1
|
Zaitseva OO, Sergushkina MI, Khudyakov AN, Polezhaeva TV, Solomina ON. Seaweed sulfated polysaccharides and their medicinal properties. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Große-Berkenbusch K, Avci-Adali M, Arnold M, Cahalan L, Cahalan P, Velic A, Maček B, Schlensak C, Wendel HP, Stoppelkamp S. Profiling of time-dependent human plasma protein adsorption on non-coated and heparin-coated oxygenator membranes. BIOMATERIALS ADVANCES 2022; 139:213014. [PMID: 35882160 DOI: 10.1016/j.bioadv.2022.213014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/02/2022] [Accepted: 06/30/2022] [Indexed: 01/07/2023]
Abstract
Patients with severe lung diseases are highly dependent on lung support systems. Despite many improvements, long-term use is not possible, mainly because of the strong body defence reactions (e.g. coagulation, complement system, inflammation and cell activation). The systematic characterization of adsorbed proteins on the gas exchange membrane of the lung system over time can provide insights into the course of various defence reactions and identify possible targets for surface modifications. Using comprehensive mass spectrometry analyses of desorbed proteins, we were able to identify for the first time binding profiles of over 500 proteins over a period of six hours on non-coated and heparin-coated PMP hollow fiber membranes. We observed a higher degree of remodeling of the protein layer on the non-coated membrane than on the coated membrane. In general, there was a higher protein binding on the coated membrane with exception of proteins with a heparin-binding site. Focusing on the most important pathways showed that almost all coagulation factors bound in higher amounts to the non-coated membranes. Furthermore, we could show that the initiator proteins of the complement system bound stronger to the heparinized membranes, but the subsequently activated proteins bound stronger to the non-coated membranes, thus complement activation on heparinized surfaces is mainly due to the alternative complement pathway. Our results provide a comprehensive insight into plasma protein adsorption on oxygenator membranes over time and point to new ways to better understand the processes on the membranes and to develop new specific surface modifications.
Collapse
Affiliation(s)
- Katharina Große-Berkenbusch
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, University of Tübingen, Calwerstr. 7/1, 72076 Tübingen, Germany
| | - Meltem Avci-Adali
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, University of Tübingen, Calwerstr. 7/1, 72076 Tübingen, Germany
| | - Madeleine Arnold
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, University of Tübingen, Calwerstr. 7/1, 72076 Tübingen, Germany
| | - Linda Cahalan
- Ension Inc, 508 Pittsburg Road, Butler, PA 16002, United States of America
| | - Patrick Cahalan
- Ension Inc, 508 Pittsburg Road, Butler, PA 16002, United States of America
| | - Ana Velic
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Boris Maček
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Christian Schlensak
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, University of Tübingen, Calwerstr. 7/1, 72076 Tübingen, Germany
| | - Hans Peter Wendel
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, University of Tübingen, Calwerstr. 7/1, 72076 Tübingen, Germany
| | - Sandra Stoppelkamp
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, University of Tübingen, Calwerstr. 7/1, 72076 Tübingen, Germany.
| |
Collapse
|
3
|
Discovery of APL-1030, a Novel, High-Affinity Nanofitin Inhibitor of C3-Mediated Complement Activation. Biomolecules 2022; 12:biom12030432. [PMID: 35327625 PMCID: PMC8946527 DOI: 10.3390/biom12030432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Uncontrolled complement activation contributes to multiple immune pathologies. Although synthetic compstatin derivatives targeting C3 and C3b are robust inhibitors of complement activation, their physicochemical and molecular properties may limit access to specific organs, development of bifunctional moieties, and therapeutic applications requiring transgenic expression. Complement-targeting therapeutics containing only natural amino acids could enable multifunctional pharmacology, gene therapies, and targeted delivery for underserved diseases. A Nanofitin library of hyperthermophilic protein scaffolds was screened using ribosome display for C3/C3b-targeting clones mimicking compstatin pharmacology. APL-1030, a recombinant 64-residue Nanofitin, emerged as the lead candidate. APL-1030 is thermostable, binds C3 (KD, 1.59 nM) and C3b (KD, 1.11 nM), and inhibits complement activation via classical (IC50 = 110.8 nM) and alternative (IC50 = 291.3 nM) pathways in Wieslab assays. Pharmacologic activity (determined by alternative pathway inhibition) was limited to primate species of tested sera. C3b-binding sites of APL-1030 and compstatin were shown to overlap by X-ray crystallography of C3b-bound APL-1030. APL-1030 is a novel, high-affinity inhibitor of primate C3-mediated complement activation developed from natural amino acids on the hyperthermophilic Nanofitin platform. Its properties may support novel drug candidates, enabling bifunctional moieties, gene therapy, and tissue-targeted C3 pharmacologics for diseases with high unmet need.
Collapse
|
4
|
Alsenani F. Potential natural candidates in the treatment of coronavirus infections. Saudi J Biol Sci 2021; 28:5704-5713. [PMID: 34127903 PMCID: PMC8190277 DOI: 10.1016/j.sjbs.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/02/2022] Open
Abstract
Many viral infections do not have treatments or resistant to existing antiviral therapeutic interventions, and a novel strategy is required to combat virus-mediated fatalities. A novel coronavirus (coronavirus disease 2019 [COVID-19]) emerged in Wuhan, China, in late 2019 and rapidly spread across the globe. COVID-19 has impacted human society with life-threatening and unprecedented health, social, and economic issues, and it continues to affect millions of people. More than 5,800 clinical trials are in place worldwide to develop treatments to eradicate COVID-19. Historically, traditional medicine or natural products, such as medicinal plants, marine organisms and microbes, have been efficacious in treating viral infections. Nevertheless, important parameters for natural products, including clinical trial information, pharmacokinetic data, potency and toxicity profiles, in vivo and in vitro data, and product safety require validation. In this review article, an evaluation is performed of the potential application of natural product-based antiviral compounds, including crude extracts and bioactive chemical compounds obtained from medicinal plants, marine organisms, and microbes, to treat the viral infections COVID-19.
Collapse
Affiliation(s)
- Faisal Alsenani
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
5
|
Crawford L, Wyatt M, Bryers J, Ratner B. Biocompatibility Evolves: Phenomenology to Toxicology to Regeneration. Adv Healthc Mater 2021; 10:e2002153. [PMID: 33829678 PMCID: PMC8221530 DOI: 10.1002/adhm.202002153] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/26/2021] [Indexed: 12/20/2022]
Abstract
The word "biocompatibility," is inconsistent with the observations of healing for so-called biocompatible biomaterials. The vast majority of the millions of medical implants in humans today, presumably "biocompatible," are walled off by a dense, avascular, crosslinked collagen capsule, hardly suggestive of life or compatibility. In contrast, one is now seeing examples of implant biomaterials that lead to a vascularized reconstruction of localized tissue, a biological reaction different from traditional biocompatible materials that generate a foreign body capsule. Both the encapsulated biomaterials and the reconstructive biomaterials qualify as "biocompatible" by present day measurements of biocompatibility. Yet, this new generation of materials would seem to heal "compatibly" with the living organism, where older biomaterials are isolated from the living organism by the dense capsule. This review/perspective article will explore this biocompatibility etymological conundrum by reviewing the history of the concepts around biocompatibility, today's standard methods for assessing biocompatibility, a contemporary view of the foreign body reaction and finally, a compendium of new biomaterials that heal without the foreign body capsule. A new definition of biocompatibility is offered here to address advances in biomaterials design leading to biomaterials that heal into the body in a facile manner.
Collapse
Affiliation(s)
- Lars Crawford
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Meghan Wyatt
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - James Bryers
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Buddy Ratner
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
6
|
Tille A, Lehnert T, Zipfel PF, Figge MT. Quantification of Factor H Mediated Self vs. Non-self Discrimination by Mathematical Modeling. Front Immunol 2020; 11:1911. [PMID: 33013842 PMCID: PMC7493836 DOI: 10.3389/fimmu.2020.01911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/16/2020] [Indexed: 11/13/2022] Open
Abstract
The complement system is part of the innate immune system and plays an important role in the host defense against infectious pathogens. One of the main effects is the opsonization of foreign invaders and subsequent uptake by phagocytosis. Due to the continuous default basal level of active complement molecules, a tight regulation is required to protect the body's own cells (self cells) from opsonization and from complement damage. A major complement regulator is Factor H, which is recruited from the fluid phase and attaches to cell surfaces where it effectively controls complement activation. Besides self cells, pathogens also have the ability to bind Factor H; they can thus escape opsonization and phagocytosis causing severe infections. In order to advance our understanding of the opsonization process at a quantitative level, we developed a mathematical model for the dynamics of the complement system-termed DynaCoSys model-that is based on ordinary differential equations for cell surface-bound molecules and on partial differential equations for concentration profiles of the fluid phase molecules in the environment of cells. This hybrid differential equation approach allows to model the complement cascade focusing on the role of active C3b in the fluid phase and on the cell surface as well as on its inactivation on the cell surface. The DynaCoSys model enables us to quantitatively predict the conditions under which Factor H mediated complement evasion occurs. Furthermore, investigating the quantitative impact of model parameters by a sensitivity analysis, we identify the driving processes of complement activation and regulation in both the self and non-self regime. The two regimes are defined by a critical Factor H concentration on the cell surface and we use the model to investigate the differential impact of complement model parameters on this threshold value. The dynamic modeling on the surface of pathogens are further relevant to understand pathophysiological situations where Factor H mutants and defective Factor H binding to target surfaces results in pathophysiology such as renal and retinal disease. In the future, this DynaCoSys model will be extended to also enable evaluating treatment strategies of complement-related diseases.
Collapse
Affiliation(s)
- Alexander Tille
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany.,Faculty of Biological Sciences, Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Teresa Lehnert
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Peter F Zipfel
- Faculty of Biological Sciences, Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany.,Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany.,Faculty of Biological Sciences, Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
7
|
Schartz ND, Sommer AL, Colin SA, Mendez LB, Brewster AL. Early treatment with C1 esterase inhibitor improves weight but not memory deficits in a rat model of status epilepticus. Physiol Behav 2019; 212:112705. [PMID: 31628931 PMCID: PMC6879103 DOI: 10.1016/j.physbeh.2019.112705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/20/2019] [Accepted: 10/07/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Status epilepticus (SE) is a prolonged and continuous seizure that lasts for at least 5 min. An episode of SE in a healthy system can lead to the development of spontaneous seizures and cognitive deficits which may be accompanied by hippocampal injury and microgliosis. Although the direct mechanisms underlying the SE-induced pathophysiology remain unknown, a candidate mechanism is hyperactivation of the classical complement pathway (C1q-C3 signaling). We recently reported that SE triggered an increase in C1q-C3 signaling in the hippocampus that closely paralleled cognitive decline. Thus, we hypothesized that blocking activation of the classical complement pathway immediately after SE may prevent the development of SE-induced hippocampal-dependent learning and memory deficits. METHODS Because C1 esterase inhibitor (C1-INH) negatively regulates activation of the classical complement pathway, we used this drug to test our hypothesis. Two groups of male rats were subjected to 1 hr of SE with pilocarpine (280-300 mg/kg, i.p.), and treated with either C1-INH (SE+C1-INH, 20 U/kg, s.c.) or vehicle (SE+veh) at 4, 24, and 48 h after SE. Control rats were treated with saline. Body weight was recorded for up to 23 days after SE. At two weeks post SE, recognition and spatial memory were determined using Novel Object Recognition (NOR) and Barnes maze (BM), respectively, as well as locomotion and anxiety-like behaviors using Open Field (OF). Histological and biochemical methods were used to measure hippocampal injury including cell death, microgliosis, and inflammation. RESULTS One day after SE, both SE groups had a significant loss of body weight compared to controls (p<0.05). By day 14, the weight of SE+C1-INH rats was significantly higher than SE+veh rats (p<0.05), and was not different from controls (p>0.05). At 14 days post-SE, SE+C1-INH rats displayed higher mobility (distance travelled and average speed, p<0.05) and had reduced anxiety-like behaviors (outer duration, p<0.05) than control or SE+veh rats. In NOR, control rats spent significantly more time exploring the novel object vs. the familiar (p<0.05), while rats in both SE groups spent similar amount of time exploring both objects. During days 1-4 of BM training, the escape latency of the control group significantly decreased over time (p<0.05), whereas that of the SE groups did not improve (p>0.05). Compared to vehicle-treated SE rats, SE+C1-INH rats had increased levels of C3 and microglia in the hippocampus, but lower levels of caspase-3 and synaptic markers. CONCLUSIONS These findings suggest that acute treatment with C1-INH after SE may have some protective, albeit limited, effects on the physiological recovery of rats' weight and some anxiolytic effects, but does not attenuate SE-induced deficits in hippocampal-dependent learning and memory. Reduced levels of caspase-3 suggest that treatment with C1-INH may protect against cell death, perhaps by regulating inflammatory pathways and promoting phagocytic/clearance pathways.
