1
|
Muller Guzzo EF, Rosa G, Lourenço de Lima AMD, Padilha R, Coitinho A. Piroxicam reduced the intensity of epileptic seizures in a kindling seizure model. Neurol Res 2024; 46:717-726. [PMID: 38679045 DOI: 10.1080/01616412.2024.2345032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/13/2024] [Indexed: 05/01/2024]
Abstract
Introduction: The close relationship between inflammatory processes and epileptic seizures is already known, although the exact pathophysiological mechanism is unclear. In this study, the anticonvulsant capacity of piroxicam, an anti-inflammatory drug, was evaluated. A rat pentylenetetrazole kindling model was used.Methods: Male Wistar rats, 8-9 weeks old, received piroxicam (0.15 and 0.30 mg/kg), diazepam (2 mg/kg) or saline for 14 days, and PTZ, on alternate days. Intraperitoneal was chosen as the route of administration. The intensity of epileptic seizures was assessed using a modified Racine scale. The open field test and object recognition analysis were performed at the beginning of the study to ensure the safety of the drugs used. At the end of the protocol, the animals were euthanized to measure the levels of inflammatory (TNF-a and IL-6) and anti-inflammatory (IL-10) cytokines in the cortex, hippocampus, and serum.Results:There were no changes in the open field test and object recognition analysis. Piroxicam was found to decrease Racine scale scores at both concentrations. The reported values for IL-6 levels remained steady in all structures, whereas the TNF-alpha level in the cortex was higher in animals treated with piroxicam than in the saline and diazepam subjects. Finally, animals treated with the anti-inflammatory drug presented reduced IL-10 levels in the cortex and hippocampus.onclusions: Using inflammation as a guiding principle, the anticonvulsant effect of PIRO could be associated with the hippocampal circuits, since this structure showed no increase in inflammatory cytokines.
Collapse
Affiliation(s)
| | - Gabriel Rosa
- Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Rafael Padilha
- Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Coitinho
- Microbiology, Immunology and Parasitology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
2
|
Kanaya T, Ito R, Morizawa YM, Sasaki D, Yamao H, Ishikane H, Hiraoka Y, Tanaka K, Matsui K. Glial modulation of the parallel memory formation. Glia 2023. [PMID: 37364894 DOI: 10.1002/glia.24431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
Actions from glial cells could affect the readiness and efficacy of learning and memory. Using a mouse cerebellar-dependent horizontal optokinetic response motor learning paradigm, short-term memory (STM) formation during the online training period and long-term memory (LTM) formation during the offline rest period were studied. A large variability of online and offline learning efficacies was found. The early bloomers with booming STM often had a suppressed LTM formation and late bloomers with no apparent acute training effect often exhibited boosted offline learning performance. Anion channels containing LRRC8A are known to release glutamate. Conditional knockout of LRRC8A specifically in astrocytes including cerebellar Bergmann glia resulted in a complete loss of STM formation while the LTM formation during the rest period remained. Optogenetic manipulation of glial activity by channelrhodopsin-2 or archaerhodopsin-T (ArchT) during the online training resulted in enhancement or suppression of STM formation, respectively. STM and LTM are likely to be triggered simultaneously during online training, but LTM is expressed later during the offline period. STM appears to be volatile and the achievement during the online training is not handed over to LTM. In addition, we found that glial ArchT photoactivation during the rest period resulted in the augmentation of LTM formation. These data suggest that STM formation and LTM formation are parallel separate processes. Strategies to weigh more on the STM or the LTM could depend on the actions of the glial cells.
