1
|
Yu X, Miao Z, Zhang L, Zhu L, Sheng H. Extraction, purification, structure characteristics, biological activities and pharmaceutical application of Bupleuri Radix Polysaccharide: A review. Int J Biol Macromol 2023; 237:124146. [PMID: 36965565 DOI: 10.1016/j.ijbiomac.2023.124146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Bupleuri Radix (BR), as a well-known plant medicine of relieving exterior syndrome, has a long history of usage in China. Bupleuri Radix Polysaccharide (BRP), as the main component and an important bioactive substance of BR, has a variety of pharmacological activities, including immunoregulation, antioxidant, antitumor, anti-diabetic and anti-aging, etc. In this review, the advancements on extraction, purification, structure characteristics, biological activities and pharmaceutical application of BRP from different sources (Bupleurum chinense DC., Bupleurum scorzonerifolium Willd., Bupleurum falcatum L. and Bupleurum smithii Woiff. var. Parvifolium Shan et Y. Li.) are summarized. Meanwhile, this review makes an in-depth discussion on the shortcomings of the research on BRP, and new valuable insights for the future researches of BRP are proposed.
Collapse
Affiliation(s)
- Xinyue Yu
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China
| | - Zhuang Miao
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China
| | - Lizhen Zhang
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China
| | - Liqiao Zhu
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China.
| | - Huagang Sheng
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China.
| |
Collapse
|
2
|
Rastall RA, Diez-Municio M, Forssten SD, Hamaker B, Meynier A, Moreno FJ, Respondek F, Stah B, Venema K, Wiese M. Structure and function of non-digestible carbohydrates in the gut microbiome. Benef Microbes 2022; 13:95-168. [PMID: 35729770 DOI: 10.3920/bm2021.0090] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Together with proteins and fats, carbohydrates are one of the macronutrients in the human diet. Digestible carbohydrates, such as starch, starch-based products, sucrose, lactose, glucose and some sugar alcohols and unusual (and fairly rare) α-linked glucans, directly provide us with energy while other carbohydrates including high molecular weight polysaccharides, mainly from plant cell walls, provide us with dietary fibre. Carbohydrates which are efficiently digested in the small intestine are not available in appreciable quantities to act as substrates for gut bacteria. Some oligo- and polysaccharides, many of which are also dietary fibres, are resistant to digestion in the small intestines and enter the colon where they provide substrates for the complex bacterial ecosystem that resides there. This review will focus on these non-digestible carbohydrates (NDC) and examine their impact on the gut microbiota and their physiological impact. Of particular focus will be the potential of non-digestible carbohydrates to act as prebiotics, but the review will also evaluate direct effects of NDC on human cells and systems.
Collapse
Affiliation(s)
- R A Rastall
- Department of Food and Nutritional Sciences, The University of Reading, P.O. Box 226, Whiteknights, Reading, RG6 6AP, United Kingdom
| | - M Diez-Municio
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - S D Forssten
- IFF Health & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - B Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907-2009, USA
| | - A Meynier
- Nutrition Research, Mondelez France R&D SAS, 6 rue René Razel, 91400 Saclay, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - F Respondek
- Tereos, Zoning Industriel Portuaire, 67390 Marckolsheim, France
| | - B Stah
- Human Milk Research & Analytical Science, Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - K Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, St. Jansweg 20, 5928 RC Venlo, the Netherlands
| | - M Wiese
- Department of Microbiology and Systems Biology, TNO, Utrechtseweg 48, 3704 HE, Zeist, the Netherlands
| |
Collapse
|
3
|
Yu M, Chen H, Liu SH, Li YC, Sui C, Hou DB, Wei JH. Differential Expression of Genes Involved in Saikosaponin Biosynthesis Between Bupleurum chinense DC. and Bupleurum scorzonerifolium Willd. Front Genet 2020; 11:583245. [PMID: 33193712 PMCID: PMC7596549 DOI: 10.3389/fgene.2020.583245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/16/2020] [Indexed: 12/23/2022] Open
Abstract
Radix Bupleuri (roots of Bupleurum spp.) is an important medicinal herb. Triterpenoid saponins of saikosaponins generally constitute the main class of secondary metabolites of plants in the Bupleurum genus. However, the molecular regulatory mechanism underlying their biosynthesis remains elusive. In this study, we observed significantly different saikosaponin biosynthesis between Bupleurum chinense and Bupleurum scorzonerifolium at the seedling stage. The sequential and expression characterization of 232 genes in the triterpenoid saponin biosynthetic pathway, which includes the mevalonate (MVA) pathway and methylerythritol phosphate (MEP) pathway, between B. chinense and B. scorzonerifolium was also investigated. Sixty of these genes may be involved in saikosaponin biosynthesis. Manipulation of these genes, especially those of the β-AS, P450, and UGT families, may improve saikosaponin production.
Collapse
Affiliation(s)
- Ma Yu
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Hua Chen
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Shi-Hang Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yu-Chan Li
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Chun Sui
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Da-Bin Hou
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Jian-He Wei
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Zaitseva O, Khudyakov A, Sergushkina M, Solomina O, Polezhaeva T. Pectins as a universal medicine. Fitoterapia 2020; 146:104676. [DOI: 10.1016/j.fitote.2020.104676] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/19/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
|
5
|
Meng Y, Yi L, Chen L, Hao J, Li DX, Xue J, Xu NY, Zhang ZQ. Purification, structure characterization and antioxidant activity of polysaccharides from Saposhnikovia divaricata. Chin J Nat Med 2019; 17:792-800. [PMID: 31703760 DOI: 10.1016/s1875-5364(19)30096-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Indexed: 12/22/2022]
Abstract
Polysaccharide from traditional Chinese herb, Saposhnikovia divaricata (Turcz.) Schischk. (SD) was extracted, fractionated and characterized in this work. Four fractions were prepared. Their molecular weight, monosaccharide compositions, linkage modes and structural properties were characterized with SEC-MALS-RI, HPAEC-PAD, GC-MS and NMR. SDP1 was assigned as a 1, 4-α-glucan with small amount of O-6 linked branches. SDP2 contained a big amount of the 1, 4-α-glucan and a small amount of arabinogalactan, while SDP3 possessed relatively lower amount of the 1, 4-α-glucan and a big amount of the arabinogalactan. SDP4 was defined as a pectic arabinogalactan. Four fractions showed antioxidant activities in both molecular and cellular levels and their activity was ranked as SDP4 ≈ SDP3>SDP2>SDP1. The 1, 4-α-glucan in SDP1 had the weakest, while SDP3 and SDP4 showed similar and the highest antioxidant activity. The arabinogalactan was the major component of both SDP3 and SDP4, which significantly contributed to the antioxidant activity of SDP.