Collapse
Affiliation(s)
- Nicole D Schartz
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Alexandra L Sommer
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Samantha A Colin
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Loyda B Mendez
- School of Science & Technology, Ana G. Méndez University, Carolina, PR 00984, USA.
| | - Amy L Brewster
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
8
|
Nilojan J, Bathige SDNK, Thulasitha WS, Kwon H, Jung S, Kim MJ, Nam BH, Lee J. Transcriptional profiling, molecular cloning, and functional analysis of C1 inhibitor, the main regulator of the complement system in black rockfish, Sebastes schlegelii. FISH & SHELLFISH IMMUNOLOGY 2018; 75:263-273. [PMID: 29444464 DOI: 10.1016/j.fsi.2018.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
C1-inhibitor (C1inh) plays a crucial role in assuring homeostasis and is the central regulator of the complement activation involved in immunity and inflammation. A C1-inhibitor gene from Sebastes schlegelii was identified and designated as SsC1inh. The identified genomic DNA and cDNA sequences were 6837 bp and 2161 bp, respectively. The genomic DNA possessed 11 exons, interrupted by 10 introns. The amino acid sequence possessed two immunoglobulin-like domains and a serpin domain. Multiple sequence alignment revealed that the serpin domain of SsC1inh was highly conserved among analyzed species where the two immunoglobulin-like domains showed divergence. The distinctiveness of teleost C1inh from other homologs was indicated by the phylogenetic analysis, genomic DNA organization, and their extended N-terminal amino acid sequences. Under normal physiological conditions, SsC1inh mRNA was most expressed in the liver, followed by the gills. The involvement of SsC1inh in homeostasis was demonstrated by modulated transcription profiles in the liver and spleen upon pathogenic stress by different immune stimulants. The protease inhibitory potential of recombinant SsC1inh (rSsC1inh) and the potentiation effect of heparin on rSsC1inh was demonstrated against C1esterase and thrombin. For the first time, the anti-protease activity of the teleost C1inh against its natural substrates C1r and C1s was proved in this study. The protease assay conducted with recombinant black rockfish C1r and C1s proteins in the presence or absence of rSsC1inh showed that the activities of both proteases were significantly diminished by rSsC1inh. Taken together, results from the present study indicate that SsC1inh actively plays a significant role in maintaining homeostasis in the immune system of black rock fish.
Collapse
Affiliation(s)
- Jehanathan Nilojan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - S D N K Bathige
- Sri Lanka Institute of Nanotechnology (SLINTEC), Nanotechnology and Science Park, Mahenwatta, Pitipana, Homagama, Sri Lanka
| | - W S Thulasitha
- Department of Zoology, University of Jaffna, Jaffna, 40000, Sri Lanka
| | - Hyukjae Kwon
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Myoung-Jin Kim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
9
|
Nilojan J, Bathige SDNK, Kugapreethan R, Yang H, Kim MJ, Nam BH, Lee J. Molecular features and the transcriptional and functional delineation of complement system activators C1r and C1s from Sebastes schlegelii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:279-290. [PMID: 29247723 DOI: 10.1016/j.dci.2017.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
C1r and C1s are serine proteases responsible for activating the classical complement pathway to initiate the complement cascade, which plays a crucial role in eliminating invading pathogenic microbes. In this study, cDNA sequences of C1r and C1s were identified from black rockfish and designated as SsC1r and SsC1s, respectively. In both sequences, two CUB domains, an EGF-like domain, two CCP domains, and a trypsin-like serine protease domain were identified. Multiple sequence alignments with known vertebrate homologs demonstrated that both sequences were highly conserved and, especially, the catalytic and substrate binding residues were completely conserved. In the constructed phylogenetic tree, C1r and C1s formed two separate clusters, which further branched into groups of related organisms. SsC1r and SsC1s joined with their respective teleostean clusters. Transcriptional analysis showed that the highest mRNA expression level was in the liver under normal physiological conditions. Significantly upregulated expression of both mRNAs in spleen and liver after pathologic stress, by intraperitoneal injection with different stimuli, suggested their vital role in immunity. The serine protease domains of SsC1r and SsC1s were cloned and the recombinant proteins were expressed and purified. A protease assay, conducted to confirm their functionality, indicated that both recombinant proteins had proteolytic activity. Taken together, these results indicate that SsC1r and SsC1s have significant properties to aid in the immunity of black rockfish by activating the complement system by proteolytic cleavage.
Collapse
Affiliation(s)
- Jehanathan Nilojan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - S D N K Bathige
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Sri Lanka Institute of Nanotechnology (SLINTEC), Nanotechnology and Science Park, Mahenwatta, Pitipana, Homagama, Sri Lanka
| | - Roopasingam Kugapreethan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Myoung-Jin Kim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea.
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan 46083, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea.
| |
Collapse
|
10
|
A microplate assay to measure classical and alternative complement activity. ACTA ACUST UNITED AC 2017; 55:845-853. [DOI: 10.1515/cclm-2016-0553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/18/2016] [Indexed: 11/15/2022]
Abstract
Abstract
Background:
We developed and validated a kinetic microplate hemolytic assay (HA) to quantify classical and alternative complement activity in a single dilution of human plasma or serum.
Methods:
The assay is based on monitoring hemolysis of sensitized sheep (or uncoated rabbit) red blood cells by means of a 96-well microplate reader. The activity of the calibrator was evaluated by reference to 200 healthy adults. The conversion of 50% hemolysis time into a percentage of activity was obtained using a calibration curve plotted daily.
Results:
The linearity of the assay as well as interference (by hemolysis, bilrubinemia and lipemia) was assessed for classical pathway (CP). The within-day and the between-day precision was satisfactory regarding the performance of commercially available liposome immunoassay (LIA) and ELISA. Patients with hereditary or acquired complement deficiencies were detected (activity was measured <30%). We also provided a reference range obtained from 200 blood donors. The agreement of CP evaluated on samples from 48 patients was 94% with LIA and 87.5% with ELISA. The sensitivity of our assay was better than that of LIA, and the cost was lower than either LIA or ELISA. In addition, this assay was less time consuming than previously reported HAs.
Conclusions:
This assay allows the simultaneous measurement of 36 samples in duplicate per run of a 96-well plate. The use of a daily calibration curve allows standardization of the method and leads to good reproducibility. The same technique was also adapted for the quantification of alternative pathway (AP) activity.
Collapse
|
11
|
Du D, Lu Y, Cheng Z, Chen D. Structure characterization of two novel polysaccharides isolated from the spikes of Prunella vulgaris and their anticomplement activities. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:345-353. [PMID: 27566209 DOI: 10.1016/j.jep.2016.08.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/26/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The spikes of Prunella vulgaris have long been used as a traditional Chinese medicine to treat various inflammation-related diseases. The aim of this study was to isolate and characterize homogenous polysaccharides from this herb and to evaluate their anticomplement activity. MATERIALS AND METHODS Anticomplement activity-guided fractionation of the hot water extract of P. vulgaris was performed by DEAE-cellulose and size-exclusion chromatography, yielding two homogeneous polysaccharides PW-PS1 and PW-PS2. The homogeneity, molecular weight, monosaccharide composition and linkage of the two polysaccharides were determined in addition to other chemical characterizations. The anticomplement activity of the polysaccharides was evaluated and expressed as 50% hemolytic inhibition concentration through the classical pathway (CH50 value) and alternative pathway (AP50 value). The preliminary mechanism for the complement activation cascade was also assessed. RESULTS PW-PS1 and PW-PS2 were both branched acidic polysaccharides. PW-PS1 was composed of Ara, Xyl, and 4-methoxy-Glc A in a ratio of 1.0: 2.6: 0.8. The main linkages of the sugar residues of PW-PS1 included terminal β-d-Xylp, 1,4-linked β-d-Xylp, 1,3-linked α-d-Arap, 1,3,5-linked α-d-Arap, and terminal 4-methoxy-α-d-Glcp A. PW-PS2 was composed of Rha, Ara, Xyl, Gal, and Gal A in a ratio of 0.6: 1.0: 1.3: 1.8: 3.4. The main linkages between the sugar residues of PW-PS2 included terminal Araf, 1,4-linked β-d-Xylp, 1,3-linked α-d-Rhap, terminal α-d-Galp, and 1,4,6-linked α-d-Galp. PW-PS1 and PW-PS2 inhibited complement activation through both the classical and alternative pathways with CH50 values of 0.28 and 0.13mg/mL, respectively, and AP50 values of 0.40 and 0.35mg/mL, respectively. Preliminary mechanism studies using complement component-depleted sera showed that PW-PS1 acted on the C1q, C3, and C9 components and that PW-PS2 acted on the C1q, C2, C3, C5, and C9 components. CONCLUSION Our study suggested that PW-PS1 and PW-PS2 could be valuable for the treatment of diseases associated with the excessive activation of the complement system.