Collapse
Affiliation(s)
- Teppei Kanaya
- Super-Network Brain Physiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Ryo Ito
- Super-Network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yosuke M Morizawa
- Super-Network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Daichi Sasaki
- Super-Network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hiroki Yamao
- Super-Network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hiroshi Ishikane
- Department of Psychology, Graduate School of Humanities, Senshu University, Kawasaki, Japan
| | - Yuichi Hiraoka
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ko Matsui
- Super-Network Brain Physiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
- Super-Network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
3
|
Guzzo EFM, de Lima Rosa G, Domingues AM, Padilha RB, Coitinho AS. Reduction of seizures and inflammatory markers by betamethasone in a kindling seizure model. Steroids 2023; 193:109202. [PMID: 36828350 DOI: 10.1016/j.steroids.2023.109202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Epilepsy is a chronic disease characterized by an ongoing predisposition to seizures. Although inflammation has emerged as a crucial factor in the etiology of epilepsy, no approaches to anti-inflammatory treatment have been clinically proven to date. Betamethasone (a corticosteroid drug used in the clinic for its anti-inflammatory and immunosuppressive effects) has never been evaluated in attenuating the intensity of seizures in a kindling animal model of seizures. Using a kindling model in male wistar rats, this study evaluated the effect of betamethasone on the severity of seizures and levels of pro-inflammatory interleukins. Seizures were induced by pentylenetetrazole (30 mg/kg) on alternate days for 15 days. The animals were divided into four groups: a control group treated with saline, another control group treated with diazepam (2 mg/kg), and two groups treated with betamethasone (0.125 and 0.250 mg/kg, respectively). Open field test was conducted. Betamethasone treatments were effective in reducing the intensity of epileptic seizures. There were lower levels of Tumor Necrosis Factor-α and interleukin-1β in the cortex, compared to the saline group, on the other hand, levels in the hippocampus remained similar to the control groups. There was no change in the levels of interleukin-6 in the evaluated structures. Serum inflammatory mediators remained similar. Lower quantities of inflammatory mediators in the central nervous system may have been the key to the reduced severity of seizures on the Racine scale.
Collapse
Affiliation(s)
- Edson Fernando Muller Guzzo
- Programa de Pós-Graduação em Ciências Biológicas - Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriel de Lima Rosa
- Programa de Pós-Graduação em Ciências Biológicas - Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amanda Muliterno Domingues
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Bremm Padilha
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriana Simon Coitinho
- Programa de Pós-Graduação em Ciências Biológicas - Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas - Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Rosa J, de Carvalho Myskiw J, Fiorenza NG, Furini CRG, Sapiras GG, Izquierdo I. Hippocampal cholinergic receptors and the mTOR participation in fear-motivated inhibitory avoidance extinction memory. Behav Brain Res 2023; 437:114129. [PMID: 36179804 DOI: 10.1016/j.bbr.2022.114129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/07/2022] [Accepted: 09/24/2022] [Indexed: 10/14/2022]
Abstract
Evidence has demonstrated the hippocampal cholinergic system and the mammalian target of rapamycin (mTOR) participation during the memory formation of aversive events. This study assessed the role of these systems in the hippocampus for the extinction memory process by submitting male Wistar rats to fear-motivated step-down inhibitory avoidance (IA). The post-extinction session administration of the nicotinic and muscarinic cholinergic receptor antagonists, mecamylamine and scopolamine, respectively, both at doses of 2 µg/µl/side, and rapamycin, an mTOR inhibitor (0.02 µg/µl/side), into the CA1 region of the dorsal hippocampus, impaired the IA extinction memory. Furthermore, the nicotinic and muscarinic cholinergic receptor agonists, nicotine and muscarine, respectively, had a dose-dependent effect on the IA extinction memory when administered intra-CA1, immediately after the extinction session. Nicotine (0.6 µg/µl/side) and muscarine (0.02 µg/µl/side), respectively, had no effect, while the higher doses (6 and 2 µg/µl/side, respectively) impaired the IA extinction memory. Interestingly, the co-administration of muscarine at the lower dose blocked the impairment that was induced by rapamycin. This effect was not observed when nicotine at the lower dose was co-administered. These results have demonstrated the participation of the cholinergic receptors and mTOR in the hippocampus for IA extinction, and that the cholinergic agonists had a dose-dependent effect on the IA extinction memory. This study provides insights related to the behavioural aspects and the neurobiological properties underlying the early stage of fear-motivated IA extinction memory consolidation and suggests that there is hippocampal muscarinic receptor participation independent of mTOR in this memory process.