Collapse
Affiliation(s)
- Yao Meng
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Lin Yi
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Lei Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jie Hao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Du-Xin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jie Xue
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Nai-Yu Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou 215021, China
| | - Zhen-Qing Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou 215021, China.
| |
Collapse
|
6
|
Ma Y, Guihua L, Hongzhang, Yuchan L, Cheng Y, Zhikang T, Xiaoyan S, Chun S, Dabin H, Jian-He W. Effect of hormones on the seed germination of Bupleurum species. ACTA ACUST UNITED AC 2019. [DOI: 10.5897/jmpr2018.6709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Yu M, Liu D, Li YC, Sui C, Chen GD, Tang ZK, Yang CM, Hou DB, Wei JH. Validation of reference genes for expression analysis in three Bupleurum species. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1557556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Ma Yu
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, PR China
| | - Dan Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, PR China
| | - Yu-Chan Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, PR China
| | - Chun Sui
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Guang-Deng Chen
- College of Resources, Sichuan Agriculture University, Chengdu, PR China
| | - Zhi-Kang Tang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, PR China
| | - Cheng-Min Yang
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Da-Bin Hou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, PR China
| | - Jian-He Wei
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| |
Collapse
|
8
|
Zeng P, Li J, Chen Y, Zhang L. The structures and biological functions of polysaccharides from traditional Chinese herbs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:423-444. [PMID: 31030757 PMCID: PMC7102684 DOI: 10.1016/bs.pmbts.2019.03.003] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Most of traditional Chinese medicine substances come from herbal plants. The medicinal quality of herbal plants varies with the locations of cultivation, the parts of the herb collected, the season of the herb collected, and the herb processing method. Polysaccharides are major components of the herb plants and their biosynthesis is partly controlled by the genes but mostly influenced by the availability of the nutrition and determined by the various environmental factors. In recent decades, polysaccharides isolated from different kinds of Chinese herbs have received much attention due to their important biological activities, such as anti-tumor, anti-oxidant, anti-diabetic, radiation protecting, antiviral, hypolipidemic, and immunomodulatory activities. Interestingly, different batches of the same herb can obtain different polysaccharide fractions with subtle differences in molecular weight, monosaccharide compositions, glycosidic linkages, and biological functions. Even with these variations, a large number of bioactive polysaccharides from different kinds of traditional Chinese herbs have been purified, characterized, and reported. This review provides a comprehensive summary of the latest polysaccharide extraction methods and the strategies used for monosaccharide compositional analysis plus polysaccharide structural characterization. Most importantly, the reported chemical characteristics and biological activities of the polysaccharides from the famous traditional Chinese herbs including Astragalus membranaceus, Ginseng, Lycium barbarum, Angelica sinensis, Cordyceps sinensis, and Ophiopogon japonicus will be reviewed and discussed. The published studies provide evidence that polysaccharides from traditional Chinese herbs play an important role in their medical applications, which forms the basis for future research, development, and application of these polysaccharides as functional foods and therapeutics in modern medicine.
Collapse
Affiliation(s)
- Pengjiao Zeng
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China,Corresponding authors:
| | - Juan Li
- Department of Medical Records, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yulong Chen
- Department of Gynecology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China,Corresponding authors:
| |
Collapse
|
9
|
Structural characteristics and bioactive properties of a novel polysaccharide from Flammulina velutipes. Carbohydr Polym 2018; 197:147-156. [PMID: 30007599 DOI: 10.1016/j.carbpol.2018.05.069] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/08/2018] [Accepted: 05/24/2018] [Indexed: 01/04/2023]
Abstract
A new water-soluble polysaccharide (FVP1) was extracted from Flammulina velutipes by traditional method "water extraction and alcohol precipitation" and purified by column chromatography. Physicochemical characterization showed that FVP1 was a homogeneous polysaccharide with a relative molecular weight of 54.78 kDa. It is composed of mannose (7.74%), glucose (70.41%), and galactose (16.38%). FVP1 (1000 mg/mL) possessed significant immune activity by increasing the secretion of nitric oxide (NO), tumour necrosis factor-α (TNF-α) (3183 ± 133.84 pg/mL), interleukin (IL)-6 (1133.21 ± 39.05 pg/mL), and IL-12 (579.96 ± 74.53 pg/mL) in macrophages. Furthermore, FVP1 showed significant hepatitis B surface antibody (anti-HBV) activity through reducing the expression of hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg) and hepatitis B virus (HBV) DNA replication. These results suggest a novel role for FVP1 to be applied as an immunomodulators in dietary supplements to prevent HBV infection.