Collapse
Affiliation(s)
- Dongsheng Du
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan Lu
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhihong Cheng
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Daofeng Chen
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
12
|
Bekker P, Dairaghi D, Seitz L, Leleti M, Wang Y, Ertl L, Baumgart T, Shugarts S, Lohr L, Dang T, Miao S, Zeng Y, Fan P, Zhang P, Johnson D, Powers J, Jaen J, Charo I, Schall TJ. Characterization of Pharmacologic and Pharmacokinetic Properties of CCX168, a Potent and Selective Orally Administered Complement 5a Receptor Inhibitor, Based on Preclinical Evaluation and Randomized Phase 1 Clinical Study. PLoS One 2016; 11:e0164646. [PMID: 27768695 PMCID: PMC5074546 DOI: 10.1371/journal.pone.0164646] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/26/2016] [Indexed: 01/21/2023] Open
Abstract
The complement 5a receptor has been an attractive therapeutic target for many autoimmune and inflammatory disorders. However, development of a selective and potent C5aR antagonist has been challenging. Here we describe the characterization of CCX168 (avacopan), an orally administered selective and potent C5aR inhibitor. CCX168 blocked the C5a binding, C5a-mediated migration, calcium mobilization, and CD11b upregulation in U937 cells as well as in freshly isolated human neutrophils. CCX168 retains high potency when present in human blood. A transgenic human C5aR knock-in mouse model allowed comparison of the in vitro and in vivo efficacy of the molecule. CCX168 effectively blocked migration in in vitro and ex vivo chemotaxis assays, and it blocked the C5a-mediated neutrophil vascular endothelial margination. CCX168 was effective in migration and neutrophil margination assays in cynomolgus monkeys. This thorough in vitro and preclinical characterization enabled progression of CCX168 into the clinic and testing of its safety, tolerability, pharmacokinetic, and pharmacodynamic profiles in a Phase 1 clinical trial in 48 healthy volunteers. CCX168 was shown to be well tolerated across a broad dose range (1 to 100 mg) and it showed dose-dependent pharmacokinetics. An oral dose of 30 mg CCX168 given twice daily blocked the C5a-induced upregulation of CD11b in circulating neutrophils by 94% or greater throughout the entire day, demonstrating essentially complete target coverage. This dose regimen is being tested in clinical trials in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Trial Registration ISRCTN registry with trial ID ISRCTN13564773.
Collapse
Affiliation(s)
- Pirow Bekker
- Department of Medical and Clinical Affairs, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
- * E-mail:
| | - Daniel Dairaghi
- Department of Biology, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Lisa Seitz
- Department of Biology, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Manmohan Leleti
- Department of Chemistry, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Yu Wang
- Department of Biology, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Linda Ertl
- Department of Biology, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Trageen Baumgart
- Department of Biology, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Sarah Shugarts
- Department of Drug Metabolism and Pharmacokinetics, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Lisa Lohr
- Department of Drug Metabolism and Pharmacokinetics, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Ton Dang
- Department of Drug Metabolism and Pharmacokinetics, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Shichang Miao
- Department of Drug Metabolism and Pharmacokinetics, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Yibin Zeng
- Department of Chemistry, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Pingchen Fan
- Department of Chemistry, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Penglie Zhang
- Department of Chemistry, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Daniel Johnson
- Department of Medical and Clinical Affairs, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Jay Powers
- Department of Chemistry, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Juan Jaen
- Department of Discovery and Research, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Israel Charo
- Department of Discovery and Research, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Thomas J. Schall
- Department of Discovery and Research, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| |
Collapse
|
13
|
Ricklin D, Lambris JD. New milestones ahead in complement-targeted therapy. Semin Immunol 2016; 28:208-22. [PMID: 27321574 PMCID: PMC5404743 DOI: 10.1016/j.smim.2016.06.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 02/08/2023]
Abstract
The complement system is a powerful effector arm of innate immunity that typically confers protection from microbial intruders and accumulating debris. In many clinical situations, however, the defensive functions of complement can turn against host cells and induce or exacerbate immune, inflammatory, and degenerative conditions. Although the value of inhibiting complement in a therapeutic context has long been recognized, bringing complement-targeted drugs into clinical use has proved challenging. This important milestone was finally reached a decade ago, yet the clinical availability of complement inhibitors has remained limited. Still, the positive long-term experience with complement drugs and their proven effectiveness in various diseases has reinvigorated interest and confidence in this approach. Indeed, a broad variety of clinical candidates that act at almost any level of the complement activation cascade are currently in clinical development, with several of them being evaluated in phase 2 and phase 3 trials. With antibody-related drugs dominating the panel of clinical candidates, the emergence of novel small-molecule, peptide, protein, and oligonucleotide-based inhibitors offers new options for drug targeting and administration. Whereas all the currently approved and many of the proposed indications for complement-targeted inhibitors belong to the rare disease spectrum, these drugs are increasingly being evaluated for more prevalent conditions. Fortunately, the growing experience from preclinical and clinical use of therapeutic complement inhibitors has enabled a more evidence-based assessment of suitable targets and rewarding indications as well as related technical and safety considerations. This review highlights recent concepts and developments in complement-targeted drug discovery, provides an overview of current and emerging treatment options, and discusses the new milestones ahead on the way to the next generation of clinically available complement therapeutics.
Collapse
Affiliation(s)
- Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA.
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
14
|
Lee SH, Kim KW, Joo K, Kim JC. Angiogenin ameliorates corneal opacity and neovascularization via regulating immune response in corneal fibroblasts. BMC Ophthalmol 2016; 16:57. [PMID: 27356868 PMCID: PMC4926301 DOI: 10.1186/s12886-016-0235-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 05/10/2016] [Indexed: 12/04/2022] Open
Abstract
Background Angiogenin (ANG), a component of tears, is involved in the innate immune system and is related with inflammatory disease. We investigated whether ANG has an immune modulatory function in human corneal fibroblasts (HCFs). Methods HCFs were cultured from excised corneal tissues. The gene or protein expression levels of interleukin (IL)-1beta (β), IL-4, IL-6, IL-8, IL-10, complements, toll-like receptor (TLR)4, myeloid differentiation primary response gene (MYD)88, TANK-binding kinase (TBK)1, IkappaB kinase-epsilon (IKK-ε) and nuclear factor-kappaB (NF-κB) were analyzed with or without ANG treatment in tumor necrosis factor-alpha (TNF-α)- or lipopolysaccharide (LPS)-induced inflammatory HCFs by real-time polymerase chain reaction (PCR), Western blotting and immunocytochemistry. Inflammatory cytokine profiles with or without ANG were evaluated through immunodot blot analysis in inflammatory HCFs. Corneal neovascularization and opacity in a rat model of corneal alkali burn were evaluated after application of ANG eye drops. Results ANG decreased the mRNA levels of IL-1β, IL-6, IL-8, TNF-α receptor (TNFR)1, 2, TLR4, MYD88, and complement components except for C1r and C1s and elevated the mRNA expression of IL-4 and IL-10. Increased signal intensity of IL-6, IL-8 and monocyte chemotactic protein (MCP)-1 and MCP-2 induced by TNF-α or LPS was weakened by ANG treatment. ANG reduced the protein levels of IKK-ε by either TNF-α and LPS, and decreased TBK1 production induced by TNF-α, but not induced by LPS. The expression of NF-κB in the nuclei was decreased after ANG treatment. ANG application lowered corneal neovascularization and opacity in rats compared to controls. Conclusion These results demonstrate that ANG reduces the inflammatory response induced by TNF-α or LPS in HCFs through common suppression of IKK-ε-mediated activation of NF-κB. This may support the targeting of immune-mediated corneal inflammation by using ANG.
Collapse
Affiliation(s)
- Seung Hoon Lee
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, 224-1, Heukseok-dong, Dongjak-Gu, Seoul, 156-755, Republic of Korea.,Graduate School of Chung-Ang University, College of Medicine, Seoul, Republic of Korea
| | - Kyoung Woo Kim
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, 224-1, Heukseok-dong, Dongjak-Gu, Seoul, 156-755, Republic of Korea.,Graduate School of Chung-Ang University, College of Medicine, Seoul, Republic of Korea
| | - Kwangsic Joo
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, 224-1, Heukseok-dong, Dongjak-Gu, Seoul, 156-755, Republic of Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Republic of Korea
| | - Jae Chan Kim
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, 224-1, Heukseok-dong, Dongjak-Gu, Seoul, 156-755, Republic of Korea.
| |
Collapse
|
15
|
Al Majid AM, Barakat A, Mabkhot YN, Al-Agamy MH. Synthesis, and characterization of a new series of sulfite and sulfate derivatives of d-Mannitol. JOURNAL OF SAUDI CHEMICAL SOCIETY 2016. [DOI: 10.1016/j.jscs.2013.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
SALO, a novel classical pathway complement inhibitor from saliva of the sand fly Lutzomyia longipalpis. Sci Rep 2016; 6:19300. [PMID: 26758086 PMCID: PMC4725370 DOI: 10.1038/srep19300] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/09/2015] [Indexed: 01/20/2023] Open
Abstract
Blood-feeding insects inject potent salivary components including complement inhibitors into their host’s skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases.
Collapse
|
17
|
Jin W, Zhang W, Liang H, Zhang Q. The Structure-Activity Relationship between Marine Algae Polysaccharides and Anti-Complement Activity. Mar Drugs 2015; 14:3. [PMID: 26712768 PMCID: PMC4728500 DOI: 10.3390/md14010003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/02/2015] [Accepted: 12/13/2015] [Indexed: 11/17/2022] Open
Abstract
In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation.
Collapse
Affiliation(s)
- Weihua Jin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Wenjing Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongze Liang
- The School of Materials Sciences and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Quanbin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
18
|
Grossman TR, Hettrick LA, Johnson RB, Hung G, Peralta R, Watt A, Henry SP, Adamson P, Monia BP, McCaleb ML. Inhibition of the alternative complement pathway by antisense oligonucleotides targeting complement factor B improves lupus nephritis in mice. Immunobiology 2015; 221:701-8. [PMID: 26307001 DOI: 10.1016/j.imbio.2015.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/03/2015] [Accepted: 08/06/2015] [Indexed: 11/16/2022]
Abstract
Systemic lupus erythematosus is an autoimmune disease that manifests in widespread complement activation and deposition of complement fragments in the kidney. The complement pathway is believed to play a significant role in the pathogenesis and in the development of lupus nephritis. Complement factor B is an important activator of the alternative complement pathway and increasing evidence supports reducing factor B as a potential novel therapy to lupus nephritis. Here we investigated whether pharmacological reduction of factor B expression using antisense oligonucleotides could be an effective approach for the treatment of lupus nephritis. We identified potent and well tolerated factor B antisense oligonucleotides that resulted in significant reductions in hepatic and plasma factor B levels when administered to normal mice. To test the effects of factor B antisense oligonucleotides on lupus nephritis, we used two different mouse models, NZB/W F1 and MRL/lpr mice, that exhibit lupus nephritis like renal pathology. Antisense oligonucleotides mediated reductions in circulating factor B levels were associated with significant improvements in renal pathology, reduced glomerular C3 deposition and proteinuria, and improved survival. These data support the strategy of using factor B antisense oligonucleotides for treatment of lupus nephritis in humans.
Collapse
Affiliation(s)
- Tamar R Grossman
- Department of Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California, USA.
| | - Lisa A Hettrick
- Department of Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California, USA
| | - Robert B Johnson
- Department of Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California, USA
| | - Gene Hung
- Department of Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California, USA
| | - Raechel Peralta
- Department of Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California, USA
| | - Andrew Watt
- Department of Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California, USA
| | - Scott P Henry
- Department of Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California, USA
| | - Peter Adamson
- GSK Ophthalmology, GlaxoSmithKline, Stevenage, Hertfordshire, United Kingdom
| | - Brett P Monia
- Department of Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California, USA
| | - Michael L McCaleb
- Department of Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California, USA
| |
Collapse
|
19
|
DeZern AE, Brodsky RA. Paroxysmal nocturnal hemoglobinuria: a complement-mediated hemolytic anemia. Hematol Oncol Clin North Am 2015; 29:479-94. [PMID: 26043387 DOI: 10.1016/j.hoc.2015.01.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Paroxysmal nocturnal hemoglobinuria is manifests with a chronic hemolytic anemia from uncontrolled complement activation, a propensity for thrombosis and marrow failure. The hemolysis is largely mediated by the alternative pathway of complement. Clinical manifestations result from the lack of specific cell surface proteins, CD55 and CD59, on PNH cells. Complement inhibition by eculizumab leads to dramatic clinical improvement. While this therapeutic approach is effective, there is residual complement activity resulting from specific clinical scenarios as well as from upstream complement components that can account for suboptimal responses in some patients. Complement inhibition strategies are an area of active research.