Collapse
Affiliation(s)
- Jessica Rosa
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo (USP), Bandeirantes 3900, 14049-900 Ribeirao Preto, SP, Brazil.
| | - Jociane de Carvalho Myskiw
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves 9500, Building 43422, Room 208 A, 91501-970 Porto Alegre, RS, Brazil
| | - Natalia Gindri Fiorenza
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Oswaldo Cruz Foundation (FIOCRUZ), Branch Ceara, 60760-000 Eusebio, CE, Brazil
| | - Cristiane Regina Guerino Furini
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, 3rd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Gerson Guilherme Sapiras
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Clinical Hospital of Passo Fundo (HCPF), Tiradentes 295, 99010-260 Passo Fundo, RS, Brazil
| | - Ivan Izquierdo
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Parent MB. Using Postmeal Measures and Manipulations to Investigate Hippocampal Mnemonic Control of Eating Behavior. Neuroscience 2022; 497:228-238. [PMID: 34998891 PMCID: PMC9256844 DOI: 10.1016/j.neuroscience.2021.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
Episodic meal-related memories provide the brain with a powerful mechanism for tracking and controlling eating behavior because they contain a detailed record of recent energy intake that likely outlasts the physiological signals generated by feeding bouts. This review briefly summarizes evidence from human participants showing that episodic meal-related memory limits later eating behavior and then describes our research aimed at investigating whether hippocampal neurons mediate the inhibitory effects of meal-related memory on subsequent feeding. Our approach has been inspired by pioneering work conducted by Ivan Izquierdo and others who used posttraining manipulations to investigate memory consolidation. This review describes the rationale and value of posttraining manipulations, how Izquierdo used them to demonstrate that dorsal hippocampal (dHC) neurons are critical for memory consolidation, and how we have adapted this strategy to investigate whether dHC neurons are necessary for mnemonic control of energy intake. I describe our evidence showing that ingestion activates the molecular processes necessary for synaptic plasticity and memory during the early postprandial period, when the memory of the meal would be undergoing consolidation, and then summarize our findings showing that neural activity in dHC neurons is critical during the early postprandial period for limiting future intake. Collectively, our evidence supports the hypothesis that dHC neurons mediate the inhibitory effects of ingestion-related memory on future intake and demonstrates that post-experience memory modulation is not confined to artificial laboratory memory tasks.
Collapse
Affiliation(s)
- M B Parent
- Neuroscience Institute & Department of Psychology, Georgia State University, PO Box 5030, Atlanta, GA 30303, USA.
| |
Collapse
|
6
|
Beisel JMS, Maza FJ, Justel N, Larrosa PNF, Delorenzi A. Embodiment of an Emotional State Concurs with a Stress-Induced Reconsolidation Impairment Effect on an Auditory Verbal Word-List Memory. Neuroscience 2022; 497:239-256. [PMID: 35472504 DOI: 10.1016/j.neuroscience.2022.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
Abstract
Stress alters memory. Understanding how and when acute stress improves or impairs memory is a challenge. Stressors can affect memory depending on a combination of factors. Typically, mild stressors and stress hormones might promote consolidation of memory processing and impair memory retrieval. However, studies have shown that during reconsolidation, stressors may either enhance or impair recalled memory. We propose that a function of reconsolidation is to induce changes in the behavioral expression of memory. Here, we adapted the Rey Auditory Verbal Learning Test (RAVLT) to evaluate the effect of cold pressor stress (CPS) during the reconsolidation of this declarative memory. A decay in memory performance attributable to forgetting was found at the time of memory reactivation 5 d after training (day 6). Contrary to our initial predictions, the administration of CPS after memory reactivation impaired long-term memory expression (day 7), an effect dependent on the presence of a mismatch during Reactivation Session. No differences in recognition tests were found. To assess putative sources of the negative memory modulation effects induced during reconsolidation, current emotional state was evaluated immediately after Testing Session (day 7). An increase in arousal was revealed only when CPS was administered concurrently with memory reactivation-labilization. The possibility of integration during reconsolidation of independent associations of these emotive components in the trace is a critical factor in modulating neutral memories during reconsolidation by stressors.