Collapse
|
10
|
do Nascimento GE, Winnischofer SMB, Ramirez MI, Iacomini M, Cordeiro LMC. The influence of sweet pepper pectin structural characteristics on cytokine secretion by THP-1 macrophages. Food Res Int 2017; 102:588-594. [DOI: 10.1016/j.foodres.2017.09.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/30/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
|
11
|
Xie JH, Jin ML, Morris GA, Zha XQ, Chen HQ, Yi Y, Li JE, Wang ZJ, Gao J, Nie SP, Shang P, Xie MY. Advances on Bioactive Polysaccharides from Medicinal Plants. Crit Rev Food Sci Nutr 2017; 56 Suppl 1:S60-84. [PMID: 26463231 DOI: 10.1080/10408398.2015.1069255] [Citation(s) in RCA: 337] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In recent decades, the polysaccharides from the medicinal plants have attracted a lot of attention due to their significant bioactivities, such as anti-tumor activity, antioxidant activity, anticoagulant activity, antidiabetic activity, radioprotection effect, anti-viral activity, hypolipidemic and immunomodulatory activities, which make them suitable for medicinal applications. Previous studies have also shown that medicinal plant polysaccharides are non-toxic and show no side effects. Based on these encouraging observations, most researches have been focusing on the isolation and identification of polysaccharides, as well as their bioactivities. A large number of bioactive polysaccharides with different structural features and biological effects from medicinal plants have been purified and characterized. This review provides a comprehensive summary of the most recent developments in physiochemical, structural features and biological activities of bioactive polysaccharides from a number of important medicinal plants, such as polysaccharides from Astragalus membranaceus, Dendrobium plants, Bupleurum, Cactus fruits, Acanthopanax senticosus, Angelica sinensis (Oliv.) Diels, Aloe barbadensis Miller, and Dimocarpus longan Lour. Moreover, the paper has also been focused on the applications of bioactive polysaccharides for medicinal applications. Recent studies have provided evidence that polysaccharides from medicinal plants can play a vital role in bioactivities. The contents and data will serve as a useful reference material for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Jian-Hua Xie
- a State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang , P.R. China
| | - Ming-Liang Jin
- b Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University , Xi'an , P.R. China
| | - Gordon A Morris
- c Department of Chemical Sciences , School of Applied Sciences, University of Huddersfield , Huddersfield , UK
| | - Xue-Qiang Zha
- d School of Biotechnology and Food Engineering, Hefei University of Technology , Hefei , P.R. China
| | - Han-Qing Chen
- d School of Biotechnology and Food Engineering, Hefei University of Technology , Hefei , P.R. China
| | - Yang Yi
- e College of Food Science and Engineering, Wuhan Polytechnic University , Wuhan , P.R. China
| | - Jing-En Li
- a State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang , P.R. China.,f College of Food Science and Engineering, Jiangxi Agricultural University , Nanchang , P.R. China
| | - Zhi-Jun Wang
- a State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang , P.R. China
| | - Jie Gao
- d School of Biotechnology and Food Engineering, Hefei University of Technology , Hefei , P.R. China
| | - Shao-Ping Nie
- a State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang , P.R. China
| | - Peng Shang
- b Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University , Xi'an , P.R. China
| | - Ming-Yong Xie
- a State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang , P.R. China
| |
Collapse
|
12
|
Monosaccharide composition of acidic gum exudates from Indian Acacia tortilis ssp. raddiana (Savi) Brenan. Int J Biol Macromol 2017; 94:45-50. [DOI: 10.1016/j.ijbiomac.2016.09.097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/22/2016] [Accepted: 09/28/2016] [Indexed: 11/23/2022]
|
13
|
Park WH, Kang S, Piao Y, Pak CJ, Oh MS, Kim J, Kang MS, Pak YK. Ethanol extract of Bupleurum falcatum and saikosaponins inhibit neuroinflammation via inhibition of NF-κB. JOURNAL OF ETHNOPHARMACOLOGY 2015; 174:37-44. [PMID: 26231448 DOI: 10.1016/j.jep.2015.07.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/16/2015] [Accepted: 07/27/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Bupleurum falcatum L. (BF) has been used in traditional Korean and Chinese medicines for over 2000 years to treat infections, fever, and chronic liver diseases. Among the many active compounds in BF ethanol extract (BFE), saikosaponins exert pharmacological activities including anti-inflammatory effects. Activated microglial cells release a variety of pro-inflammatory substances, leading to neuronal cell death and neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. The aim of the present study was to investigate the mechanism of the anti-neuroinflammatory effects of BFE using lipopolysaccharide (LPS)-stimulated microglial cells and LPS-intraperitoneal injected C57BL/6 mice. MATERIALS AND METHODS Dried roots of BF were extracted with 70% ethanol (tenfold volume) on a stirring plate for 24h at room temperature to prepare BFE. Pure saikosaponins (SB3, SB4, and SD) were prepared by solvent extraction and column chromatography fractionation. BV2 murine microglial cells were treated with BFE or saikosaponins for 4h and stimulated with LPS. Generation of nitric oxide (NO), inflammatory cytokines, and reactive oxygen species (ROS) from activated microglial cells were monitored. The effects of BFE on NF-κB activation were determined using RT-PCR, reporter assay, and immunostaining. The in vivo effects of BFE were also assessed by immunohistochemical staining of tissue sections from LPS-injected mouse brains. RESULTS Treatment with BFE or saikosaponins dose-dependently attenuated LPS-induced production of NO, iNOS mRNA, and ROS by 30-50%. They reduced LPS-mediated increases in the mRNA levels of IL-6, IL-1β, and TNF-α by approximately 30-70% without affecting cell viability, and decreased LPS-mediated NF-κB activity via reducing p65/RELA mRNA, transcriptional activity, and nuclear localization of NF-κB. BFE also reduced LPS-induced activation of microglia and astrocytes in the hippocampus and substantia nigra of LPS-injected mice. CONCLUSION Our data suggest that BFE may be effective for reducing neuroinflammation-mediated neurodegeneration through suppressing NF-κB-mediated inflammatory pathways.