Collapse
Affiliation(s)
- Amy E DeZern
- Division of Hematologic Malignancies, Department of Oncology, The Bunting and Blaustein Cancer Research Building, 1650 Orleans Street, Room 3M87, Baltimore, MD 21287-0013, USA.
| | - Robert A Brodsky
- Division of Hematology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 1025, Baltimore, MD 21205, USA
| |
Collapse
|
20
|
Du D, Cheng Z, Chen D. Anti-complement sesquiterpenes from Viola yedoensis. Fitoterapia 2015; 101:73-9. [DOI: 10.1016/j.fitote.2014.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/23/2014] [Accepted: 12/26/2014] [Indexed: 11/29/2022]
|
21
|
Talmale S, Bhujade A, Patil M. Anti-allergic and anti-inflammatory properties of Zizyphus mauritiana root bark. Food Funct 2015; 6:2975-83. [DOI: 10.1039/c5fo00270b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The MAF, a fraction with potent anti-allergic and anti-inflammatory compounds, is isolated fromZizyphus mauritianaroot bark. The MAF has an excellent ability to inhibit the complement system, COX-1, COX-2 and 5-LOX and has the potential to prevent anaphylactic shock and the Arthus reaction.
Collapse
Affiliation(s)
- Suhas Talmale
- University Department of Biochemistry
- RTM Nagpur University
- Nagpur 440033
- India
| | - Arti Bhujade
- University Department of Biochemistry
- RTM Nagpur University
- Nagpur 440033
- India
| | - Mandakini Patil
- University Department of Biochemistry
- RTM Nagpur University
- Nagpur 440033
- India
| |
Collapse
|
22
|
Peterson SL, Anderson AJ. Complement and spinal cord injury: traditional and non-traditional aspects of complement cascade function in the injured spinal cord microenvironment. Exp Neurol 2014; 258:35-47. [PMID: 25017886 DOI: 10.1016/j.expneurol.2014.04.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 04/14/2014] [Accepted: 04/28/2014] [Indexed: 12/21/2022]
Abstract
The pathology associated with spinal cord injury (SCI) is caused not only by primary mechanical trauma, but also by secondary responses of the injured CNS. The inflammatory response to SCI is robust and plays an important but complex role in the progression of many secondary injury-associated pathways. Although recent studies have begun to dissect the beneficial and detrimental roles for inflammatory cells and proteins after SCI, many of these neuroimmune interactions are debated, not well understood, or completely unexplored. In this regard, the complement cascade is a key component of the inflammatory response to SCI, but is largely underappreciated, and our understanding of its diverse interactions and effects in this pathological environment is limited. In this review, we discuss complement in the context of SCI, first in relation to traditional functions for complement cascade activation, and then in relation to novel roles for complement proteins in a variety of models.
Collapse
Affiliation(s)
- Sheri L Peterson
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Aileen J Anderson
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA 92697, USA; Department of Physical Medicine and Rehabilitation, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
23
|
Ojha H, Panwar HS, Gorham RD, Morikis D, Sahu A. Viral regulators of complement activation: structure, function and evolution. Mol Immunol 2014; 61:89-99. [PMID: 24976595 DOI: 10.1016/j.molimm.2014.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 05/30/2014] [Accepted: 06/01/2014] [Indexed: 11/25/2022]
Abstract
The complement system surveillance in the host is effective in controlling viral propagation. Consequently, to subvert this effector mechanism, viruses have developed a series of adaptations. One among these is encoding mimics of host regulators of complement activation (RCA) which help viruses to avoid being labeled as 'foreign' and protect them from complement-mediated neutralization and complement-enhanced antiviral adaptive immunity. In this review, we provide an overview on the structure, function and evolution of viral RCA proteins.
Collapse
Affiliation(s)
- Hina Ojha
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Hemendra Singh Panwar
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Ronald D Gorham
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Dimitrios Morikis
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| | - Arvind Sahu
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
24
|
Tsakiridis K, Mpakas A, Kesisis G, Arikas S, Argyriou M, Siminelakis S, Zarogoulidis P, Katsikogiannis N, Kougioumtzi I, Tsiouda T, Sarika E, Katamoutou I, Zarogoulidis K. Lung inflammatory response syndrome after cardiac-operations and treatment of lornoxicam. J Thorac Dis 2014; 6 Suppl 1:S78-98. [PMID: 24672703 DOI: 10.3978/j.issn.2072-1439.2013.12.07] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 12/04/2013] [Indexed: 12/19/2022]
Abstract
The majority of patients survive after extracorporeal circulation without any clinically apparent deleterious effects. However, disturbances exist in various degrees sometimes, which indicate the harmful effects of cardiopulmonary bypass (CPB) in the body. Several factors during extracorporeal circulation either mechanical dependent (exposure of blood to non-biological area) or mechanical independent (surgical wounds, ischemia and reperfusion, alteration in body temperature, release of endotoxins) have been shown to trigger the inflammatory reaction of the body. The complement activation, the release of cytokines, the leukocyte activation and accumulation as well as the production of several "mediators" such as oxygen free radicals, metabolites of arachidonic acid, platelet activating factors (PAF), nitric acid, and endothelin. The investigation continues today on the three metabolites of lornoxicam (the hydroxylated metabolite and two other metabolites of unknown chemical composition) to search for potential new pharmacological properties and activities.
Collapse
Affiliation(s)
- Kosmas Tsakiridis
- 1 Cardiothoracic Surgery Department, 2 Oncology Department, "Saint Luke" Private Hospital, Panorama, Thessaloniki, Greece ; 3 Cardiac Surgery Department, Evaggelismos General Hospital, Veikou 9-11, 11146 Athens, Greece ; 4 Department of Cardiac Surgery, University of Ioannina, School of Medicine, Greece ; 5 Pulmonary Department, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 6 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 7 Internal Medicine Department, "Theiageneio" Anticancer Hospital, Thessaloniki, Greece
| | - Andreas Mpakas
- 1 Cardiothoracic Surgery Department, 2 Oncology Department, "Saint Luke" Private Hospital, Panorama, Thessaloniki, Greece ; 3 Cardiac Surgery Department, Evaggelismos General Hospital, Veikou 9-11, 11146 Athens, Greece ; 4 Department of Cardiac Surgery, University of Ioannina, School of Medicine, Greece ; 5 Pulmonary Department, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 6 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 7 Internal Medicine Department, "Theiageneio" Anticancer Hospital, Thessaloniki, Greece
| | - George Kesisis
- 1 Cardiothoracic Surgery Department, 2 Oncology Department, "Saint Luke" Private Hospital, Panorama, Thessaloniki, Greece ; 3 Cardiac Surgery Department, Evaggelismos General Hospital, Veikou 9-11, 11146 Athens, Greece ; 4 Department of Cardiac Surgery, University of Ioannina, School of Medicine, Greece ; 5 Pulmonary Department, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 6 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 7 Internal Medicine Department, "Theiageneio" Anticancer Hospital, Thessaloniki, Greece
| | - Stamatis Arikas
- 1 Cardiothoracic Surgery Department, 2 Oncology Department, "Saint Luke" Private Hospital, Panorama, Thessaloniki, Greece ; 3 Cardiac Surgery Department, Evaggelismos General Hospital, Veikou 9-11, 11146 Athens, Greece ; 4 Department of Cardiac Surgery, University of Ioannina, School of Medicine, Greece ; 5 Pulmonary Department, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 6 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 7 Internal Medicine Department, "Theiageneio" Anticancer Hospital, Thessaloniki, Greece
| | - Michael Argyriou
- 1 Cardiothoracic Surgery Department, 2 Oncology Department, "Saint Luke" Private Hospital, Panorama, Thessaloniki, Greece ; 3 Cardiac Surgery Department, Evaggelismos General Hospital, Veikou 9-11, 11146 Athens, Greece ; 4 Department of Cardiac Surgery, University of Ioannina, School of Medicine, Greece ; 5 Pulmonary Department, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 6 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 7 Internal Medicine Department, "Theiageneio" Anticancer Hospital, Thessaloniki, Greece
| | - Stavros Siminelakis
- 1 Cardiothoracic Surgery Department, 2 Oncology Department, "Saint Luke" Private Hospital, Panorama, Thessaloniki, Greece ; 3 Cardiac Surgery Department, Evaggelismos General Hospital, Veikou 9-11, 11146 Athens, Greece ; 4 Department of Cardiac Surgery, University of Ioannina, School of Medicine, Greece ; 5 Pulmonary Department, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 6 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 7 Internal Medicine Department, "Theiageneio" Anticancer Hospital, Thessaloniki, Greece
| | - Paul Zarogoulidis
- 1 Cardiothoracic Surgery Department, 2 Oncology Department, "Saint Luke" Private Hospital, Panorama, Thessaloniki, Greece ; 3 Cardiac Surgery Department, Evaggelismos General Hospital, Veikou 9-11, 11146 Athens, Greece ; 4 Department of Cardiac Surgery, University of Ioannina, School of Medicine, Greece ; 5 Pulmonary Department, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 6 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 7 Internal Medicine Department, "Theiageneio" Anticancer Hospital, Thessaloniki, Greece
| | - Nikolaos Katsikogiannis
- 1 Cardiothoracic Surgery Department, 2 Oncology Department, "Saint Luke" Private Hospital, Panorama, Thessaloniki, Greece ; 3 Cardiac Surgery Department, Evaggelismos General Hospital, Veikou 9-11, 11146 Athens, Greece ; 4 Department of Cardiac Surgery, University of Ioannina, School of Medicine, Greece ; 5 Pulmonary Department, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 6 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 7 Internal Medicine Department, "Theiageneio" Anticancer Hospital, Thessaloniki, Greece
| | - Ioanna Kougioumtzi
- 1 Cardiothoracic Surgery Department, 2 Oncology Department, "Saint Luke" Private Hospital, Panorama, Thessaloniki, Greece ; 3 Cardiac Surgery Department, Evaggelismos General Hospital, Veikou 9-11, 11146 Athens, Greece ; 4 Department of Cardiac Surgery, University of Ioannina, School of Medicine, Greece ; 5 Pulmonary Department, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 6 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 7 Internal Medicine Department, "Theiageneio" Anticancer Hospital, Thessaloniki, Greece
| | - Theodora Tsiouda
- 1 Cardiothoracic Surgery Department, 2 Oncology Department, "Saint Luke" Private Hospital, Panorama, Thessaloniki, Greece ; 3 Cardiac Surgery Department, Evaggelismos General Hospital, Veikou 9-11, 11146 Athens, Greece ; 4 Department of Cardiac Surgery, University of Ioannina, School of Medicine, Greece ; 5 Pulmonary Department, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 6 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 7 Internal Medicine Department, "Theiageneio" Anticancer Hospital, Thessaloniki, Greece
| | - Eirini Sarika
- 1 Cardiothoracic Surgery Department, 2 Oncology Department, "Saint Luke" Private Hospital, Panorama, Thessaloniki, Greece ; 3 Cardiac Surgery Department, Evaggelismos General Hospital, Veikou 9-11, 11146 Athens, Greece ; 4 Department of Cardiac Surgery, University of Ioannina, School of Medicine, Greece ; 5 Pulmonary Department, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 6 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 7 Internal Medicine Department, "Theiageneio" Anticancer Hospital, Thessaloniki, Greece
| | - Ioanna Katamoutou
- 1 Cardiothoracic Surgery Department, 2 Oncology Department, "Saint Luke" Private Hospital, Panorama, Thessaloniki, Greece ; 3 Cardiac Surgery Department, Evaggelismos General Hospital, Veikou 9-11, 11146 Athens, Greece ; 4 Department of Cardiac Surgery, University of Ioannina, School of Medicine, Greece ; 5 Pulmonary Department, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 6 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 7 Internal Medicine Department, "Theiageneio" Anticancer Hospital, Thessaloniki, Greece
| | - Konstantinos Zarogoulidis
- 1 Cardiothoracic Surgery Department, 2 Oncology Department, "Saint Luke" Private Hospital, Panorama, Thessaloniki, Greece ; 3 Cardiac Surgery Department, Evaggelismos General Hospital, Veikou 9-11, 11146 Athens, Greece ; 4 Department of Cardiac Surgery, University of Ioannina, School of Medicine, Greece ; 5 Pulmonary Department, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 6 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 7 Internal Medicine Department, "Theiageneio" Anticancer Hospital, Thessaloniki, Greece
| |
Collapse
|
25
|
Alhamid N, Alterky H, Almouslem A, Al-Rayess H, Othman MI. Successful kidney transplant in a patient with IgG anti HLA Class-I auto-antibodies: a case report. Hum Immunol 2014; 75:597-601. [PMID: 24859192 DOI: 10.1016/j.humimm.2014.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 05/06/2014] [Accepted: 05/06/2014] [Indexed: 11/18/2022]
Abstract
Donor specific antibodies (DSA) play a significant role in graft rejection. Many laboratory methods, varied in sensitivity and specificity, are used to detect them. We report a case of a 38-year-old man presented with end stage renal disease considered for kidney transplantation. He had no history of blood transfusions nor transplantation procedures. Dilemma rose when he got multiple positive crossmatches with matching donors and a positive autologous crossmatch due to IgG anti HLA auto-antibodies, which are at the same time against matched donors. Since positive crossmatch is a contraindication for transplant, we couldn't perform transplant from any matched donor. Therefore, we considered a total mismatched donor then transplantation was performed. Observation after surgery showed normalization of creatinine, blood pressure and a good function of the planted allograft for two years of follow up.