Collapse
Affiliation(s)
- Jessica Mariel Sánchez Beisel
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Pabellón IFIBYNE, Argentina
| | - Francisco Javier Maza
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Pabellón IFIBYNE, Argentina
| | - Nadia Justel
- Lab. Interdisciplinario de Neurociencia Cognitiva (LINC), CEMSC3, ICIFI, UNSAM CONICET, Argentina
| | - Pablo Nicolas Fernandez Larrosa
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Pabellón IFIBYNE, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Argentina.
| | - Alejandro Delorenzi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Pabellón IFIBYNE, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Argentina.
| |
Collapse
|
7
|
Guerreiro G, Faverzani J, Moura AP, Volfart V, Gome Dos Reis B, Sitta A, Gonzalez EA, de Lima Rosa G, Coitinho AS, Baldo G, Wajner M, Vargas CR. Protective effects of L-carnitine on behavioral alterations and neuroinflammation in striatum of glutaryl-COA dehydrogenase deficient mice. Arch Biochem Biophys 2021; 709:108970. [PMID: 34181873 DOI: 10.1016/j.abb.2021.108970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/06/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022]
Abstract
Glutaric acidemia type 1 (GA1) is caused by glutaryl-CoA dehydrogenase deficiency that leads to a blockage in the metabolic route of the amino acids lysine and tryptophan and subsequent accumulation of glutaric acid (GA), 3-hydroxyglutaric acids and glutarylcarnitine (C5DC). Patients predominantly manifest neurological symptoms, associated with acute striatal degeneration, as well as progressive cortical and striatum injury whose pathogenesis is not yet fully established. Current treatment includes protein/lysine restriction and l-carnitine supplementation of (L-car). The aim of this work was to evaluate behavior parameters and pro-inflammatory factors (cytokines IL-1β, TNF-α and cathepsin-D levels), as well as the anti-inflammatory cytokine IL10 in striatum of knockout mice (Gcdh-/-) and wild type (WT) mice submitted to a normal or a high Lys diet. The potential protective effects of L-car treatment on these parameters were also evaluated. Gcdh-/- mice showed behavioral changes, including lower motor activity (decreased number of crossings) and exploratory activity (reduced number of rearings). Also, Gcdh-/- mice had significantly higher concentrations of glutarylcarnitine (C5DC) in blood and cathepsin-D (CATD), interleukin IL-1β and tumor factor necrosis alpha (TNF-α) in striatum than WT mice. Noteworthy, L-car treatment prevented most behavioral alterations, normalized CATD levels and attenuated IL-1β levels in striatum of Gcdh-/- mice. Finally, IL-1β was positively correlated with CATD and C5DC levels and L-car was negatively correlated with CATD. Our results demonstrate behavioral changes and a pro-inflammatory status in striatum of the animal model of GA1 and, most importantly, L-car showed important protective effects on these alterations.
Collapse
Affiliation(s)
- Gilian Guerreiro
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035- 903, Porto Alegre, RS, Brazil.
| | - Jéssica Faverzani
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil; Programa de Pós-Graduação Em Ciências Farmacêuticas, UFRGS, Av. Ipiranga, 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Alana Pimentel Moura
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035- 903, Porto Alegre, RS, Brazil
| | - Vitoria Volfart
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Bianca Gome Dos Reis
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Angela Sitta
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035- 903, Porto Alegre, RS, Brazil
| | - Esteban Alberto Gonzalez
- Programa de Pós-Graduação Em Fisiologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Gabriel de Lima Rosa
- Programa de Pós-Graduação Em Fisiologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Adriana Simon Coitinho
- Programa de Pós-Graduação Em Fisiologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Programa de Pós-Graduação Em Fisiologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035- 903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, UFRGS, Rua Ramiro Barcelos, 2600, 90035 000, Porto Alegre, RS, Brazil
| | - Carmen Regla Vargas
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035- 903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, UFRGS, Rua Ramiro Barcelos, 2600, 90035 000, Porto Alegre, RS, Brazil; Programa de Pós-Graduação Em Ciências Farmacêuticas, UFRGS, Av. Ipiranga, 2752, 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Alexandre Netto C. A tribute to Professor Ivan Izquierdo. JORNAL BRASILEIRO DE PSIQUIATRIA 2021. [DOI: 10.1590/0047-2085000000328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
