1
|
Yoon YE, Choi KH, Kim SY, Cho YI, Lee KS, Kim KH, Yang SC, Han WK. Renoprotective Mechanism of Remote Ischemic Preconditioning Based on Transcriptomic Analysis in a Porcine Renal Ischemia Reperfusion Injury Model. PLoS One 2015; 10:e0141099. [PMID: 26489007 PMCID: PMC4619554 DOI: 10.1371/journal.pone.0141099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/21/2015] [Indexed: 01/08/2023] Open
Abstract
Ischemic preconditioning (IPC) is a well-known phenomenon in which tissues are exposed to a brief period of ischemia prior to a longer ischemic event. This technique produces tissue tolerance to ischemia reperfusion injury (IRI). Currently, IPC’s mechanism of action is poorly understood. Using a porcine single kidney model, we performed remote IPC with renal IRI and evaluated the IPC mechanism of action. Following left nephrectomy, 15 female Yorkshire pigs were divided into three groups: no IPC and 90 minutes of warm ischemia (control), remote IPC immediately followed by 90 minutes of warm ischemia (rIPCe), and remote IPC with 90 minutes of warm ischemia performed 24 hours later (rIPCl). Differential gene expression analysis was performed using a porcine-specific microarray. The microarray analysis of porcine renal tissues identified 1,053 differentially expressed probes in preconditioned pigs. Among these, 179 genes had altered expression in both the rIPCe and rIPCl groups. The genes were largely related to oxidation reduction, apoptosis, and inflammatory response. In the rIPCl group, an additional 848 genes had altered expression levels. These genes were primarily related to immune response and inflammation, including those coding for cytokines and cytokine receptors and those that play roles in the complement system and coagulation cascade. In the complement system, the membrane attack complex was determined to be sublytic, because it colocalized with phosphorylated extracellular signal-regulated kinase. Furthermore, alpha 2 macroglobulin, tissue plasminogen activator, uterine plasmin trypsin inhibitor, and arginase-1 mRNA levels were elevated in the rIPCl group. These findings indicate that remote IPC produces renoprotective effects through multiple mechanisms, and these effects develop over a long timeframe rather than immediately following IPC.
Collapse
Affiliation(s)
- Young Eun Yoon
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Hwa Choi
- Department of Urology, CHA Bundang Medical Center, CHA University, Seongnam-si, Korea
| | - Sook Young Kim
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young In Cho
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Kwang Suk Lee
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang Hyun Kim
- Department of Urology, Ewha Women’s University Mokdong Hospital, Seoul, Korea
| | - Seung Choul Yang
- Department of Urology, CHA Bundang Medical Center, CHA University, Seongnam-si, Korea
| | - Woong Kyu Han
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
2
|
van der Pals J, Koul S, Andersson P, Götberg M, Ubachs JFA, Kanski M, Arheden H, Olivecrona GK, Larsson B, Erlinge D. Treatment with the C5a receptor antagonist ADC-1004 reduces myocardial infarction in a porcine ischemia-reperfusion model. BMC Cardiovasc Disord 2010; 10:45. [PMID: 20875134 PMCID: PMC2955599 DOI: 10.1186/1471-2261-10-45] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 09/27/2010] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Polymorphonuclear neutrophils, stimulated by the activated complement factor C5a, have been implicated in cardiac ischemia/reperfusion injury. ADC-1004 is a competitive C5a receptor antagonist that has been shown to inhibit complement related neutrophil activation. ADC-1004 shields the neutrophils from C5a activation before they enter the reperfused area, which could be a mechanistic advantage compared to previous C5a directed reperfusion therapies. We investigated if treatment with ADC-1004, according to a clinically applicable protocol, would reduce infarct size and microvascular obstruction in a large animal myocardial infarct model. METHODS In anesthetized pigs (42-53 kg), a percutaneous coronary intervention balloon was inflated in the left anterior descending artery for 40 minutes, followed by 4 hours of reperfusion. Twenty minutes after balloon inflation the pigs were randomized to an intravenous bolus administration of ADC-1004 (175 mg, n = 8) or saline (9 mg/ml, n = 8). Area at risk (AAR) was evaluated by ex vivo SPECT. Infarct size and microvascular obstruction were evaluated by ex vivo MRI. The observers were blinded to the treatment at randomization and analysis. RESULTS ADC-1004 treatment reduced infarct size by 21% (ADC-1004: 58.3 ± 3.4 vs control: 74.1 ± 2.9%AAR, p = 0.007). Microvascular obstruction was similar between the groups (ADC-1004: 2.2 ± 1.2 vs control: 5.3 ± 2.5%AAR, p = 0.23). The mean plasma concentration of ADC-1004 was 83 ± 8 nM at sacrifice. There were no significant differences between the groups with respect to heart rate, mean arterial pressure, cardiac output and blood-gas data. CONCLUSIONS ADC-1004 treatment reduces myocardial ischemia-reperfusion injury and represents a novel treatment strategy of myocardial infarct with potential clinical applicability.