Collapse
Affiliation(s)
- Naji Alhamid
- Damascus University, College of Medicine, Syrian Arab Republic.
| | - Hani Alterky
- Damascus University, College of Medicine, Syrian Arab Republic
| | | | - Heba Al-Rayess
- Damascus University, College of Medicine, Syrian Arab Republic
| | - Mohammad Imad Othman
- Head of Nephrology Department and Kidney Transplant Unit AUH, Damascus University, College of Medicine, Syrian Arab Republic
| |
Collapse
|
26
|
Tsakiridis K, Zarogoulidis P, Vretzkakis G, Mikroulis D, Mpakas A, Kesisis G, Arikas S, Kolettas A, Moschos G, Katsikogiannis N, Machairiotis N, Tsiouda T, Siminelakis S, Beleveslis T, Zarogoulidis K. Effect of lornoxicam in lung inflammatory response syndrome after operations for cardiac surgery with cardiopulmonary bypass. J Thorac Dis 2014; 6 Suppl 1:S7-S20. [PMID: 24672701 DOI: 10.3978/j.issn.2072-1439.2013.12.30] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 12/16/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND The establishment of Extracorporeal Circulation (EC) significantly contributed to improvement of cardiac surgery, but this is accompanied by harmful side-effects. The most important of them is systemic inflammatory response syndrome. Many efforts have been undertaken to minimize this problem but unfortunately without satisfied solution to date. MATERIALS AND METHODS Lornoxicam is a non steroid anti-inflammatory drug which temporally inhibits the cycloxygenase. In this clinical trial we study the effect of lornoxicam in lung inflammatory response after operations for cardiac surgery with cardiopulmonary bypass. In our study we conclude 14 volunteers patients with ischemic coronary disease undergoing coronary artery bypass grafting with EC. In seven of them 16 mg lornoxicam was administered iv before the anesthesia induction and before the connection in heart-lung machine. In control group (7 patients) we administered the same amount of normal saline. RESULTS Both groups are equal regarding pro-operative and intra-operative parameters. The inflammatory markers were calculated by Elisa method. We measured the levels of cytokines (IL-6, IL-8, TNF-a), adhesion molecules (ICAM-1, e-Selectin, p-Selectin) and matrix metaloproteinase-3 (MMP-3) just after anesthesia induction, before and after cardiopulmonary bypass, just after the patients administration in ICU and after 8 and 24 hrs. In all patients we estimated the lung's inflammatory reaction with lung biopsy taken at the begging and at the end of the operation. We calculated hemodynamics parameters: Cardiac Index (CI), Systemic Vascular Resistance Index (SVRI), Pulmonary Vascular Resistance Index (PVRI), Left Ventricular Stroke Work Index (LVSWI), Right Ventricular Stroke Work Index (RVSWI), and the Pulmonary arterial pressure, and respiratory parameters too: alveolo-arterial oxygen difference D (A-a), intrapulmonary shunt (Qs/Qt) and pulmonary Compliance. IL-6 levels of lornoxicam group were statistical significant lower at 1st postoperative day compared to them of control group (113±49 and 177±20 respectively, P=0.008). ICAM-1 levels were statistical significant lower at the patient admission in ICU, compared to them of control group (177±29 and 217±22 respectively, P=0.014), and the 1st postoperative day compared to them in control group (281±134 and 489±206 respectively, P=0.045). P-selectin levels were statistical significant lower, compared to them in control group in four measurements (97±23 and 119±7 respectively, P=0.030, 77±19 and 101±20 respectively, P=0.044, 86±4 and 105±13 respectively, P=0.06, 116±13 and 158±17 respectively, P=0.000). CONCLUSIONS Hemodynamics and respiratory parameters were improved compared to control group, but these differences was not statistical significant. Eosinofil adhesion and sequestration in intermediate tissue of lung parenchyma were significantly lower compared to control group. Also, alveolar edema was not noted in lornoxicam's group. Lornoxicam reduce the inflammatory response in patients undergone coronary artery bypass grafting with extracorporeal circulation. This calculated from levels reduction of IL-6, ICAM-1 και p-Selectin, and from lung pathologoanatomic examination (absence of alveolar edema, reduce in eosinofil adhesion and sequestration in intermediate tissues). Despite the favorable effect of lornoxicam on the hemodinamics and respiratory parameters these improvement did not seem to be statistical significant.
Collapse
Affiliation(s)
- Kosmas Tsakiridis
- 1 Cardiothoracic Surgery Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 2 Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 3 Anesthisiology Department, University of Larisa, Larisa, Greece ; 4 Cardiothoracic Surgery Department, University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 5 Oncology Department, 6 Anesthisology Department, 7 Cardiology Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 8 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 9 Internal Medicine Department, "Thegeneio" Cancer Hospital, Thessaloniki, Greece ; 10 Cardiothoracic Surgery Department, University of Ioannina, Ioannina, Greece
| | - Paul Zarogoulidis
- 1 Cardiothoracic Surgery Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 2 Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 3 Anesthisiology Department, University of Larisa, Larisa, Greece ; 4 Cardiothoracic Surgery Department, University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 5 Oncology Department, 6 Anesthisology Department, 7 Cardiology Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 8 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 9 Internal Medicine Department, "Thegeneio" Cancer Hospital, Thessaloniki, Greece ; 10 Cardiothoracic Surgery Department, University of Ioannina, Ioannina, Greece
| | - Giorgos Vretzkakis
- 1 Cardiothoracic Surgery Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 2 Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 3 Anesthisiology Department, University of Larisa, Larisa, Greece ; 4 Cardiothoracic Surgery Department, University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 5 Oncology Department, 6 Anesthisology Department, 7 Cardiology Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 8 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 9 Internal Medicine Department, "Thegeneio" Cancer Hospital, Thessaloniki, Greece ; 10 Cardiothoracic Surgery Department, University of Ioannina, Ioannina, Greece
| | - Dimitris Mikroulis
- 1 Cardiothoracic Surgery Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 2 Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 3 Anesthisiology Department, University of Larisa, Larisa, Greece ; 4 Cardiothoracic Surgery Department, University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 5 Oncology Department, 6 Anesthisology Department, 7 Cardiology Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 8 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 9 Internal Medicine Department, "Thegeneio" Cancer Hospital, Thessaloniki, Greece ; 10 Cardiothoracic Surgery Department, University of Ioannina, Ioannina, Greece
| | - Andreas Mpakas
- 1 Cardiothoracic Surgery Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 2 Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 3 Anesthisiology Department, University of Larisa, Larisa, Greece ; 4 Cardiothoracic Surgery Department, University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 5 Oncology Department, 6 Anesthisology Department, 7 Cardiology Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 8 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 9 Internal Medicine Department, "Thegeneio" Cancer Hospital, Thessaloniki, Greece ; 10 Cardiothoracic Surgery Department, University of Ioannina, Ioannina, Greece
| | - Georgios Kesisis
- 1 Cardiothoracic Surgery Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 2 Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 3 Anesthisiology Department, University of Larisa, Larisa, Greece ; 4 Cardiothoracic Surgery Department, University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 5 Oncology Department, 6 Anesthisology Department, 7 Cardiology Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 8 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 9 Internal Medicine Department, "Thegeneio" Cancer Hospital, Thessaloniki, Greece ; 10 Cardiothoracic Surgery Department, University of Ioannina, Ioannina, Greece
| | - Stamatis Arikas
- 1 Cardiothoracic Surgery Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 2 Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 3 Anesthisiology Department, University of Larisa, Larisa, Greece ; 4 Cardiothoracic Surgery Department, University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 5 Oncology Department, 6 Anesthisology Department, 7 Cardiology Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 8 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 9 Internal Medicine Department, "Thegeneio" Cancer Hospital, Thessaloniki, Greece ; 10 Cardiothoracic Surgery Department, University of Ioannina, Ioannina, Greece
| | - Alexandros Kolettas
- 1 Cardiothoracic Surgery Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 2 Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 3 Anesthisiology Department, University of Larisa, Larisa, Greece ; 4 Cardiothoracic Surgery Department, University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 5 Oncology Department, 6 Anesthisology Department, 7 Cardiology Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 8 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 9 Internal Medicine Department, "Thegeneio" Cancer Hospital, Thessaloniki, Greece ; 10 Cardiothoracic Surgery Department, University of Ioannina, Ioannina, Greece
| | - Giorgios Moschos
- 1 Cardiothoracic Surgery Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 2 Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 3 Anesthisiology Department, University of Larisa, Larisa, Greece ; 4 Cardiothoracic Surgery Department, University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 5 Oncology Department, 6 Anesthisology Department, 7 Cardiology Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 8 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 9 Internal Medicine Department, "Thegeneio" Cancer Hospital, Thessaloniki, Greece ; 10 Cardiothoracic Surgery Department, University of Ioannina, Ioannina, Greece
| | - Nikolaos Katsikogiannis
- 1 Cardiothoracic Surgery Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 2 Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 3 Anesthisiology Department, University of Larisa, Larisa, Greece ; 4 Cardiothoracic Surgery Department, University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 5 Oncology Department, 6 Anesthisology Department, 7 Cardiology Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 8 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 9 Internal Medicine Department, "Thegeneio" Cancer Hospital, Thessaloniki, Greece ; 10 Cardiothoracic Surgery Department, University of Ioannina, Ioannina, Greece
| | - Nikolaos Machairiotis
- 1 Cardiothoracic Surgery Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 2 Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 3 Anesthisiology Department, University of Larisa, Larisa, Greece ; 4 Cardiothoracic Surgery Department, University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 5 Oncology Department, 6 Anesthisology Department, 7 Cardiology Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 8 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 9 Internal Medicine Department, "Thegeneio" Cancer Hospital, Thessaloniki, Greece ; 10 Cardiothoracic Surgery Department, University of Ioannina, Ioannina, Greece
| | - Theodora Tsiouda