de Lima Rosa G, Muller Guzzo E, Muliterno Domingues A, Bremm Padilha R, Dias de Oliveira Amaral V, Simon Coitinho A. Effects of prednisolone on behavioral and inflammatory profile in animal model of PTZ-induced seizure. Neurosci Lett 2020; 743:135560. [PMID: 33359047 DOI: 10.1016/j.neulet.2020.135560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 01/22/2023]
Abstract
Epilepsy is a chronic neurological condition that affects 1%-2% of the world population. Although research about the disease is advancing and a wide variety of drugs is available, about 30 % of patients have refractory epilepsy which cannot be controlled with the most common drugs. This highlights the need for a better understanding of the disorder and new types of treatment for it. Against this backdrop, a growing body of evidence has reported that inflammation may play a role both in the origin and in the progression of seizures. It has shown a tendency to be both the root and the result of epilepsy. This investigation aimed to assess the impact of prednisolone, a steroidal anti-inflammatory drug, in an animal model of pentylenetetrazole (PTZ)-induced seizures, at 1 mg/kg and 5 mg/kg doses. We also examined the degree of seizure severity and the modulation of pro-inflammatory cytokines in the treated animals. Four treatment groups were used (saline, diazepam, prednisolone 1 mg/kg, and prednisolone 5 mg/kg) and, in addition to their own daily treatments, subconvulsant doses of pentylenetetrazole (25 mg/kg) were administered every other day during a test protocol that lasted 14 days. After treatment, the cytokines interleukin 1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-α) were measured in the animals' sera, hippocampi, and prefrontal cortices. Animals treated with prednisolone presented less severe seizures than the animals in the saline group, and there was a decrease in pro-inflammatory cytokine levels in central structures, but not peripheral ones. In short, an animal model of chemically-induced epileptic seizures was used, in which the animals were treated with doses of prednisolone, and these animals presented less severe seizures than the negative control group (saline), in addition to showing decreased levels of pro-inflammatory cytokines IL-6, IL-1β and TNF-α, in the hippocampi and prefrontal cortices, but not the sera.
Collapse
Affiliation(s)
- Gabriel de Lima Rosa
- Postgraduate Program in Biological Sciences - Physiology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - Edson Muller Guzzo
- Postgraduate Program in Biological Sciences - Physiology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - Amanda Muliterno Domingues
- Postgraduate Program in Agricultural and Environmental Microbiology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - Rafael Bremm Padilha
- Department of Microbiology, Immunology and Parasitology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - Vitória Dias de Oliveira Amaral
- Department of Microbiology, Immunology and Parasitology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - Adriana Simon Coitinho
- Postgraduate Program in Biological Sciences - Physiology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil; Postgraduate Program in Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil; Department of Microbiology, Immunology and Parasitology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil.
| |
Collapse
|
10
|
Savi FF, de Oliveira A, de Medeiros GF, Bozza FA, Michels M, Sharshar T, Dal-Pizzol F, Ritter C. What animal models can tell us about long-term cognitive dysfunction following sepsis: A systematic review. Neurosci Biobehav Rev 2020; 124:386-404. [PMID: 33309906 DOI: 10.1016/j.neubiorev.2020.12.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/28/2023]
Abstract
Survivors of sepsis often develop long-term cognitive impairments. This review aimed at exploring the results of the behavioral tools and tests which have been used to evaluate cognitive dysfunction in different animal models of sepsis. Two independent investigators searched for sepsis- and cognition-related keywords. 6323 publications were found, of which 355 were selected based on their title, and 226 of these were chosen based on manuscript review. LPS was used to induce sepsis in 171 studies, while CLP was used in 55 studies. Inhibitory avoidance was the most widely used method for assessing aversive memory, followed by fear conditioning and continuous multi-trial inhibitory avoidance. With regard to non-aversive memory, most studies used the water maze, open-field, object recognition, Y-maze, plus maze, and radial maze tests. Both CLP and LPS models of sepsis were effective in inducing short- and long-term behavioral impairment. Our findings help elucidate the mechanisms involved in the pathophysiology of sepsis-induced cognitive changes, as well as the available methods and tests used to study this in animal models.
