepted: 09/10/2007] [Indexed: 02/07/2023]
Abstract
Several biological studies associate vanadium and cadmium with the production of reactive oxygen species (ROS), leading to lipid peroxidation and antioxidant enzymes alterations. The present study aims to analyse and compare the oxidative stress responses induced by an acute intravenous exposure (1 and 7 days) to a sub-lethal concentration (5 mM) of two vanadium solutions, containing different vanadate n-oligomers (n=1-5 or n=10), and a cadmium solution on the cardiac muscle of the marine teleost Halobatrachus didactylus (Lusitanian toadfish). It was observed that vanadium is mainly accumulated in mitochondria (1.33+/-0.26 microM), primarily when this element was administrated as decameric vanadate, than when administrated as metavanadate (432+/-294 nM), while the highest content of cadmium was found in cytosol (365+/-231 nM). Indeed, decavanadate solution promotes stronger increases in mitochondrial antioxidant enzymes activities (catalase: +120%; superoxide dismutase: +140%) than metavanadate solution. On contrary, cadmium increases cytosolic catalase (+111%) and glutathione peroxidases (+50%) activities. It is also observed that vanadate oligomers induce in vitro prooxidant effects in toadfish heart, with stronger effects induced by metavanadate solution. In summary, vanadate and cadmium are differently accumulated in blood and cardiac subcellular fractions and induced different responses in enzymatic antioxidant defence mechanisms. In the present study, it is described for the first time the effects of equal doses of two different metals intravenously injected in the same fish species and upon the same exposure period allowing to understand the mechanisms of vanadate and cadmium toxicity in fish cardiac muscle.
Collapse
Affiliation(s)
- S S Soares
- Department of Chemistry, Biochemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | |
Collapse
|
30
|
Soares SS, Henao F, Aureliano M, Gutiérrez-Merino C. Vanadate induces necrotic death in neonatal rat cardiomyocytes through mitochondrial membrane depolarization. Chem Res Toxicol 2008; 21:607-18. [PMID: 18251508 DOI: 10.1021/tx700204r] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Besides the well-known inotropic effects of vanadium in cardiac muscle, previous studies have shown that vanadate can stimulate cell growth or induce cell death. In this work, we studied the toxicity to neonatal rat ventricular myocytes (cardiomyocytes) of two vanadate solutions containing different oligovanadates distribution, decavanadate (containing decameric vanadate, V 10) and metavanadate (containing monomeric vanadate and also di-, tetra-, and pentavanadate). Incubation for 24 h with decavanadate or metavanadate induced necrotic cell death of cardiomyocytes, without significant caspase-3 activation. Only 10 microM total vanadium of either decavanadate (1 microM V 10) or metavanadate (10 microM total vanadium) was needed to produce 50% loss of cell viability after 24 h (assessed with MTT and propidium iodide assays). Atomic absorption spectroscopy showed that vanadium accumulation in cardiomyocytes after 24 h was the same when incubation was done with decavanadate or metavanadate. A decrease of 75% of the rate of mitochondrial superoxide anion generation, monitored with dihydroethidium, and a sustained rise of cytosolic calcium (monitored with Fura-2-loaded cardiomyocytes) was observed after 24 h of incubation of cardiomyocytes with decavanadate or metavanadate concentrations close to those inducing 50% loss of cell viability produced. In addition, mitochondrial membrane depolarization within cardiomyocytes, monitored with tetramethylrhodamine ethyl esther or with 3,3',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide, were observed after only 6 h of incubation with decavanadate or metavanadate. The concentration needed for 50% mitochondrial depolarization was 6.5 +/- 1 microM total vanadium for both decavanadate (0.65 microM V 10) and metavanadate. In conclusion, mitochondrial membrane depolarization was an early event in decavanadate- and monovanadate-induced necrotic cell death of cardiomyocytes.