- 1 Cardiothoracic Surgery Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 2 Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 3 Anesthisiology Department, University of Larisa, Larisa, Greece ; 4 Cardiothoracic Surgery Department, University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 5 Oncology Department, 6 Anesthisology Department, 7 Cardiology Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 8 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 9 Internal Medicine Department, "Thegeneio" Cancer Hospital, Thessaloniki, Greece ; 10 Cardiothoracic Surgery Department, University of Ioannina, Ioannina, Greece
| | - Stavros Siminelakis
- 1 Cardiothoracic Surgery Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 2 Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 3 Anesthisiology Department, University of Larisa, Larisa, Greece ; 4 Cardiothoracic Surgery Department, University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 5 Oncology Department, 6 Anesthisology Department, 7 Cardiology Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 8 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 9 Internal Medicine Department, "Thegeneio" Cancer Hospital, Thessaloniki, Greece ; 10 Cardiothoracic Surgery Department, University of Ioannina, Ioannina, Greece
| | - Thomas Beleveslis
- 1 Cardiothoracic Surgery Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 2 Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 3 Anesthisiology Department, University of Larisa, Larisa, Greece ; 4 Cardiothoracic Surgery Department, University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 5 Oncology Department, 6 Anesthisology Department, 7 Cardiology Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 8 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 9 Internal Medicine Department, "Thegeneio" Cancer Hospital, Thessaloniki, Greece ; 10 Cardiothoracic Surgery Department, University of Ioannina, Ioannina, Greece
| | - Konstantinos Zarogoulidis
- 1 Cardiothoracic Surgery Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 2 Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 3 Anesthisiology Department, University of Larisa, Larisa, Greece ; 4 Cardiothoracic Surgery Department, University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 5 Oncology Department, 6 Anesthisology Department, 7 Cardiology Department, "Saint Luke" Private Hospital, Thessaloniki, Panorama, Greece ; 8 Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece ; 9 Internal Medicine Department, "Thegeneio" Cancer Hospital, Thessaloniki, Greece ; 10 Cardiothoracic Surgery Department, University of Ioannina, Ioannina, Greece
| |
Collapse
|
27
|
DI HY, Zhang YY, Chen DF. Isolation of an anti-complementary polysaccharide from the root of Bupleurum chinense and identification of its targets in complement activation cascade. Chin J Nat Med 2014; 11:177-84. [PMID: 23787186 DOI: 10.1016/s1875-5364(13)60046-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Indexed: 10/23/2022]
Abstract
AIM To isolate and characterize the anti-complementary polysaccharide from the root of Bupleurum chinense. METHODS Bioactivity-guided fractionation and purification was used to obtain the anti-complementary polysaccharide from the hot-water extract of the root of Bupleurum chinense. The polysaccharide was characterized by various chemical and spectral analyses. The anti-complementary activities were evaluated by hemolytic assay in vitro. The action targets were identified in the system with individual complement-depleted sera. RESULTS A homogeneous polysaccharide BC-PS2 was isolated as an anti-complementary agent. It was identified as a branched polysaccharide with an average molecular weight about 2 000 KDa, composed of Glc, Ara, Gal, and Man in the ratio 3.5 : 2.4 : 2.0 : 1.0, respectively, along with a trace of Rha and Xyl, and only 1.11% of protein. The main linkages of the residues of BC-PS2 include terminal, 1, 6-linked, 1, 3-linked and 1, 3, 6-linked Glcp, terminal and 1, 5-linked Araf, terminal, 1, 4-linked, 1, 6-linked and 1, 4, 6-linked Galp, terminal, and, 1, 4-linked and 1, 4, 6-linked Manp. The bioassay experiments revealed that BC-PS2 inhibited complement activation on both the classical and alternative pathways, with CH50 and AP50 of (0.222 ± 0.013) and (0.356 ± 0.032) mg·mL(-1), respectively. Preliminary mechanism studies indicated that BC-PS2 interacted with C1q, C2, and C9 components. CONCLUSION The results demonstrated that BC-PS2 is an anti-complementary polysaccharide, and should be important constituent of the root of Bupleurum chinense for its application in the treatment of diseases associated with the excessive activation of complement system.
Collapse
Affiliation(s)
- Hong-Ye DI
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | | | | |
Collapse
|
28
|
Dalloul A. B-cell-mediated strategies to fight chronic allograft rejection. Front Immunol 2013; 4:444. [PMID: 24381571 PMCID: PMC3865384 DOI: 10.3389/fimmu.2013.00444] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/26/2013] [Indexed: 12/29/2022] Open
Abstract
Solid organs have been transplanted for decades. Since the improvement in graft selection and in medical and surgical procedures, the likelihood of graft function after 1 year is now close to 90%. Nonetheless even well-matched recipients continue to need medications for the rest of their lives hence adverse side effects and enhanced morbidity. Understanding Immune rejection mechanisms, is of increasing importance since the greater use of living-unrelated donors and genetically unmatched individuals. Chronic rejection is devoted to T-cells, however the role of B-cells in rejection has been appreciated recently by the observation that B-cell depletion improve graft survival. By contrast however, B-cells can be beneficial to the grafted tissue. This protective effect is secondary to either the secretion of protective antibodies or the induction of B-cells that restrain excessive inflammatory responses, chiefly by local provision of IL-10, or inhibit effector T-cells by direct cellular interactions. As a proof of concept B-cell-mediated infectious transplantation tolerance could be achieved in animal models, and evidence emerged that the presence of such B-cells in transplanted patients correlate with a favorable outcome. Among these populations, regulatory B-cells constitute a recently described population. These cells may develop as a feedback mechanism to prevent uncontrolled reactivity to antigens and inflammatory stimuli. The difficult task for the clinician, is to quantify the respective ratios and functions of “tolerant” vs. effector B-cells within a transplanted organ, at a given time point in order to modulate B-cell-directed therapy. Several receptors at the B-cell membrane as well as signaling molecules, can now be targeted for this purpose. Understanding the temporal expansion of regulatory B-cells in grafted patients and the stimuli that activate them will help in the future to implement specific strategies aimed at fighting chronic allograft rejection.
Collapse
|
29
|
Di H, Zhang Y, Chen D. An anti-complementary polysaccharide from the roots of Bupleurum chinense. Int J Biol Macromol 2013; 58:179-85. [DOI: 10.1016/j.ijbiomac.2013.03.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 02/03/2013] [Accepted: 03/16/2013] [Indexed: 10/27/2022]
|
30
|
Tamamis P, de Victoria AL, Gorham RD, Bellows-Peterson ML, Pierou P, Floudas CA, Morikis D, Archontis G. Molecular dynamics in drug design: new generations of compstatin analogs. Chem Biol Drug Des 2012; 79:703-18. [PMID: 22233517 PMCID: PMC3319835 DOI: 10.1111/j.1747-0285.2012.01324.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report the computational and rational design of new generations of potential peptide-based inhibitors of the complement protein C3 from the compstatin family. The binding efficacy of the peptides is tested by extensive molecular dynamics-based structural and physicochemical analysis, using 32 atomic detail trajectories in explicit water for 22 peptides bound to human, rat or mouse target protein C3, with a total of 257 ns. The criteria for the new design are: (i) optimization for C3 affinity and for the balance between hydrophobicity and polarity to improve solubility compared to known compstatin analogs; and (ii) development of dual specificity, human-rat/mouse C3 inhibitors, which could be used in animal disease models. Three of the new analogs are analyzed in more detail as they possess strong and novel binding characteristics and are promising candidates for further optimization. This work paves the way for the development of an improved therapeutic for age-related macular degeneration, and other complement system-mediated diseases, compared to known compstatin variants.
Collapse
Affiliation(s)
- Phanourios Tamamis
- Department of Bioengineering, University of California, Riverside, California 92521, USA
- Department of Physics, University of Cyprus, PO20537, CY1678, Nicosia, Cyprus
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | | | - Ronald D. Gorham
- Department of Bioengineering, University of California, Riverside, California 92521, USA
| | - Meghan L. Bellows-Peterson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Panayiota Pierou
- Department of Physics, University of Cyprus, PO20537, CY1678, Nicosia, Cyprus
| | - Christodoulos A. Floudas
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Dimitrios Morikis
- Department of Bioengineering, University of California, Riverside, California 92521, USA
| | - Georgios Archontis
- Department of Physics, University of Cyprus, PO20537, CY1678, Nicosia, Cyprus
| |
Collapse
|
31
|
Du D, Cheng Z, Chen D. A New Unusual Δ 11(12)-Oleane Triterpene and Anti-Complementary Triterpenes from Prunella Vulgaris Spikes. Nat Prod Commun 2012. [DOI: 10.1177/1934578x1200700422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Anti-complementary activity-guided fractionation of the ethanolic extract of Prunella vulgaris spikes led to the isolation of a new, unusual Δ11(12) triterpene, 3β,13β-dihydroxyolic-11-ene-28-oic acid (1), along with thirteen known triterpenes (2-14). The structure of the new compound was established by 1D and 2D NMR spectroscopic analysis. All the isolates were evaluated for their anti-complementary activity against the classical pathway (CP) and alternative pathway (AP). Eight triterpenes (1-8) showed anti-complementary activity against CP and AP, with CH50 and AP50 values of 0.15-0.37 mg/mL, and 0.29-0.53 mg/mL, respectively. Mechanism study using complement-depleted sera showed that oleanolic acid (2) acted selectively on C1q, C5, and C9 components, while 2α-hydroxy oleanolic acid (3) interacted with C1q, C3, C5 and C9, and 2α,3α-dihydroxyolic-12-ene-28-oic acid (4) blocked C1q, C2, C3, C5 and C9.
Collapse
Affiliation(s)
- Dongsheng Du
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Zhihong Cheng
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Daofeng Chen
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| |
Collapse
|
32
|
Jiang L, Wang Z, Zhu HW, Di HY, Li H, Zhang YY, Chen DF. Beneficial effect of Eucommia polysaccharides on systemic lupus erythematosus-like syndrome induced by Campylobacter jejuni in BALB/c mice. Inflammation 2012; 34:402-11. [PMID: 20814813 DOI: 10.1007/s10753-010-9247-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The stem bark of Eucommia ulmoides Oliv. is commonly used for the treatment of hypertension, rheumatoid arthritis, lumbago, and ischialgia in traditional Chinese medicine. This study was to determine whether the crude polysaccharides (EUPs) isolated from the stem bark of E. ulmoides had beneficial effects on lupus-like syndrome in mice. BALB/c mice were immunized with CJ-S(131) in Freund's complete adjuvant on day 0, and then boosted on day 14. EUPs 15 or 30 mg kg(-1)·day(-1), or prednisone 5 mg kg(-1)·day(-1) was given to BALB/c mice intragastrically from day 0 to 34. Treatment with EUPs 15 or 30 mg kg(-1)·day(-1) for 35 days protected kidney from glomerular injury with reduced immunoglobulin deposition and lowered proteinuria. The increased production of serum autoantibodies and total immunoglobulin G (IgG) was also inhibited. These findings suggested that Eucommia polysaccharides had a beneficial effect on systemic lupus erythematosus-like syndrome induced by CJ-S(131) in BALB/c mice.