Collapse
Affiliation(s)
- Felipe Figueredo Savi
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | - Alexandre de Oliveira
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | | | - Fernando Augusto Bozza
- Laboratório de Medicina Intensiva, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | - Tarek Sharshar
- Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, Paris, France; Department of Neuro-Intensive Care Medicine, Sainte-Anne Hospital, Paris-Descartes University, Paris, France
| | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil; Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, Paris, France
| | - Cristiane Ritter
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil.
| |
Collapse
|
11
|
Guzzo EFM, Lima KR, Vargas CR, Coitinho AS. Effect of dexamethasone on seizures and inflammatory profile induced by Kindling Seizure Model. J Neuroimmunol 2018; 325:92-98. [PMID: 30316679 DOI: 10.1016/j.jneuroim.2018.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 01/16/2023]
Abstract
The objective of this study was to evaluate the effect of dexamethasone, on the severity of seizures and levels of pro-inflammatory interleukins in animals with kindling model induced by pentylenetetrazole (20 mg/kg) in alternated days for 15 days of treatment. The animals were divided into five groups: control group given saline, a group treated with diazepam (2 mg/kg) and groups treated with dexamethasone (1, 2 and 4 mg/kg). Open field test was conducted. The treatment with dexamethasone decreased the severity of seizures, also decreased TNF-alpha and Interleukin 1 beta levels in the hippocampus and TNF-alpha level in the serum.
Collapse
Affiliation(s)
- Edson Fernando Müller Guzzo
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Karina Rodrigues Lima
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Estado do Rio grande do Sul, Porto Alegre, Brazil
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica, UFRGS, Rua Ramiro Barcelos, 2600, CEP 90035-003 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Av. Ipiranga, 2752, CEP 90610-000 Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil; Departamento de Medicina Interna, Faculdade de Medicina, UFRGS, Brazil
| | - Adriana Simon Coitinho
- Programa de Pós-Graduação em Ciências Biológicas - Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
12
|
Vieira V, Glassmann D, Marafon P, Pereira P, Gomez R, Coitinho AS. Effect of diclofenac sodium on seizures and inflammatory profile induced by kindling seizure model. Epilepsy Res 2016; 127:107-113. [PMID: 27589413 DOI: 10.1016/j.eplepsyres.2016.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/12/2016] [Accepted: 08/17/2016] [Indexed: 01/11/2023]
Abstract
Epilepsy is a disorder that affects 1-2% of the population and a significant percentage of these patients do not respond to anticonvulsant drugs available in the market suggesting the need to investigate new pharmacological treatments. Several studies have shown that inflammation occurs during epileptogenesis and may contribute to the development and progression of epilepsy, demonstrating increased levels of pro-inflammatory interleukins in animal models and human patients. The objective of this study was to evaluate the effect of non-steroidal anti-inflammatory diclofenac sodium on the severity of seizures and levels of pro-inflammatory interleukins in animals with kindling model induced by PTZ. The kindling model was induced by injections of subconvulsant doses of PTZ (20mg/kg) in alternated days for 15days of treatment. The animals were divided into four groups: control group given saline, group treated with diazepam (2mg/kg) and groups treated with diclofenac sodium (5 and 10mg/kg). After treatment the open field tests was conducted. The severity of seizures was evaluated by the Racine scale. We evaluated the levels of IL-1β, IL-6 and TNF-α in the blood, hippocampus and cortex of animals. The treatment with diclofenac sodium, in the PTZ induced kindling model, decreased severity of seizures and interleukin-6 and TNF-α levels in the hippocampus of animals treated with doses of 5 and 10mg/kg. New studies are needed to investigate a new therapeutic approach in the treatment of epilepsy with this anti-inflammatory non-steroidal drug.
Collapse
Affiliation(s)
- Vinícius Vieira
- Programa de Pós-Graduação em Ciências Biológicas - Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Dreicy Glassmann
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Paula Marafon
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Patricia Pereira
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Rosane Gomez
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Adriana Simon Coitinho
- Programa de Pós-Graduação em Ciências Biológicas - Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil; Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.