Collapse
|
3
|
Ingram G, Hakobyan S, Robertson NP, Morgan BP. Complement in multiple sclerosis: its role in disease and potential as a biomarker. Clin Exp Immunol 2009; 155:128-39. [PMID: 19040603 PMCID: PMC2675242 DOI: 10.1111/j.1365-2249.2008.03830.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2008] [Indexed: 01/27/2023] Open
Abstract
Multiple sclerosis (MS) is a common inflammatory disease of the central nervous system with a poorly defined and complex immunopathogenesis. Although initiated by reactive T cells, persistent inflammation is evident throughout the disease course. A contribution from complement has long been suspected, based on the results of pathological and functional studies which have demonstrated complement activation products in MS brain and biological fluids. However, the extent and nature of complement activation and its contribution to disease phenotype and long-term outcome remain unclear. Furthermore, functional polymorphisms in components and regulators of the complement system which cause dysregulation, and are known to contribute to other autoimmune inflammatory disorders, have not been investigated to date in MS in any detail. In this paper we review evidence from pathological, animal model and human functional and genetic studies, implicating activation of complement in MS. We also evaluate the potential of complement components and regulators and their polymorphic variants as biomarkers of disease, and suggest appropriate directions for future research.
Collapse
Affiliation(s)
- G Ingram
- Department of Neurosciences, Cardiff University, Heath Park, Cardiff, UK
| | | | | | | |
Collapse
|
4
|
Booth EA, Lucchesi BR. Estrogen-mediated protection in myocardial ischemia-reperfusion injury. Cardiovasc Toxicol 2008; 8:101-13. [PMID: 18683081 DOI: 10.1007/s12012-008-9022-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 07/18/2008] [Indexed: 12/26/2022]
Abstract
Before menopause, a woman has a relatively low risk for developing cardiovascular disease. After menopause, however, the risk increases nearly twofold and cardiovascular disease remains the number one cause of death among women. Observational trials and studies in animal models of cardiovascular disease suggested that females have reduced injury after myocardial ischemia and reperfusion injury. However, two large clinical trials, the women's health initiative (WHI) and the heart estrogen and progestin replacement study (HERS), found an increase in cardiovascular incidences in women taking hormone replacement therapy. The discrepancy between these data highlights the need for further research on the mechanism of estrogen in the cardiovascular system. Animal studies have demonstrated protective effects by endogenous estrogen (gender differences) and also by the administration of exogenous estrogen. In vivo studies suggest a possible anti-inflammatory mechanism of estrogen. Exogenous estrogen has been shown to have anti-oxidant activities. Pre-treatment with estrogen prior to myocardial ischemia and reperfusion causes a decrease in neutrophil infiltration into the irreversibly injured myocardium, decrease in C-reactive protein expression, and deposition of the membrane attack complex. This review will summarize the protection afforded by estrogen as well as discuss several possible mechanisms of protection for exogenous estrogen administration.
Collapse
Affiliation(s)
- Erin A Booth
- Department of Pharmacology, University of Michigan Medical School, 1301C Medical Science Research Building III, Ann Arbor, MI 48109-5632, USA.
| | | |
Collapse
|
5
|
Booth EA, Lucchesi BR. Medroxyprogesterone acetate prevents the cardioprotective and anti-inflammatory effects of 17β-estradiol in an in vivo model of myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol 2007; 293:H1408-15. [PMID: 17434982 DOI: 10.1152/ajpheart.00993.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies demonstrated the protective effects of estrogen administration in models of cardiovascular disease. However, there is a discrepancy between these data and those from the recent clinical trials with hormone replacement therapy in menopausal women. One possible explanation for the divergent results is the addition of progestin to the hormone regimen in the Women's Health Initiative and the Heart and Estrogen/Progestin Replacement Study trials. The aim of the present study was to examine the effects of a combination of 17β-estradiol (E2, 20 μg) and medroxyprogesterone acetate (MPA, 80 μg) on infarct size in New Zealand White rabbits. Infarct size as a percentage of the area at risk was significantly reduced by administration of E2 30 min before induction of myocardial ischemia compared with vehicle (19.5 ± 3.1 vs. 55.7 ± 2.6%, P < 0.001). However, E2 + MPA failed to elicit a reduction in infarct size (52.5 ± 4.6%), and MPA had no effect (50.8 ± 2.6%). E2 also reduced serum levels of cardiac troponin I, immune complex deposition in myocardial tissue, activation of the complement system, and lipid peroxidation. All these effects were reversed by MPA. The results suggest that MPA antagonizes the infarct-sparing effects of E2, possibly through modulation of the immune response after ischemia and reperfusion.