Collapse
Affiliation(s)
- Sandra Sofia Soares
- Comparative Cardiovascular Physiopathology Group (GFCC), Faculty of Environmental and Marine Sciences, Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | |
Collapse
|
31
|
Soares SS, Gutiérrez-Merino C, Aureliano M. Mitochondria as a target for decavanadate toxicity in Sparus aurata heart. AQUATIC TOXICOLOGY 2007; 83:1-9. [PMID: 17420061 DOI: 10.1016/j.aquatox.2007.03.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 03/07/2007] [Accepted: 03/08/2007] [Indexed: 02/07/2023]
Abstract
In a previous in vivo study we have reported that vanadium distribution, antioxidant enzymes activity and lipid peroxidation in Sparus aurata heart are strongly dependent on the oligomeric vanadate species being administered. Moreover, it was suggested that vanadium is accumulated in mitochondria, in particular when V10 was intravenously injected. In this work we have done a comparative study of the effects of V10 and monomeric vanadate (V1) on cardiac mitochondria from S. aurata. V10 inhibits mitochondrial oxygen consumption with an IC(50) of 400 nM, while the IC(50) for V1 is 23 microM. V10 also induced mitochondrial depolarization at very low concentrations, with an IC(50) of 196 nM, and 55 microM of V1 was required to induce the same effect. Additionally, up to 5 microM V10 did inhibit neither F(0)F(1)-ATPase activity nor NADH levels and it did not affect respiratory complexes I and II, but it induced changes in the redox steady-state of complex III. It is concluded that V10 inhibits mitochondrial oxygen consumption and induces membrane depolarization more strongly than V1, pointing out that mitochondria is a toxicological target for V10 and the importance to take into account the contribution of V10 to the vanadate toxic effects.
Collapse
Affiliation(s)
- Sandra S Soares
- Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | |
Collapse
|
32
|
Soares SS, Gutiérrez-Merino C, Aureliano M. Decavanadate induces mitochondrial membrane depolarization and inhibits oxygen consumption. J Inorg Biochem 2007; 101:789-96. [PMID: 17349695 DOI: 10.1016/j.jinorgbio.2007.01.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 01/19/2007] [Accepted: 01/24/2007] [Indexed: 02/07/2023]
Abstract
Decavanadate induced rat liver mitochondrial depolarization at very low concentrations, half-depolarization with 39 nM decavanadate, while it was needed a 130-fold higher concentration of monomeric vanadate (5 microM) to induce the same effect. Decavanadate also inhibits mitochondrial repolarization induced by reduced glutathione in vitro, with an inhibition constant of 1 microM, whereas no effect was observed up to 100 microM of monomeric vanadate. The oxygen consumption by mitochondria is also inhibited by lower decavanadate than monomeric vanadate concentrations, i.e. 50% inhibition is attained with 99 M decavanadate and 10 microM monomeric vanadate. Thus, decavanadate is stronger as mitochondrial depolarization agent than as inhibitor of mitochondrial oxygen consumption. Up to 5 microM, decavanadate does not alter mitochondrial NADH levels nor inhibit neither F(O)F(1)-ATPase nor cytochrome c oxidase activity, but it induces changes in the redox steady-state of mitochondrial b-type cytochromes (complex III). NMR spectra showed that decameric vanadate is the predominant vanadate species in decavanadate solutions. It is concluded that decavanadate is much more potent mitochondrial depolarization agent and a more potent inhibitor of mitochondrial oxygen consumption than monomeric vanadate, pointing out the importance to take into account the contribution of higher oligomeric species of vanadium for the biological effects of vanadate solutions.
Collapse
Affiliation(s)
- S S Soares
- Centro de Ciências do Mar, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | | |
Collapse
|
33
|
Capella MAM, Capella LS, Valente RC, Gefé M, Lopes AG. Vanadate-induced cell death is dissociated from H2O2 generation. Cell Biol Toxicol 2007; 23:413-20. [PMID: 17457679 DOI: 10.1007/s10565-007-9003-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Accepted: 02/07/2007] [Indexed: 10/25/2022]
Abstract
Vanadium is an environmentally toxic metal with peculiar and sometimes contradictory cellular effects. It is insulin-mimetic, it can either stimulate cell growth or induce cell death, and it has both mutagenic and antineoplastic properties. However, the mechanisms involved in those effects are poorly understood. Several studies suggest that H(2)O(2) is involved in vanadate-induced cell death, but it is not known whether cellular sensitivity to vanadate is indeed related to H(2)O(2) generation. In the present study, the sensitivity of four cell lines from different origins (K562, K562-Lucena 1, MDCK, and Ma104) to vanadate and H(2)O(2) was evaluated and the production of H(2)O(2) by vanadate was analyzed by flow cytometry. We show that cell lines very resistant to H(2)O(2) (K562, K562-Lucena 1, and Ma104 cells) are much more sensitive to vanadate than MDCK, a cell line relatively susceptible to H(2)O(2), suggesting that vanadate-induced cytotoxicity is not directly related to H(2)O(2) responsiveness. In accordance, vanadate concentrations that reduced cellular viability to approximately 60-70% of the control (10 mumol/L) did not induce H(2)O(2) formation. A second hypothesis, that peroxovanadium (PV) compounds, produced once vanadate enters into the cells, are responsible for the cytotoxicity, was only partially confirmed because MDCK cells were resistant to both vanadate and PV compounds (10 micromol/L each). Therefore, our results suggest that vanadate toxicity occurs by two distinct pathways, one dependent on and one independent of H(2)O(2) production.