| |
Collapse
|
13
|
Piñero DJ, Connor JR. Iron in the Brain: An Important Contributor in Normal and Diseased States. Neuroscientist 2016. [DOI: 10.1177/107385840000600607] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Iron is essential for normal neurological function because of its role in oxidative metabolism and because it is a cofactor in the synthesis of neurotransmitters and myelin. In the past several years, there has been increased attention to the importance of oxidative stress in the central nervous system. Iron is the most important inducer of reactive oxygen species, therefore, the relation of iron to neurodegenerative processes is more appreciated today than it was a few years ago. Nevertheless, despite this increased attention and awareness, our knowledge of iron metabolism in the brain at the cellular and molecular levels is still limited. Iron is distributed in a heterogeneous fashion among the different regions and cells of the brain. This regional and cellular heterogeneity is preserved across many species. Brain iron concentrations are not static; they increase with age and in many diseases and decrease when iron is deficient in the diet. In infants and children, insufficient iron in the diet is associated with decreased brain iron and with changes in behavior and cognitive functioning. Abnormal iron accumulation in the diseased brain areas and, in some cases, alterations in iron-related proteins have been reported in many neurodegenerative diseases, including Hallervorden-Spatz syndrome, Alzheimer’s disease, Parkinson’s disease, and Friedreich’s ataxia. There is strong evidence for iron-mediated oxidative damage as a primary contributor to cell death in these disorders. Demyelinating diseases, such as multiple sclerosis, especially warrant study in relation to iron availability. Myelin synthesis and maintenance have a high iron requirement, thus, oligodendrocytes must have a relatively high and constant supply of iron. However, the high oxygen utilization, high density of lipids, and high iron content of white matter all combine to increase the risk of oxidative damage. We review here the current knowledge of the normal metabolism of iron in the brain and the suspected role of iron in neuropathology.
Collapse
Affiliation(s)
- Domingo J. Piñero
- George M. Leader Family Laboratory for Alzheimer’s Disease Research, Department of Neuroscience & Anatomy, Penn State University, College of Medicine, Hershey, Pennsylvania
| | - James R. Connor
- George M. Leader Family Laboratory for Alzheimer’s Disease Research, Department of Neuroscience & Anatomy, Penn State University, College of Medicine, Hershey, Pennsylvania,
| |
Collapse
|
14
|
Colettis NC, Snitcofsky M, Kornisiuk EE, Gonzalez EN, Quillfeldt JA, Jerusalinsky DA. Amnesia of inhibitory avoidance by scopolamine is overcome by previous open-field exposure. ACTA ACUST UNITED AC 2014; 21:634-45. [PMID: 25322799 PMCID: PMC4201807 DOI: 10.1101/lm.036210.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The muscarinic cholinergic receptor (MAChR) blockade with scopolamine either extended or restricted to the hippocampus, before or after training in inhibitory avoidance (IA) caused anterograde or retrograde amnesia, respectively, in the rat, because there was no long-term memory (LTM) expression. Adult Wistar rats previously exposed to one or two open-field (OF) sessions of 3 min each (habituated), behaved as control animals after a weak though over-threshold training in IA. However, after OF exposure, IA LTM was formed and expressed in spite of an extensive or restricted to the hippocampus MAChR blockade. It was reported that during and after OF exposure and reexposure there was an increase in both hippocampal and cortical ACh release that would contribute to “prime the substrate,” e.g., by lowering the synaptic threshold for plasticity, leading to LTM consolidation. In the frame of the “synaptic tagging and capture” hypothesis, plasticity-related proteins synthesized during/after the previous OF could facilitate synaptic plasticity for IA in the same structure. However, IA anterograde amnesia by hippocampal protein synthesis inhibition with anisomycin was also prevented by two OF exposures, strongly suggesting that there would be alternative interpretations for the role of protein synthesis in memory formation and that another structure could also be involved in this “OF effect.”