Collapse
Affiliation(s)
- Wook Ha Park
- Neurodegeneration Control Research Center, Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130-731, Republic of Korea
| | - Sora Kang
- Neurodegeneration Control Research Center, Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130-731, Republic of Korea
| | - Ying Piao
- Neurodegeneration Control Research Center, Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130-731, Republic of Korea
| | - Christine Jeehye Pak
- Neurodegeneration Control Research Center, Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130-731, Republic of Korea
| | - Myung Sook Oh
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-731, Republic of Korea
| | - Jinwoong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Min Seo Kang
- Neurodegeneration Control Research Center, Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130-731, Republic of Korea
| | - Youngmi Kim Pak
- Neurodegeneration Control Research Center, Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130-731, Republic of Korea.
| |
Collapse
|
14
|
Zhu S, Ling F, Zhang Q, Liu G, Tu X, Jiang C, Wang G. Anthelmintic activity of saikosaponins a and d from radix bupleuri against Dactylogyrus spp. infecting goldfish. DISEASES OF AQUATIC ORGANISMS 2014; 111:177-182. [PMID: 25266906 DOI: 10.3354/dao02789] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Disease caused by the parasitic helminths Dactylogyrus spp. results in significant economic damage to the aquaculture industry. Treatment using common chemicals (e.g. formalin) is usually dissatisfactory due to environmental problems, risk of residues, toxicity to fish, and the possibility of anthelmintic resistance. The search for an alternative drug is thus becoming more urgent. This study was designed to evaluate in vivo the anthelmintic efficacy of total saponin (TS), saikosaponin a (SSa), and saikosaponin d (SSd) from radix bupleuri (i.e. the dried root of Bupleurum sp.) based on our previous screening works, with the aim of determining which has commercial potential. Results showed that median effective concentration (EC₅₀) values for TS, SSa, and SSd were 2.01, 1.46, and 0.74 mg l⁻¹, respectively. The acute toxicities against goldfish Carassius auratus for TS, SSa, and SSd were also determined, with median lethal concentration (LC₅₀) of 8.99, 11.20, and 1.54 mg l-1, respectively. The resulting therapeutic indices (TIs) indicated that SSa (TI = 7.67) is a potential therapeutic agent for treating Dactylogyrus infection.
Collapse
Affiliation(s)
- Song Zhu
- Northwest A&F University, College of Animal Science and Technology, Yangling 712100, PR China
| | | | | | | | | | | | | |
Collapse
|
15
|
Wang H, Wei G, Liu F, Banerjee G, Joshi M, Bligh SWA, Shi S, Lian H, Fan H, Gu X, Wang S. Characterization of two homogalacturonan pectins with immunomodulatory activity from green tea. Int J Mol Sci 2014; 15:9963-78. [PMID: 24901527 PMCID: PMC4100133 DOI: 10.3390/ijms15069963] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 04/25/2014] [Accepted: 05/20/2014] [Indexed: 01/23/2023] Open
Abstract
Two natural homogalacturonan (HG) pectins (MW ca. 20 kDa) were isolated from green tea based on their immunomodulatory activity. The crude tea polysaccharides (TPS1 and TPS2) were obtained from green tea leaves by hot water extraction and followed by 40% and 70% ethanol precipitation, respectively. Two homogenous water soluble polysaccharides (TPS1-2a and TPS1-2b) were obtained from TPS1 after purification with gel permeation, which gave a higher phagocytic effect than TPS2. A combination of composition, methylation and configuration analyses, as well as NMR (nuclear magnetic resonance) spectroscopy revealed that TPS1-2a and TPS1-2b were homogalacturonan (HG) pectins consisting of a backbone of 1,4-linked α-D-galacturonic acid (GalA) residues with 28.4% and 26.1% of carboxyl groups as methyl ester, respectively. The immunological assay results demonstrated that TPS1-2, which consisted mainly of HG pectins, showed phagocytosis-enhancing activity in HL-60 cells.
Collapse
Affiliation(s)
- Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Guodong Wei
- Unilever R&D Shanghai, 66 Lin Xin Road, Linkong Economic Development Zone, Shanghai 200335, China.
| | - Fei Liu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Gautam Banerjee
- Unilever R&D Bangalore, 66 Main Road, Whitefield, Bangalore 560066, India.
| | - Manoj Joshi
- Unilever R&D Bangalore, 66 Main Road, Whitefield, Bangalore 560066, India.
| | - S W Annie Bligh
- Department of Complementary Medicine, Faculty of Science and Technology, University of Westminster, London W1W 6UW, UK.
| | - Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Hui Lian
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Hongwei Fan
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Xuelan Gu
- Unilever R&D Shanghai, 66 Lin Xin Road, Linkong Economic Development Zone, Shanghai 200335, China.
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
16
|
Kim KH, Gam CO, Choi SH, Ku SK. Mouse single oral dose toxicity test of bupleuri radix aqueous extracts. Toxicol Res 2013; 28:11-8. [PMID: 24278584 PMCID: PMC3834400 DOI: 10.5487/tr.2012.28.1.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 02/24/2012] [Accepted: 03/21/2012] [Indexed: 12/02/2022] Open
Abstract
The aim of this study was to evaluate the single oral dose toxicity of Bupleuri Radix (BR) aqueous extracts, it has been traditionally used as anti-inflammatory agent, in male and female mice. BR extracts (yield = 16.52%) was administered to female and male ICR mice as an oral dose of 2,000, 1,000 and 500 mg/kg (body weight) according to the recommendation of Korea Food and Drug Administration (KFDA) Guidelines. Animals were monitored for the mortality and changes in body weight, clinical signs and gross observation during 14 days after dosing, upon necropsy; organ weight and histopathology of 14 principal organs were examined. As the results, no BR extracts treatment related mortalities, clinical signs, changes on the body and organ weights, gross and histopathological observations against 14 principal organs were detected up to 2,000 mg/kg in both female and male mice, except for soft feces and related body weight decrease detected in male mice treated with 2,000 mg/kg. Therefore, LD50 (50% lethal dose) and approximate LD of BR aqueous extracts after single oral treatment in female and male mice were considered over 2000 mg/kg, respectively. Although it was also observed that the possibilities of digestive disorders, like soft feces when administered over 2,000 mg/kg of BR extracts in the present study, these possibilities of digestive disorders can be disregard in clinical use because they are transient in the highest dosages male only.