Collapse
Affiliation(s)
- M A M Capella
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil.
| | | | | | | | | |
Collapse
|
34
|
Ramos S, Manuel M, Tiago T, Duarte R, Martins J, Gutiérrez-Merino C, Moura JJG, Aureliano M. Decavanadate interactions with actin: inhibition of G-actin polymerization and stabilization of decameric vanadate. J Inorg Biochem 2006; 100:1734-43. [PMID: 16890293 DOI: 10.1016/j.jinorgbio.2006.06.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 06/19/2006] [Accepted: 06/25/2006] [Indexed: 02/07/2023]
Abstract
Decameric vanadate species (V10) inhibit the rate and the extent of G-actin polymerization with an IC50 of 68+/-22 microM and 17+/-2 microM, respectively, whilst they induce F-actin depolymerization at a lower extent. On contrary, no effect on actin polymerization and depolymerization was detected for 2mM concentration of "metavanadate" solution that contains ortho and metavanadate species, as observed by combining kinetic with (51)V NMR spectroscopy studies. Although at 25 degrees C, decameric vanadate (10 microM) is unstable in the assay medium, and decomposes following a first-order kinetic, in the presence of G-actin (up to 8 microM), the half-life increases 5-fold (from 5 to 27 h). However, the addition of ATP (0.2mM) in the medium not only prevents the inhibition of G-actin polymerization by V10 but it also decreases the half-life of decomposition of decameric vanadate species from 27 to 10h. Decameric vanadate is also stabilized by the sarcoplasmic reticulum vesicles, which raise the half-life time from 5 to 18h whereas no effects were observed in the presence of phosphatidylcholine liposomes, myosin or G-actin alone. It is proposed that the "decavanadate" interaction with G-actin, favored by the G-actin polymerization, stabilizes decameric vanadate species and induces inhibition of G-actin polymerization. Decameric vanadate stabilization by cytoskeletal and transmembrane proteins can account, at least in part, for decavanadate toxicity reported in the evaluation of vanadium (V) effects in biological systems.
Collapse
Affiliation(s)
- Susana Ramos
- Dept. Química e Bioquímica, FCT, Universidade do Algarve, Faro, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Soussi A, Gaubin Y, Beau B, Murat JC, Soleilhavoup JP, Croute F, El Feki A. Stress proteins (Hsp72/73, Grp94) expression pattern in rat organs following metavanadate administration. Effect of green tea drinking. Food Chem Toxicol 2006; 44:1031-7. [PMID: 16497423 DOI: 10.1016/j.fct.2005.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 12/21/2005] [Accepted: 12/22/2005] [Indexed: 11/27/2022]
Abstract
Expression pattern of heat shock proteins (Hsp) 72/73 and glucose regulated protein (Grp) 94 was studied in liver, kidney and testis of rats injected with sublethal doses of ammonium metavanadate (5 mg/kg/day). In addition, some batches of animals were given green tea decoction, known to be rich in anti-oxidative compounds, as sole beverage in order to evaluate its protective properties. In control animals, the stress proteins expression was found to be organ-dependent: anti-Grp94 antibody revealed two bands at 96 and 98 kDa in kidney and liver whereas the 98 kDa band only was found in testis; anti-Hsp72/73 antibody revealed that the constitutive Hsp73 was present in all organs whereas the inducible Hsp72 was only present in kidney and testis. In kidney of vanadium-treated rats, Hsp73 was over-expressed by about 50% whereas Hsp72 was down-regulated by 50-80%. No such effects were observed in liver and testis. In liver and kidney of vanadium-treated rats, Grp94 was over-expressed by 50% and 150% respectively whereas no change was found in testis. In rats given green tea as sole beverage, the 96 kDa protein expression level in liver was reduced both in controls and in vanadium-treated animals. However, green tea drinking failed to prevent the vanadium-induced Hsp72 under-expression in kidney of vanadium-treated rats.