Collapse
Affiliation(s)
- Long Jiang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Xie JY, Di HY, Li H, Cheng XQ, Zhang YY, Chen DF. Bupleurum chinense DC polysaccharides attenuates lipopolysaccharide-induced acute lung injury in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:130-137. [PMID: 22112722 DOI: 10.1016/j.phymed.2011.08.057] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 06/25/2011] [Accepted: 08/08/2011] [Indexed: 05/31/2023]
Abstract
Bupleurum chinense DC had hepato-protective, anti-inflammatory, antipyretic, analgesic, and immunomodulatory effect in traditional Chinese medicine. This study was to determine whether the crude polysaccharides isolated from the roots of Bupleurum chinense DC (BCPs) attenuated lipopolysaccharide (LPS)-induced acute lung injury in mice. Mice were challenged with LPS intratracheally 2h before BCPs (20, 40 and 80 mg/kg) administration. The bronchoalveolar lavage fluid (BALF) was collected 24h after LPS challenge. Treatment with BCPs reduced lung wet-to-dry weight ratio. The elevated number of total cells and protein concentration in BALF was reduced. The increased level of myeloperoxidase (MPO), tumor necrosis factor-α (TNF-α) in BALF, and serum nitric oxide (NO) were also inhibited. BCPs significantly attenuated lung injury with improved lung morphology and reduced complement deposition. These results suggested that the effect of BCPs against ALI might be related with its inhibitory effect on excessive activation of complement and on the production of proinflammatory mediators.
Collapse
Affiliation(s)
- Jun-yun Xie
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
34
|
Tamamis P, Pierou P, Mytidou C, Floudas CA, Morikis D, Archontis G. Design of a modified mouse protein with ligand binding properties of its human analog by molecular dynamics simulations: the case of C3 inhibition by compstatin. Proteins 2011; 79:3166-79. [PMID: 21989937 PMCID: PMC3193182 DOI: 10.1002/prot.23149] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 07/05/2011] [Accepted: 07/25/2011] [Indexed: 01/26/2023]
Abstract
The peptide compstatin and its derivatives inhibit the complement-component protein C3 in primate mammals and are potential therapeutic agents against the unregulated activation of complement in humans, but are inactive against C3 from lower mammals. Recent molecular dynamics (MD) simulations showed that the most potent compstatin analog comprised entirely of natural amino acids (W4A9) had a smaller affinity for rat C3, due to reproducible changes in the rat protein structure with respect to the human protein, which eliminated or weakened specific protein-ligand interactions seen in the human C3:W4A9 complex. Here, we study by MD simulations three W4A9 complexes with the mouse C3 protein, and two "transgenic" mouse derivatives, containing a small number (6-9) of human C3 substitutions. The mouse complex experiences the conformational changes and affinity reduction of the rat complex. In the "transgenic" complexes, the conformation remains closer to that of the human complex, the protein-ligand interactions are improved, and the affinity for compstatin becomes "human-like." The present work creates new avenues for a compstatin-sensitive animal model. A similar strategy, involving the comparison of a series of complexes by MD simulations, could be used to design "transgenic" sequences in other systems.
Collapse
Affiliation(s)
- Phanourios Tamamis
- Department of Physics, University of Cyprus, PO20537, CY1678, Nicosia, Cyprus
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
- Department of Bioengineering, University of California, Riverside, California 92521, USA
| | - Panayiota Pierou
- Department of Physics, University of Cyprus, PO20537, CY1678, Nicosia, Cyprus
| | - Chrystalla Mytidou
- Department of Physics, University of Cyprus, PO20537, CY1678, Nicosia, Cyprus
| | | | - Dimitrios Morikis
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Georgios Archontis
- Department of Physics, University of Cyprus, PO20537, CY1678, Nicosia, Cyprus
| |
Collapse
|
35
|
Li Y, Qin Z, Yang M, Qin Y, Lin C, Liu S. Differential expression of complement proteins in cerebrospinal fluid from active multiple sclerosis patients. J Cell Biochem 2011; 112:1930-7. [PMID: 21445879 DOI: 10.1002/jcb.23113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with complex immunopathogenesis. Using the 2-D DIGE technology, we separate CSF proteins from patients with active MS and control subjects. Three of the seven differential proteins identified were related with complement system, and the network analysis of the differential proteins revealed complement activation involvement in active MS. Complement C4b (gamma chain) was confirmed elevated by performing western blotting analysis (P < 0.01). The present results are an independent quantitative proteomic measure in CSF from active MS patients. The differential expression of the complement C4b and related proteins in CSF provides potential biomarkers as well as evidence for the involvement of complement activation in the pathogenesis of MS disease.
Collapse
Affiliation(s)
- Yun Li
- Institute of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan 250012, China
| | | | | | | | | | | |
Collapse
|
36
|
Design and development of TT30, a novel C3d-targeted C3/C5 convertase inhibitor for treatment of human complement alternative pathway-mediated diseases. Blood 2011; 118:4705-13. [PMID: 21860027 DOI: 10.1182/blood-2011-06-359646] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To selectively modulate human complement alternative pathway (CAP) activity implicated in a wide range of acute and chronic inflammatory conditions and to provide local cell surface and tissue-based inhibition of complement-induced damage, we developed TT30, a novel therapeutic fusion protein linking the human complement receptor type 2 (CR2/CD21) C3 fragment (C3frag = iC3b, C3dg, C3d)-binding domain with the CAP inhibitory domain of human factor H (fH). TT30 efficiently blocks ex vivo CAP-dependent C3frag accumulation on activated surfaces, membrane attack complex (MAC) formation and hemolysis of RBCs in a CR2-dependent manner, and with a ∼ 150-fold potency gain over fH, without interference of C3 activation or MAC formation through the classic and lectin pathways. TT30 protects RBCs from hemolysis and remains bound and detectable for at least 24 hours. TT30 selectively inhibits CAP in cynomolgus monkeys and is bioavailable after subcutaneous injection. Using a unique combination of targeting and effector domains, TT30 controls cell surface CAP activation and has substantial potential utility for the treatment of human CAP-mediated diseases.
Collapse
|
37
|
Chen G, Sequeira F, Tyan DB. Novel C1q assay reveals a clinically relevant subset of human leukocyte antigen antibodies independent of immunoglobulin G strength on single antigen beads. Hum Immunol 2011; 72:849-58. [PMID: 21791230 DOI: 10.1016/j.humimm.2011.07.001] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/29/2011] [Accepted: 07/05/2011] [Indexed: 11/25/2022]
Abstract
It has been known for 40 years that cytotoxic human leukocyte antigen (HLA) antibodies are associated with graft rejection. However, the complement-dependent cytotoxicity assay (CDC) used to define these clinically deleterious antibodies suffers from a lack of sensitivity and specificity. Recently, methods exploiting immunoglobulin G (IgG) antibody binding to HLA single antigen beads (SAB) have overcome sensitivity and specificity drawbacks but introduced a new dilemma: which of the much broader set of antibodies defined by these methods are clinically relevant. To address this, we developed a complement-fixing C1q assay on the HLA SAB that combines sensitivity, specificity, and functional potential into one assay. We compared the CDC, IgG, and C1q assays on 96 sera having 2,118 defined antibodies and determined that CDC detects only 19% of complement-fixing antibodies detected by C1q, whereas C1q detects only 47% of antibodies detected by IgG. In the same patient, there is no predictability by IgG mean fluorescence intensity (MFI) as to which of the antibodies will bind C1q because fixation is independent of MFI values. In 3 clinical studies, C1q(+) antibodies appear to be more highly correlated than those detected by IgG alone for antibody-mediated rejection in hearts as well as for kidney transplant glomerulopathy and graft failure.
Collapse
Affiliation(s)
- G Chen
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | | | | |
Collapse
|
38
|
López de Victoria A, Gorham RD, Bellows-Peterson ML, Ling J, Lo DD, Floudas CA, Morikis D. A new generation of potent complement inhibitors of the Compstatin family. Chem Biol Drug Des 2011; 77:431-40. [PMID: 21352502 DOI: 10.1111/j.1747-0285.2011.01111.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Compstatin family peptides are potent inhibitors of the complement system and promising drug candidates against diseases involving under-regulated complement activation. Compstatin is a 13-residue cyclized peptide that inhibits cleavage of complement protein C3, preventing downstream complement activation. We present three new compstatin variants, characterized by tryptophan replacement at positions 1 and/or 13. Peptide design was based on physicochemical reasoning and was inspired by earlier work, which identified tryptophan substitutions at positions 1 and 13 in peptides with predicted C3c binding abilities [Bellows M.L., Fung H.K., Taylor M.S., Floudas C.A., López de Victoria A., Morikis D. (2010) Biophys J; 98: 2337-2346]. The new variants preserve distinct polar and nonpolar surfaces of compstatin, but have altered local interaction capabilities with C3. All three peptides exhibited potent C3 binding by surface plasmon resonance and potent complement inhibition by enzyme-linked immunosorbent assay. We also present enzyme-linked immunosorbent assay data and detailed surface plasmon resonance kinetic data of three peptides from previous computational design.
Collapse
Affiliation(s)
- Aliana López de Victoria
- Department of Bioengineering and Center for Bioengineering Research, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Pyaram K, Yadav VN, Reza MJ, Sahu A. Virus–complement interactions: an assiduous struggle for dominance. Future Virol 2010. [DOI: 10.2217/fvl.10.60] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complement system is a major component of the innate immune system that recognizes invading pathogens and eliminates them by means of an array of effector mechanisms, in addition to using direct lytic destruction. Viruses, in spite of their small size and simple composition, are also deftly recognized and neutralized by the complement system. In turn, as a result of years of coevolution with the host, viruses have developed multiple mechanisms to evade the host complement. These complex interactions between the complement system and viruses have been an area of focus for over three decades. In this article, we provide a broad overview of the field using key examples and up-to-date information on the complement-evasion strategies of viruses.