Collapse
Affiliation(s)
- Erin A Booth
- Department of Pharmacology, University of Michigan Medical School, 1301C Medical Science Research Bldg. III, 1150 West Medical Center Dr., Ann Arbor, MI 48109-0632, USA
| | | |
Collapse
|
6
|
A randomized, placebo-controlled trial of complement inhibition in ischemia-reperfusion injury after lung transplantation in human beings. J Thorac Cardiovasc Surg 2005; 129:423-8. [PMID: 15678055 DOI: 10.1016/j.jtcvs.2004.06.048] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Complement activation has been shown to play a significant role in ischemia-reperfusion injury after lung transplantation. TP-10 (soluble complement receptor 1 inhibitor) inhibits the activation of complement by inactivating C3a and C5a convertases. This was a clinical trial of TP-10 to reduce ischemia-reperfusion injury in lung transplantation. METHODS In a randomized, double-blinded, multicenter, placebo-controlled trial, 59 patients from four lung transplant programs received TP-10 (10 mg/kg, n = 28) or placebo (n = 31) before reperfusion. This dose achieved 90% complement inhibition for 24 hours, and activity had returned toward normal by 72 hours. RESULTS At 24 hours, 14 of 28 patients in the TP-10 group (50%) were extubated, whereas only 6 of 31 patients in the placebo group (19%) were (P = .01). The total times on the ventilator and in the intensive care unit both tended to be shorter in the TP-10 group, but these differences did not achieve statistical significance. Among patients requiring cardiopulmonary bypass (n = 5 in placebo group and n = 7 in TP-10 group), the mean duration of mechanical ventilation was reduced by 11 days in the TP-10 group (10.6 +/- 5.0 days vs 21.5 +/- 5.9 days in placebo group, P = .2). Operative deaths, incidences of infection and rejection, and length of hospital stay were not significantly different between the two groups. CONCLUSIONS Short-term complement inhibition with TP-10 led to early extubation in a significantly higher proportion of lung transplant recipients. The effect of TP-10 was greater among patients undergoing cardiopulmonary bypass, with a large reduction in ventilator days. Complement inhibition thus significantly decreases the duration of mechanical ventilation and could be useful in improving the outcome of lung transplant recipients.
Collapse
|
7
|
Chan RK, Ibrahim SI, Verna N, Carroll M, Moore FD, Hechtman HB. Ischaemia–reperfusion is an event triggered by immune complexes and complement. Br J Surg 2003; 90:1470-8. [PMID: 14648724 DOI: 10.1002/bjs.4408] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Background
Reperfusion injury is a common clinical problem that lacks effective therapy. Two decades of research implicating oxygen free radicals and neutrophils has not led to a single successful clinical trial.
Methods
The aim was to review new clinical and preclinical data pertaining to the alleviation of reperfusion injury. A review of the literature was undertaken by searching the MEDLINE database for the period 1966–2003 without language restrictions.
Results and conclusion
Evidence now points to complement and immune complexes as critical players in mediating reperfusion injury. Ischaemia is postulated to induce a phenotypical cellular change through the surface expression of a neoantigen. Preformed circulating natural IgM antibodies are then trapped and complement is activated. Final events leading to reperfusion injury include formation of the membrane attack complex and mast cell degranulation.
Collapse
Affiliation(s)
- R K Chan
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- Tom E Mollnes
- Institute of Immunology, The National Hospital, University of Oslo, Norway.
| | | | | |
Collapse
|
9
|
Monsinjon T, Richard V, Fontaine M. Complement and its implications in cardiac ischemia/reperfusion: strategies to inhibit complement. Fundam Clin Pharmacol 2001; 15:293-306. [PMID: 11903498 DOI: 10.1046/j.1472-8206.2001.00040.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although reperfusion of the ischemic myocardium is an absolute necessity to salvage tissue from eventual death, it is also associated with pathologic changes that represent either an acceleration of processes initiated during ischemia or new pathophysiological changes that were initiated after reperfusion. This so-called "reperfusion injury" is accompanied by a marked inflammatory reaction, which contributes to tissue injury. In addition to the well known role of oxygen free radicals and white blood cells, activation of the complement system probably represents one of the major contributors of the inflammatory reaction upon reperfusion. The complement may be activated through three different pathways: the classical, the alternative, and the lectin pathway. During reperfusion, complement may be activated by exposure to intracellular components such as mitochondrial membranes or intermediate filaments. Two elements of the activated complement contribute directly or indirectly to damages: anaphylatoxins (C3a and C5a) and the membrane attack complex (MAC). C5a, the most potent chemotactic anaphylatoxin, may attract neutrophils to the site of inflammation, leading to superoxide production, while MAC is deposited over endothelial cells and smooth vessel cells, leading to cell injury. Experimental evidence suggests that tissue salvage may be achieved by inhibition of the complement pathway. As the complement is composed of a cascade of proteins, it provides numerous sites for pharmacological interventions during acute myocardial infarction. Although various strategies aimed at modulating the complement system have been tested, the ideal approach probably consists of maintaining the activity of C3 (a central protein of the complement cascade) and inhibiting the later events implicated in ischemia/reperfusion and also in targeting inhibition in a tissue-specific manner.
Collapse
|