Collapse
Affiliation(s)
- A Soussi
- Laboratoire d'Ecophysiologie Animale, Faculté des Sciences de Sfax, 3018 Sfax, Tunisia
| | | | | | | | | | | | | |
Collapse
|
36
|
Soares SS, Martins H, Aureliano M. Vanadium distribution following decavanadate administration. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2006; 50:60-4. [PMID: 16151690 DOI: 10.1007/s00244-004-0246-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Accepted: 03/27/2005] [Indexed: 02/07/2023]
Abstract
An acute exposure of two vanadate solutions-metavanadate and decavanadate-containing different vanadate oligomers, induces different patterns of subcellular vanadium distribution in blood plasma, red blood cells (RBC), and cardiac muscle subcellular fractions of the fish Sparus aurata (gilthead seabream). The highest amount of vanadium was found in blood plasma 1 h after (5 mM) intravenous vanadate administration (295 +/- 64 and 383 +/- 104 microg V/g dry tissue, for metavanadate and decavanadate solutions, respectively), being 80-fold higher than in RBC. After 12 h of administration, the amount of vanadium in plasma, as well as in cardiac cytosol, decreased about 50%, for both vanadate solutions. During the period between 1 and 12 h, the ratio of vanadium in plasma/vanadium in RBC increased from 27 to 128 for metavanadate, whereas it remains constant (77) for decavanadate. Both vanadium solutions were primarily accumulated in the mitochondrial fraction (138 +/- 0 and 195 +/- 34 ng V/g dry tissue for metavanadate and decavanadate solutions, respectively, after 12 h exposure), rather than in cytosol. The amount of vanadium in cardiac mitochondria was twofold higher than in cytosol, earlier for metavanadate (6 h) than for decavanadate (12 h). It is concluded that, in fish cardiac muscle, the vanadium distribution is dependent on the administration of decameric vanadate, with vanadium being mainly distributed in plasma, before being accumulated into the mitochondrial fraction.
Collapse
Affiliation(s)
- S S Soares
- Group of Comparative Cardiovascular Physiopathology, CCMar, Faculty of Marine and Environmental Science, University of Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | | | | |
Collapse
|
37
|
Gândara RMC, Soares SS, Martins H, Gutiérrez-Merino C, Aureliano M. Vanadate oligomers: in vivo effects in hepatic vanadium accumulation and stress markers. J Inorg Biochem 2005; 99:1238-44. [PMID: 15833347 DOI: 10.1016/j.jinorgbio.2005.02.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 02/15/2005] [Accepted: 02/23/2005] [Indexed: 02/07/2023]
Abstract
The formation of vanadate oligomeric species is often disregarded in studies on vanadate effects in biological systems, particularly in vivo, even though they may interact with high affinity with many proteins. We report the effects in fish hepatic tissue of an acute intravenous exposure (12, 24 h and 7 days) to two vanadium(V) solutions, metavanadate and decavanadate, containing different vanadate oligomers administered at sub-lethal concentration (5 mM; 1 mg/kg). Decavanadate solution promotes a 5-fold increase (0.135 +/- 0.053 microg V(-1) dry tissues) in the vanadium content of the mitochondrial fraction 7 days after exposition, whereas no effects were observed after metavanadate solution administration. Reduced glutathione (GSH) levels did not change and the overall reactive oxygen species (ROS) production was decreased by 30% 24 h after decavanadate administration, while for metavanadate, GSH levels increased 35%, the overall ROS production was depressed by 40% and mitochondrial superoxide anion production decreased 45%. Decavanadate intoxication did not induce changes in the rate of lipid peroxidation till 12 h, but later increased 80%, which is similar to the increase observed for metavanadate after 24 h. Decameric vanadate administration clearly induces different effects than the other vanadate oligomeric species, pointing out the importance of taking into account the different vanadate oligomers in the evaluation of vanadium(V) effects in biological systems.
Collapse
Affiliation(s)
- R M C Gândara
- CBME, Department Química e Bioquímica, FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | | | |
Collapse
|
38
|
Aureliano M, Gândara RMC. Decavanadate effects in biological systems. J Inorg Biochem 2005; 99:979-85. [PMID: 15833319 DOI: 10.1016/j.jinorgbio.2005.02.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 02/23/2005] [Accepted: 02/25/2005] [Indexed: 02/07/2023]
Abstract
Vanadium biological studies often disregarded the formation of decameric vanadate species known to interact, in vitro, with high-affinity with many proteins such as myosin and sarcoplasmic reticulum calcium pump and also to inhibit these biochemical systems involved in energy transduction. Moreover, very few in vivo animal studies involving vanadium consider the contribution of decavanadate to vanadium biological effects. Recently, it has been shown that an acute exposure to decavanadate but not to other vanadate oligomers induced oxidative stress and a different fate in vanadium intracellular accumulation. Several markers of oxidative stress analyzed on hepatic and cardiac tissue were monitored after in vivo effect of an acute exposure (12, 24 h and 7 days), to a sub-lethal concentration (5 mM; 1 mg/kg) of two vanadium solutions ("metavanadate" and "decavanadate"). It was observed that "decavanadate" promote different effects than other vanadate oligomers in catalase activity, glutathione content, lipid peroxidation, mitochondrial superoxide anion production and vanadium accumulation, whereas both solutions seem to equally depress reactive oxygen species (ROS) production as well as total intracellular reducing power. Vanadium is accumulated in mitochondria in particular when "decavanadate" is administered. These recent findings, that are now summarized, point out the decameric vanadate species contributions to in vivo and in vitro effects induced by vanadium in biological systems.