Collapse
Affiliation(s)
- Kyung-Hu Kim
- College of Oriental Medicine, Daegu Haany University, Gyeongsan 712-715, Korea
| | | | | | | |
Collapse
|
17
|
Bupleurum polysaccharides attenuates lipopolysaccharide-induced inflammation via modulating Toll-like receptor 4 signaling. PLoS One 2013; 8:e78051. [PMID: 24167596 PMCID: PMC3805517 DOI: 10.1371/journal.pone.0078051] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/06/2013] [Indexed: 01/02/2023] Open
Abstract
Background Bupleurum polysaccharides (BPs), isolated from Bupleurum smithii var. parvifolium, possesses immunomodulatory activity, particularly on inflammation. Bacterial endotoxin lipopolysaccharide (LPS) triggers innate immune responses through Toll-like receptor 4 (TLR4) on host cell membrane. The present study was performed to evaluate whether the therapeutic efficacy of BPs on suppression of LPS’s pathogenecity could be associated with the modulating of TLR4 signaling pathway. Methodology/Principal Findings LPS stimulated expression and activation of factors in the TLR4 signaling system, including TLR4, CD14, IRAK4, TRAF6, NF-κB, and JNK, determined using immunocytochemical and/or Western blot assays. BPs significantly inhibited these effects of LPS. LPS increased pro-inflammatory cytokines (TNF-α, IL-6, IL-1β, IL-12p40, and IFN-β) and NO production, evaluated using ELISA and Griess reaction assays, respectively. BPs antagonized these effects of LPS. Interestingly, BPs alone augmented secretion of some pro-inflammatory cytokines of non-LPS stimulated macrophages and enhanced phagocytic activity towards fluorescent E.coli bioparticles. In a rat model of acute lung injury (ALI) with pulmonary hemorrhage and inflammation, BPs ameliorated lung injuries and suppressed TLR4 expression. Significance The therapeutic properties of BPs in alleviating inflammatory diseases could be attributed to its inhibitory effect on LPS-mediated TLR4 signaling.
Collapse
|
18
|
Mass separation and in vitro immunological activity of membrane-fractionated polysaccharides from fruiting body and mycelium of Agaricus subrufescens. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-011-0645-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Antioxidant and Protective Effects of Bupleurum falcatum on the L-Thyroxine-Induced Hyperthyroidism in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:578497. [PMID: 22888365 PMCID: PMC3410357 DOI: 10.1155/2012/578497] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 06/03/2012] [Indexed: 11/28/2022]
Abstract
Bupleuri Radix (BR), the dried roots of Bupleurum falcatum L., has been used in folk medicine as an antiinflammatory and antioxidative agent. The aqueous extract of BR was evaluated for its possible ameliorative effect in the regulation of hyperthyroidism in l-thyroxine- (LT4-) induced rat model. After oral administration of 300, 150, and 75 mg/kg of BR extracts, once a day for 15 days from 12th LT4 treatments, changes on the body, thyroid gland, liver, and epididymal fat pad weights, serum triiodothyronine, thyroxine, thyroid-stimulating hormone, asparte aminotransferase and alanine aminotransferase concentrations, hepatic lipid peroxidation, glutathione contents, superoxide dismutase, and catalase activities were investigated with thyroid gland, liver, and epididymal fat histopathological changes. The effects of BR extracts were compared with that of propylthiouracil, a standard antithyroid drug 10 mg/kg (intraperitoneally). In this experiment, BR extracts dose dependently reversed LT4-induced hyperthyroidisms, and these effects indicating their potential in the regulation of hyperthyroidism. Further, the BR extract normalized LT4-induced liver oxidative stresses, and also reduced liver and epididymal fat pad changes. BR extracts 150 mg/kg showed comparable effects on the LT4-induced rat hyperthyroidism as compared with PTU 10 mg/kg. These effects of BR may help the improvement of hyperthyroidisms and accompanied various organ damages.
Collapse
|
20
|
Jiang MH, Zhu L, Jiang JG. Immunoregulatory actions of polysaccharides from Chinese herbal medicine. Expert Opin Ther Targets 2010; 14:1367-402. [DOI: 10.1517/14728222.2010.531010] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Burana-osot J, Soonthornchareonnon N, Chaidedgumjorn A, Hosoyama S, Toida T. Determination of galacturonic acid from pomelo pectin in term of galactose by HPAEC with fluorescence detection. Carbohydr Polym 2010. [DOI: 10.1016/j.carbpol.2010.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Ovodov YS. Current views on pectin substances. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2009; 35:293-310. [DOI: 10.1134/s1068162009030017] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
23
|
Citrus pectin affects cytokine production by human peripheral blood mononuclear cells. Biomed Pharmacother 2008; 62:579-82. [DOI: 10.1016/j.biopha.2008.07.058] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Accepted: 07/09/2008] [Indexed: 11/20/2022] Open
|
24
|
Matsumoto T, Hosono-Nishiyama K, Yamada H. A pectic polysaccharide isolated from the roots of Bupleurum falcatum L. stimulates the tyrosine phosphorylation of lipid rafts of murine B cells. Biol Pharm Bull 2008; 31:931-4. [PMID: 18451521 DOI: 10.1248/bpb.31.931] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bupleuran 2IIc, a pectic polysaccharide isolated from the roots of Bupleurum falcatum L., was previously characterized as a T cell-independent B cell mitogen. The endo-(1-->4)-alpha-D-polygalacturonase-resistant moiety of bupleuran 2IIc (bupleuran 2IIc/PG-1) was the active site for expression of the activity, and expression of the cyclin D2 gene by bupleuran 2IIc/PG-1 may be mediated via activation of Src family tyrosine kinase, phosphatidylinositol 3-kinase (PI 3-K) and phospholipase C (PLC)-gamma followed by activation of protein kinase C (PKC) and calcium mobilization (Matsumoto et al., Int. Immunopharmacol., 5, 1373-1386 (2005)). Plasma membrane microdomains (lipid rafts) are enriched in signaling molecules and suggested to be involved in numerous cell functions, including membrane traffic and signaling. When B cells were stimulated with bupleuran 2IIc/PG-1, clustering of membrane lipid rafts was observed. To consider whether lipid rafts are implicated in bupleuran 2IIc/PG-1-mediated B cell proliferation, we analyzed the phosphorylation of tyrosine residues of proteins in lipid rafts. When murine B cells were stimulated with bupleuran 2IIc/PG-1, tyrosine phosphorylation of proteins in lipid rafts fraction was observed within 5 min. Tyrosine phosphorylation in lipid rafts fraction by bupleuran 2IIc/PG-1 was inhibited by the Src-family tyrosine kinase inhibitor, PP2. Together with previously published data, the results presented in this study suggest that activation of signaling molecules in lipid rafts by stimulation of bupleuran 2IIc/PG-1 contributes to B cell proliferation as the membrane-proximal signaling event.