Collapse
Affiliation(s)
- Kalyani Pyaram
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Viveka Nand Yadav
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Malik Johid Reza
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | | |
Collapse
|
40
|
Ehrnthaller C, Ignatius A, Gebhard F, Huber-Lang M. New insights of an old defense system: structure, function, and clinical relevance of the complement system. Mol Med 2010; 17:317-29. [PMID: 21046060 PMCID: PMC3060978 DOI: 10.2119/molmed.2010.00149] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/28/2010] [Indexed: 12/14/2022] Open
Abstract
The complement system was discovered a century ago as a potent defense cascade of innate immunity. After its first description, continuous experimental and clinical research was performed, and three canonical pathways of activation were established. Upon activation by traumatic or surgical tissue damage, complement reveals beneficial functions of pathogen and danger defense by sensing and clearing injured cells. However, the latest research efforts have provided a more distinct insight into the complement system and its clinical subsequences. Complement has been shown to play a significant role in the pathogenesis of various inflammatory processes such as sepsis, multiorgan dysfunction, ischemia/reperfusion, cardiovascular diseases and many others. The three well-known activation pathways of the complement system have been challenged by newer findings that demonstrate direct production of central complement effectors (for example, C5a) by serine proteases of the coagulation cascade. In particular, thrombin is capable of producing C5a, which not only plays a decisive role on pathogens and infected/damaged tissues, but also acts systemically. In the case of uncontrolled complement activation, “friendly fire” is generated, resulting in the destruction of healthy host tissue. Therefore, the traditional research that focuses on a mainly positive-acting cascade has now shifted to the negative effects and how tissue damage originated by the activation of the complement can be contained. In a translational approach including structure-function relations of this ancient defense system, this review provides new insights of complement-mediated clinical relevant diseases and the development of complement modulation strategies and current research aspects.
Collapse
Affiliation(s)
- Christian Ehrnthaller
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, Center of Surgery, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany.
| | | | | | | |
Collapse
|
41
|
Tamamis P, Morikis D, Floudas CA, Archontis G. Species specificity of the complement inhibitor compstatin investigated by all-atom molecular dynamics simulations. Proteins 2010; 78:2655-67. [PMID: 20589629 PMCID: PMC3138065 DOI: 10.1002/prot.22780] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The development of compounds to regulate the activation of the complement system in non-primate species is of profound interest because it can provide models for human diseases. The peptide compstatin inhibits protein C3 in primate mammals and is a potential therapeutic agent against unregulated activation of complement in humans but is inactive against nonprimate species. Here, we elucidate this species specificity of compstatin by molecular dynamics simulations of complexes between the most potent natural compstatin analog and human or rat C3. The results are compared against an experimental conformation of the human complex, determined recently by X-ray diffraction at 2.4-A resolution. The human complex simulations provide information on the relative contributions to stability of specific C3 and compstatin residues. In the rat simulations, the protein undergoes reproducible conformational changes, which eliminate or weaken specific interactions and reduce the complex stability. The simulation insights can be used to design improved compstatin-based inhibitors for human C3 and active inhibitors against lower mammals.
Collapse
Affiliation(s)
- Phanourios Tamamis
- Department of Physics, University of Cyprus, PO20537, Nicosia CY1678, Cyprus
| | - Dimitrios Morikis
- Department of Bioengineering, University of California, Riverside, California 92521
| | | | - Georgios Archontis
- Department of Physics, University of Cyprus, PO20537, Nicosia CY1678, Cyprus
| |
Collapse
|
42
|
Tu Z, Li Q, Chou HS, Hsieh CC, Meyerson H, Peters MG, Bu H, Fung JJ, Qian S, Lu L, Lin F. Complement mediated hepatocytes injury in a model of autoantibody induced hepatitis. Immunobiology 2010; 216:528-34. [PMID: 20851495 DOI: 10.1016/j.imbio.2010.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 07/26/2010] [Accepted: 08/03/2010] [Indexed: 02/08/2023]
Abstract
Despite multiple reports on autoantibody-initiated complement activation in autoimmune hepatitis (AIH), how does the humoral immunity contribute to the pathogenesis of AIH remained unclear. In this report, by adoptively transferring a polyclonal rabbit anti-OVA antibody into Hep-OVA Tg mice in which OVA is selectively expressed on the surface of hepatocytes, we found that excessive complement activation initiated by the autoantibody overwhelmed the protection of intrinsic cell surface complement regulators, and induced hepatocytes injury both in vitro and in vivo. The anti-OVA antibody induced hepatic injury in Hep-OVA Tg but not WT C57BL/6 mice as assessed by serum ALT levels and liver histopathology. Immunohistochemical analyses showed that after the antibody administration, there was massive complement activation on anti-OVA IgG coated hepatocytes in Hep-OVA Tg mice, but not in WT mice. Consistent with these results, depleting complement by cobra venom factor (CVF) prior to antibody injections protected Hep-OVA Tg mice from anti-OVA IgG induced hepatic injury. In addition, treating Hep-OVA Tg mice with recombinant mouse decay accelerating factor, a native complement inhibitor, protected them from autoantibody induced hepatitis. These results suggest that complement could play a pivotal role in liver specific autoantibody mediated hepatocyte injury in AIH, and that complement inhibitors could be, in principle, developed as novel therapeutics against AIH.
Collapse
Affiliation(s)
- Zhidan Tu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kadam AP, Sahu A. Identification of Complin, a novel complement inhibitor that targets complement proteins factor B and C2. THE JOURNAL OF IMMUNOLOGY 2010; 184:7116-24. [PMID: 20483772 DOI: 10.4049/jimmunol.1000200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Complement factor B (fB) is a key constituent of the alternative pathway (AP). Its central role in causing inflammation and tissue injury through activation of the AP urges the need for its therapeutic targeting. In the current study, we have screened phage-displayed random peptide libraries against fB and identified a novel cyclic hendecapeptide that inhibits activation of fB and the AP. Structure-activity studies revealed that: 1) the cysteine-constrained structure of the peptide is essential for its activity; 2) Ile5, Arg6, Leu7, and Tyr8 contribute significantly to its inhibitory activity; and 3) retro-inverso modification of the peptide results in loss of its activity. Binding studies performed using surface plasmon resonance suggested that the peptide has two binding sites on fB, which are located on the Ba and Bb fragments. Studies on the mechanism of inhibition revealed that the peptide does not block the interaction of fB with the activated form of C3, thereby suggesting that the peptide inhibits fB activation primarily by inhibiting its cleavage by factor D. The peptide showed a weak effect on preformed C3 and C5 convertases. Like inhibition of fB cleavage, the peptide also inhibited C2 cleavage by activated C1s and activation of the classical as well as lectin pathways. Based on its inhibitory activities, we named the peptide Complin.
Collapse
Affiliation(s)
- Archana P Kadam
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune, India
| | | |
Collapse
|
44
|
Vogel CW, Fritzinger DC. Cobra venom factor: Structure, function, and humanization for therapeutic complement depletion. Toxicon 2010; 56:1198-222. [PMID: 20417224 DOI: 10.1016/j.toxicon.2010.04.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Revised: 04/07/2010] [Accepted: 04/08/2010] [Indexed: 11/29/2022]
Abstract
Cobra venom factor (CVF) is the complement-activating protein in cobra venom. This manuscript reviews the structure and function of CVF, how it interacts with the complement system, the structural and functional homology to complement component C3, and the use of CVF as an experimental tool to decomplement laboratory animals to study the functions of complement in host defense and immune response as well as in the pathogenesis of diseases. This manuscript also reviews the recent progress in using the homology between CVF and C3 to study C3 structure and function, and to develop human C3 derivatives with the complement-depleting function of CVF. These human C3 derivatives represent humanized CVF, and are a conceptually different concept for pharmacological intervention of the complement system, therapeutic complement depletion. The use of humanized CVF for therapeutic complement depletion in several pre-clinical models of human diseases is also reviewed.
Collapse
Affiliation(s)
- Carl-Wilhelm Vogel
- Cancer Research Center of Hawaii, University of Hawaii at Manoa, 1236 Lauhala Street, Honolulu, HI 96813, USA.
| | | |
Collapse
|
45
|
Magotti P, Ricklin D, Qu H, Wu YQ, Kaznessis YN, Lambris JD. Structure-kinetic relationship analysis of the therapeutic complement inhibitor compstatin. J Mol Recognit 2010; 22:495-505. [PMID: 19658192 DOI: 10.1002/jmr.972] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Compstatin is a 13-residue peptide that inhibits activation of the complement system by binding to the central component C3 and its fragments C3b and C3c. A combination of theoretical and experimental approaches has previously allowed us to develop analogs of the original compstatin peptide with up to 264-fold higher activity; one of these analogs is now in clinical trials for the treatment of age-related macular degeneration (AMD). Here we used functional assays, surface plasmon resonance (SPR), and isothermal titration calorimetry (ITC) to assess the effect of modifications at three key residues (Trp-4, Asp-6, Ala-9) on the affinity and activity of compstatin and its analogs, and we correlated our findings to the recently reported co-crystal structure of compstatin and C3c. The K(D) values for the panel of tested analogs ranged from 10(-6) to 10(-8) M. These differences in binding affinity could be attributed mainly to differences in dissociation rather than association rates, with a >4-fold range in k(on) values (2-10 x 10(5) M(-1) s(-1)) and a k(off) variation of >35-fold (1-37 x 10(-2) s(-1)) being observed. The stability of the C3b-compstatin complex seemed to be highly dependent on hydrophobic effects at position 4, and even small changes at position 6 resulted in a loss of complex formation. Induction of a beta-turn shift by an A9P modification resulted in a more favorable entropy but a loss of binding specificity and stability. The results obtained by the three methods utilized here were highly correlated with regard to the activity/affinity of the analogs. Thus, our analyses have identified essential structural features of compstatin and provided important information to support the development of analogs with improved efficacy.
Collapse
Affiliation(s)
- Paola Magotti
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
46
|
Integration of ER stress, oxidative stress and the inflammatory response in health and disease. Int J Clin Exp Med 2010; 703:151-62. [PMID: 20369038 DOI: 10.1007/978-1-4419-5635-4_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
There has been much effort to define the molecular basis by which pathophysiological stimuli initiate and/or propagate the inflammatory response. Recent research endeavors on stress response from a cellular organelle called the endoplasmic reticulum (ER) shed new light on the understating of the molecular basis of the inflammatory response and its interaction with other intracellular stress signaling pathways. As a protein folding compartment and dynamic calcium store, the ER plays major roles in sensing cellular stress and mediating highly-specific signaling pathways termed Unfolded Protein Response (UPR). The UPR signaling emanating from the ER has been identified as one of the avenues leading to the inflammatory response. The integration of ER stress, oxidative stress, and the inflammatory response is critical to the pathogenesis of a variety of diseases. In this brief review, we discuss some representative evidence for the integration of ER stress, oxidative stress, and inflammation in health and disease.
Collapse
|
47
|
Rosen AM, Stevens B. The Role of the Classical Complement Cascade in Synapse Loss During Development and Glaucoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 703:75-93. [DOI: 10.1007/978-1-4419-5635-4_6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Larghi EL, Operto MA, Torres R, Kaufman TS. New inhibitors of the complement system inspired in K76-COOH. A SAR study of filifolinol derivatives through modifications of the C3′ position. Bioorg Med Chem Lett 2009; 19:6172-5. [DOI: 10.1016/j.bmcl.2009.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 08/31/2009] [Accepted: 09/02/2009] [Indexed: 12/21/2022]
|
49
|
Wu Y, Chen DF. Anti-complementary effect of polysacchride B3-PS1 inHerba Scutellariae Barbatae(Scutellaria barbata). Immunopharmacol Immunotoxicol 2009; 31:696-701. [DOI: 10.3109/08923970903095314] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
50
|
A protein-bound polysaccharide from the stem bark of Eucommia ulmoides and its anti-complementary effect. Carbohydr Res 2009; 344:1319-24. [DOI: 10.1016/j.carres.2009.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 04/25/2009] [Accepted: 05/05/2009] [Indexed: 11/21/2022]
|