Collapse
Affiliation(s)
- Manuel Aureliano
- CBME, Dept. Química e Bioquímica, FCT, Universidade do Algarve, 8005-139 Faro, Portugal.
| | | |
Collapse
|
39
|
Tiago T, Aureliano M, Gutiérrez-Merino C. Decavanadate binding to a high affinity site near the myosin catalytic centre inhibits F-actin-stimulated myosin ATPase activity. Biochemistry 2004; 43:5551-61. [PMID: 15122921 DOI: 10.1021/bi049910+] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Decameric vanadate (V(10)) inhibits the actin-stimulated myosin ATPase activity, noncompetitively with actin or with ATP upon interaction with a high-affinity binding site (K(i) = 0.27 +/- 0.05 microM) in myosin subfragment-1 (S1). The binding of V(10) to S1 can be monitored from titration with V(10) of the fluorescence of S1 labeled at Cys-707 and Cys-697 with N-iodo-acetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (IAEDANS) or 5-(iodoacetamido) fluorescein, which showed the presence of only one V(10) binding site per monomer with a dissociation constant of 0.16-0.7 microM, indicating that S1 labeling with these dyes produced only a small distortion of the V(10) binding site. The large quenching of AEDANS-labeled S1 fluorescence produced by V(10) indicated that the V(10) binding site is close to Cys-697 and 707. Fluorescence studies demonstrated the following: (i) the binding of V(10) to S1 is not competitive either with actin or with ADP.V(1) or ADP.AlF(4); (ii) the affinity of V(10) for the complex S1/ADP.V(1) and S1/ADP.AlF(4) is 2- and 3-fold lower than for S1; and (iii) it is competitive with the S1 "back door" ligand P(1)P(5)-diadenosine pentaphosphate. A local conformational change in S1 upon binding of V(10) is supported by (i) a decrease of the efficiency of fluorescence energy transfer between eosin-labeled F-actin and fluorescein-labeled S1, and (ii) slower reassociation between S1 and F-actin after ATP hydrolysis. The results are consistent with binding of V(10) to the Walker A motif of ABC ATPases, which in S1 corresponds to conserved regions of the P-loop which form part of the phosphate tube.
Collapse
Affiliation(s)
- Teresa Tiago
- Departamento de Química e Bioquímica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 8000 Faro, Portugal.
| | | | | |
Collapse
|
40
|
Soares SS, Aureliano M, Joaquim N, Coucelo JM. Cadmium and vanadate oligomers effects on methaemoglobin reductase activity from Lusitanian toadfish: in vivo and in vitro studies. J Inorg Biochem 2003; 94:285-90. [PMID: 12628709 DOI: 10.1016/s0162-0134(03)00006-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cadmium and two vanadate solutions as 'metavanadate' (containing ortho and metavanadate species) and 'decavanadate' (containing decameric species) (5 mM) were injected intraperitoneously in Halobatrachus didactylus (Lusitanian toadfish), in order to evaluate the effects of cadmium and oligomeric vanadate species on methaemoglobin reductase activity from fish red blood cells. Following short-term exposure (1 and 7 days), different changes were observed on enzyme activity. After 7 days of exposure, 'metavanadate' increased methaemoglobin reductase activity by 67% (P < 0.05), whereas, minor effects were observed on enzymatic activity upon cadmium and 'decavanadate' administration. However, in vitro studies indicate that decameric vanadate, in concentrations as low as 50 microM, besides strongly inhibiting methaemoglobin reductase activity, promotes haemoglobin oxidation to methaemoglobin. Although decameric vanadate species showed to be unstable in the different media used in this work, the rate of decameric vanadate deoligomerization is in general slow enough, making it possible to study its effects. It is concluded that the increase in H. didactylus methaemoglobin reductase activity is more pronounced upon exposition to 'metavanadate' than to cadmium and decameric species. Moreover, only decameric vanadate species promoted haemoglobin oxidation, suggesting that vanadate speciation is important to evaluate in vivo and in vitro effects on methaemoglobin reductase activity.
Collapse
Affiliation(s)
- S S Soares
- Group of Comparative Cardiovascular Physiopathology, CCMar, Faculty of Marine and Environmental Sciences, University of Algarve, Campus de Gambelas, 8000-117 Faro, Portugal
| | | | | | | |
Collapse
|