Collapse
Affiliation(s)
- Tsukasa Matsumoto
- The Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, Minatoku, Tokyo 108-8641, Japan
| | | | | |
Collapse
|
25
|
Liu C, Leung MYK, Koon JCM, Zhu LF, Hui YZ, Yu B, Fung KP. Macrophage activation by polysaccharide biological response modifier isolated from Aloe vera L. var. chinensis (Haw.) Berg. Int Immunopharmacol 2006; 6:1634-41. [PMID: 16979117 DOI: 10.1016/j.intimp.2006.04.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 04/25/2006] [Accepted: 04/25/2006] [Indexed: 11/26/2022]
Abstract
A mannose-rich polysaccharide biological response modifier (BRM), derived from Aloe vera L. var. chinensis (Haw.) Berg., was demonstrated to be a potent murine B- and T-cell stimulator in our previous study. We here report the stimulatory activity of PAC-I on murine peritoneal macrophage. The polysaccharide when injected into mice enhanced the migration of macrophages to the peritoneal cavity. Peritoneal macrophage when treated by PAC-I in vitro had increased expression of MHC-II and FcgammaR, and enhanced endocytosis, phagocytosis, nitric oxide production, TNF-alpha secretion and tumor cell cytotoxicity. The administration of PAC-I into allogeneic ICR mice stimulated systemic TNF-alpha production in a dose-dependent manner and prolonged the survival of tumor-bearing mice. PAC-I is thus a potent stimulator of murine macrophage and the in vitro observed tumoricidal properties of activated macrophage might account for the in vivo antitumor properties of PAC-I. Our research findings may have therapeutic implications in tumor immunotherapy.
Collapse
Affiliation(s)
- C Liu
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
26
|
Matsumoto T, Hosono-Nishiyama K, Guo YJ, Ikejima T, Yamada H. A possible signal transduction pathway for cyclin D2 expression by a pectic polysaccharide from the roots of Bupleurum falcatum L. in murine B cell. Int Immunopharmacol 2005; 5:1373-86. [PMID: 15953564 DOI: 10.1016/j.intimp.2005.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 02/21/2005] [Accepted: 03/10/2005] [Indexed: 10/25/2022]
Abstract
Bupleuran 2IIc, a pectic polysaccharide isolated from the roots of bupleurum falcatum L., was previously characterized as a T-cell-independent B cell mitogen. This study focuses on elucidating the mechanism by which bupleuran 2IIc induces cyclin D2 production for inducing mitogenesis in murine B cells. Bupleuran 2IIc was digested with endo-alpha-(1-->4)-D-polygalacturonase and the resulting bupleuran 2IIc/PG-1 ("ramified" region) strongly stimulated cyclin D2 expression. When murine B cells were stimulated with bupleuran 2IIc/PG-1, phosphorylation of tyrosine residues of a number of proteins was observed. Cyclin D2 expression by bupleuran 2IIc/PG-1 was inhibited by the tyrosine kinase inhibitors, genistein and herbimycin A, and the Src family tyrosine kinase inhibitor, PP2, suggesting a possible role for tyrosine kinases. The stimulation by bupleuran 2IIc/PG-1 of cyclin D2 expression was significantly decreased by inhibitors, PI 3-kinase (LY294002 and Wortmannin), PLCgamma (U73122), PKC (H-7), receptor-operated calcium entry inhibitor (SK&F 96365), and calcineurin (FK506). Both PD98059 and U0126, highly selective inhibitors of MEK1 and MEK1/2, respectively, did not strongly suppress the expression of cyclin D2 after stimulation by bupleuran 2IIc/PG-1. The results suggest that (1) bupleuran 2IIc/PG-1 is the active site for induction of cyclin D2 by bupleuran 2IIc, (2) the expression of the cyclin D2 gene by bupleuran 2IIc/PG-1 may be mediated via the activation of PI 3-kinase and PLCgamma followed by activation of PKC and calcium mobilization, and (3) the ERK1/2 cascade is not a central signaling pathway for bupleuran 2IIc/PG-1-induced cyclin D2 expression.
Collapse
Affiliation(s)
- Tsukasa Matsumoto
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato, Tokyo 108-8641, Japan
| | | | | | | | | |
Collapse
|
27
|
Nergard CS, Kiyohara H, Reynolds JC, Thomas-Oates JE, Matsumoto T, Yamada H, Michaelsen TE, Diallo D, Paulsen BS. Structure-immunomodulating activity relationships of a pectic arabinogalactan from Vernonia kotschyana Sch. Bip. ex Walp. Carbohydr Res 2005; 340:1789-801. [PMID: 15979597 DOI: 10.1016/j.carres.2005.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 05/29/2005] [Accepted: 05/30/2005] [Indexed: 12/01/2022]
Abstract
Structure and immunological characteristics of the pectic arabinogalactan Vk2a (previously reported as Vk100A2a) from the roots of Vernonia kotschyana Sch. Bip. ex Walp. were investigated after enzymatic digestion of the galacturonan moiety and the side chains of the rhamnogalacturonan structure of Vk2a. endo-alpha-D-(1-->4)-Polygalacturonase digestion released the high molecular weight 'hairy region' (Vk2a-HR) and oligogalacturonides. Vk2a-HR consisted of GalA (4-linked) and Rha (2- or 2,4-linked) in a 1:1 ratio, with 60% of Rha branched at C-4. The Rha located in the rhamnogalacturonan core was branched randomly by Gal units. Vk2a-HR was rich in neutral sugars such as Araf 5- (12.2%) and 3,5-substituted (12.8%) and terminally- (14.1%) linked and Gal 4- (13.0%), 3- (0.9%), 6- (2.2%) and 3,6- (1.1%) substituted. Arabinans with chain lengths up to 11 units were identified. Araf residues were attached to C-3 of alpha-L-(1-->5)-Araf chains and to C-4 of Gal residues. Single Gal units and chains of beta-D-(1-->6)-linked galacto di- to penta-saccharides were attached to a beta-D-(1-->3)-galactan core. All the enzyme resistant fractions expressed potent complement fixation and induction of B-cell mitogenic activity, and the present study indicates that there may be several and possibly structurally different active sites involved in the bioactivity of Vk2a. The bioactive sites may be located both in the more peripheral parts of the molecule but also in the inner core of the 'hairy region' or in larger enzyme-resistant chains.
Collapse
Affiliation(s)
- Cecilie Sogn Nergard
- Department of Pharmacognosy, School of Pharmacy, University of Oslo, PO Box 1068, Blindern, 0316 Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nergard CS, Diallo D, Inngjerdingen K, Michaelsen TE, Matsumoto T, Kiyohara H, Yamada H, Paulsen BS. Medicinal use of Cochlospermum tinctorium in Mali Anti-ulcer-, radical scavenging- and immunomodulating activities of polymers in the aqueous extract of the roots. JOURNAL OF ETHNOPHARMACOLOGY 2005; 96:255-69. [PMID: 15588678 DOI: 10.1016/j.jep.2004.09.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 08/09/2004] [Accepted: 09/08/2004] [Indexed: 05/09/2023]
Abstract
Cochlospermum tinctorium A. Rich. (Cochlospermaceae) is a widely used medicinal plant in the West African country, Mali. An ethnopharmacological survey was conducted and 106 traditional practitioners interviewed. The roots were the part of the plant reported to be the most frequently used for medicinal purposes. The main indications were to treat jaundice (41), gastro intestinal diseases or ailments (28), malaria (12), schistosomiasis (10) and dysurea (6). A high-molecular weight water extract (25, 50 and 100 mg/kg, body weight) significantly inhibited HCl/ethanol-induced gastric lesions in mice. The extract showed DPPH-radical scavenging- and immunomodulating activities in vitro. The main components of the extract were identified as polysaccharides (59.3%) and polyphenols (9.3%). The polysaccharides were purified and characterised as highly complex pectic arabinogalactans type II. As parts of the polyphenol compounds gallotannins and ferulic acids were identified. This study shows that the polysaccharides are partly responsible for the bioactivities observed in vitro. Both polysaccharides and polyphenols may be responsible for the anti-ulcer activities observed.
Collapse
Affiliation(s)
- Cecilie Sogn Nergard
- Department of Pharmacognosy, School of Pharmacy, PO Box 1068, Blindern, 0316 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Nergard CS, Matsumoto T, Inngjerdingen M, Inngjerdingen K, Hokputsa S, Harding SE, Michaelsen TE, Diallo D, Kiyohara H, Paulsen BS, Yamada H. Structural and immunological studies of a pectin and a pectic arabinogalactan from Vernonia kotschyana Sch. Bip. ex Walp. (Asteraceae). Carbohydr Res 2005; 340:115-30. [PMID: 15620674 DOI: 10.1016/j.carres.2004.10.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 08/31/2004] [Accepted: 10/30/2004] [Indexed: 10/26/2022]
Abstract
Two polysaccharides, a pectin (Vk100A2b) and a pectic arabinogalactan (Vk100A2a) with mean Mw 2 x 10(4) and 1.15 x 10(6)Da, respectively, were isolated from the dried powdered roots of Vernonia kotschyana Sch. Bip. ex Walp. by hot water extraction followed by fractionation on DEAE-Sepharose fast flow and Sephacryl S-400 HR. The pectin showed low-complement fixation activity and no influence on proliferation of B or T cells, while the pectic arabinogalactan showed a potent, dose-dependent complement fixation activity and a T cell independent induction of B-cell proliferation. Both polysaccharides induced chemotaxis of human macrophages, T cells and NK cells. exo-alpha-L-arabinofuranosidase and exo-beta-D-galactosidase digestion followed by component sugar and methylation analysis indicated that Vk100A2a consisted of a highly branched rhamnogalacturonan core with approximately 50% of the rhamnose 1,2,4-substituted, side chains rich in terminal-, 1,5-linked and 1,3,5-branched arabinose and terminal-, 1,4-, 1,6-linked and 1,3,6-branched galactose. The enzyme resistant part of Vk100A2a still showed strong complement fixating activity, suggesting that this activity may at least in part be expressed by carbohydrate structures present in the enzyme resistant, inner portion of the polymer.
Collapse
Affiliation(s)
- Cecilie Sogn Nergard
- Department of Pharmacognosy, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Matsumoto T, Guo YJ, Ikejima T, Yamada H. Induction of cell cycle regulatory proteins by murine B cell proliferating pectic polysaccharide from the roots of Bupleurum falcatum L. Immunol Lett 2004; 89:111-8. [PMID: 14556967 DOI: 10.1016/s0165-2478(03)00115-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bupleuran 2IIc, a pectic polysaccharide isolated from the roots of Bupleurum falcatum L., was characterized as a T-cell-independent B cell mitogen, that activates, proliferates and differentiates B cells in vivo and in vitro (Immunology 97 (1999) 540). Studies were focused on elucidating the mechanism by which bupleuran 2IIc causes proliferation of B cells and expression of cell cycle regulatory proteins. B cells showed slower rates of entry into the S and G2/M phases of the cell cycle when stimulated with bupleuran 2IIc versus anti-IgM. However, the Stimulation Index continued up to two times longer with bupleuran 2IIc over anti-IgM. Although both bupleuran 2IIc and anti-IgM induced similar expressions of cell cycle regulatory proteins, cyclins D2, A, and B1, in B cells, those cells stimulated with bupleuran 2IIc appeared to sustain expressions of these protein for longer periods of time. Stimulation of B cells with bupleuran 2IIc induced phosphorylation of retinoblastoma protein, pRB, an important gene product regulating the restriction point, R, which is responsible for the transition from the G0/G1 to the S phases of the cell cycle. The results of this study demonstrate that both bupleuran 2IIc and anti-IgM interact with B cells, thus, leading to expressions of cell cycle regulatory proteins. However, the respective modes of binding and proximity of interactions with the B cell membrane may differ.
Collapse
Affiliation(s)
- Tsukasa Matsumoto
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, 108-8641, Tokyo, Japan
| | | | | | | |
Collapse
|
31
|
Nergard CS, Diallo D, Michaelsen TE, Malterud KE, Kiyohara H, Matsumoto T, Yamada H, Paulsen BS. Isolation, partial characterisation and immunomodulating activities of polysaccharides from Vernonia kotschyana Sch. Bip. ex Walp. JOURNAL OF ETHNOPHARMACOLOGY 2004; 91:141-52. [PMID: 15036481 DOI: 10.1016/j.jep.2003.12.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Revised: 11/17/2003] [Accepted: 12/02/2003] [Indexed: 05/09/2023]
Abstract
The roots from Vernonia kotschyana Sch. Bip. ex Walp. (Baccharoides adoensis var. kotschyana (Sch. Bip. ex Walp.) M.A. Isawumi, G.El-Ghazaly & B. Nordenstam) (Asteraceae) are used in Malian folk medicine for the treatment of gastritis, gastro duodenal ulcers, as an aid to ameliorate digestion and as a wound healing remedy. Since a common feature among these conditions is related to immune responses, immunomodulating activities of fractions isolated from both the 50 degrees C and the 100 degrees C water extracts from Vernonia kotschyana were investigated in this study. The active principles were identified as acidic polysaccharide fractions, containing pectic arabinogalactan type II structures, which showed both complement fixing ability and T-cell independent induction of B-cell proliferation in vitro. Some activity was also observed on macrophages. The present study may provide additional support for the popular use of this plant to improve intestinal health.
Collapse
Affiliation(s)
- Cecilie Sogn Nergard
- Department of Pharmacognosy, School of Pharmacy, PO Box 1068, Blindern, 0316 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Bae JL, Lee JG, Kang TJ, Jang HS, Jang YS, Yang MS. Induction of antigen-specific systemic and mucosal immune responses by feeding animals transgenic plants expressing the antigen. Vaccine 2003; 21:4052-8. [PMID: 12922142 DOI: 10.1016/s0264-410x(03)00360-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A report from that the presence of lactogenic immunity in pigs protected suckling piglets from porcine epidemic diarrhea virus (PEDV) infection suggested that inducing mucosal immune responses in lactating pigs is an effective way of protecting swine from PEDV infection. In this study, we developed transgenic tobacco plants that express the antigen protein corresponding to the neutralizing epitope of PEDV spike protein, and tested whether feeding the plants to pigs induced an effective immune response against PEDV infection. First, we confirmed the immunogenicity of the plant-derived antigen by using a plaque reduction neutralization assay with serum obtained after injecting mice with protein extracted from the transgenic plants. Feeding the transgenic plants to mice induced both systemic and mucosal immune responses against the antigen. The induced antibodies inhibited virus infection in the plaque reduction neutralization assay. These results suggest that feeding animals transgenic plants carrying antigen genes is an effective strategy to induce protective immune responses against PEDV infection.
Collapse
Affiliation(s)
- Jong-Lye Bae
- Division of Biological Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Chonju Dukjindiong 664-14, Chonju 561-756, South Korea
| | | | | | | | | | | |
Collapse
|
33
|
Skjøt M, Pauly M, Bush MS, Borkhardt B, McCann MC, Ulvskov P. Direct interference with rhamnogalacturonan I biosynthesis in Golgi vesicles. PLANT PHYSIOLOGY 2002; 129:95-102. [PMID: 12011341 PMCID: PMC155874 DOI: 10.1104/pp.010948] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2001] [Revised: 11/23/2001] [Accepted: 01/30/2002] [Indexed: 05/20/2023]
Abstract
Pectin is a class of complex cell wall polysaccharides with multiple roles during cell development. Assigning specific functions to particular polysaccharides is in its infancy, in part, because of the limited number of mutants and transformants available with modified pectic polymers in their walls. Pectins are also important polymers with diverse applications in the food and pharmaceutical industries, which would benefit from technology for producing pectins with specific functional properties. In this report, we describe the generation of potato (Solanum tuberosum L. cv Posmo) tuber transformants producing pectic rhamnogalacturonan I (RGI) with a low level of arabinosylation. This was achieved by the expression of a Golgi membrane-anchored endo-alpha-1,5-arabinanase. Sugar composition analysis of RGI isolated from transformed and wild-type tubers showed that the arabinose content was decreased by approximately 70% in transformed cell walls compared with wild type. The modification of the RGI was confirmed by immunolabeling with an antibody recognizing alpha-1,5-arabinan. This is the first time, to our knowledge, that the biosynthesis of a plant cell wall polysaccharide has been manipulated through the action of a glycosyl hydrolase targeted to the Golgi compartment.
Collapse
Affiliation(s)
- Michael Skjøt
- Biotechnology Group, Danish Institute of Agricultural Sciences, Thorvaldsensvej 40, 1871 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|