Collapse
Affiliation(s)
- Natalia C Colettis
- Laboratorio de Neuroplasticidad y Neurotoxinas (LaNyN), Instituto de Biología Celular y Neurociencias (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Marina Snitcofsky
- Laboratorio de Neuroplasticidad y Neurotoxinas (LaNyN), Instituto de Biología Celular y Neurociencias (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Edgar E Kornisiuk
- Laboratorio de Neuroplasticidad y Neurotoxinas (LaNyN), Instituto de Biología Celular y Neurociencias (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Emilio N Gonzalez
- Laboratorio de Neuroplasticidad y Neurotoxinas (LaNyN), Instituto de Biología Celular y Neurociencias (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Jorge A Quillfeldt
- Laboratório de Psicobiologia e Neurocomputação, Depto. de Biofísica, UFRGS, Porto Alegre 91501-970, Brazil
| | - Diana A Jerusalinsky
- Laboratorio de Neuroplasticidad y Neurotoxinas (LaNyN), Instituto de Biología Celular y Neurociencias (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| |
Collapse
|
15
|
Rasekhi K, Oryan S, Nasehi M, Zarrindast MR. Involvement of the nucleus accumbens shell glutamatergic system in ACPA-induced impairment of inhibitory avoidance memory consolidation. Behav Brain Res 2014; 269:28-36. [DOI: 10.1016/j.bbr.2014.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/30/2022]
|
16
|
2-Phenylethynyl-butyltellurium enhances learning and memory impaired by scopolamine in mice. Behav Pharmacol 2013; 24:249-54. [DOI: 10.1097/fbp.0b013e32836353a5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Ghiasvand M, Rezayof A, Ahmadi S, Zarrindast MR. β1-noradrenergic system of the central amygdala is involved in state-dependent memory induced by a cannabinoid agonist, WIN55,212-2, in rat. Behav Brain Res 2011; 225:1-6. [DOI: 10.1016/j.bbr.2011.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 06/09/2011] [Accepted: 06/11/2011] [Indexed: 11/25/2022]
|
18
|
de Oliveira RW, Martin S, de Oliveira CL, Milani H, Schiavon A, Joca S, Pardo L, Stühmer W, Del Bel E. Eag1, Eag2, and SK3 potassium channel expression in the rat hippocampus after global transient brain ischemia. J Neurosci Res 2011; 90:632-40. [DOI: 10.1002/jnr.22772] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/19/2011] [Accepted: 07/28/2011] [Indexed: 11/08/2022]
|
19
|
Trannoy S, Redt-Clouet C, Dura JM, Preat T. Parallel processing of appetitive short- and long-term memories in Drosophila. Curr Biol 2011; 21:1647-53. [PMID: 21962716 DOI: 10.1016/j.cub.2011.08.032] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/15/2011] [Accepted: 08/15/2011] [Indexed: 11/26/2022]
Abstract
It is broadly accepted that long-term memory (LTM) is formed sequentially after learning and short-term memory (STM) formation, but the nature of the relationship between early and late memory traces remains heavily debated [1-5]. To shed light on this issue, we used an olfactory appetitive conditioning in Drosophila, wherein starved flies learned to associate an odor with the presence of sugar [6]. We took advantage of the fact that both STM and LTM are generated after a unique conditioning cycle [7, 8] to demonstrate that appetitive LTM is able to form independently of STM. More specifically, we show that (1) STM retrieval involves output from γ neurons of the mushroom body (MB), i.e., the olfactory memory center [9, 10], whereas LTM retrieval involves output from αβ MB neurons; (2) STM information is not transferred from γ neurons to αβ neurons for LTM formation; and (3) the adenylyl cyclase RUT, which is thought to operate as a coincidence detector between the olfactory stimulus and the sugar stimulus [11-14], is required independently in γ neurons to form appetitive STM and in αβ neurons to form LTM. Taken together, these results demonstrate that appetitive short- and long-term memories are formed and processed in parallel.
Collapse
Affiliation(s)
- Séverine Trannoy
- Genes and Dynamics of Memory Systems Group, Neurobiology Unit, CNRS, ESPCI, 10 Rue Vauquelin, 75005 Paris, France
| | | | | | | |
Collapse
|
20
|
Boccia MM, Blake MG, Krawczyk MC, Baratti CM. Sildenafil, a selective phosphodiesterase type 5 inhibitor, enhances memory reconsolidation of an inhibitory avoidance task in mice. Behav Brain Res 2011; 220:319-24. [PMID: 21333692 DOI: 10.1016/j.bbr.2011.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 12/25/2022]
Abstract
Intracellular levels of the second messengers cAMP and cGMP are maintained through a balance between production, carried out by adenyl cyclase (AC) and guanylyl cyclase (GC), and degradation, carried out by phosphodiesterases (PDEs). Recently, PDEs have gained increased attention as potential new targets for cognition enhancement, with particular reference to phosphodiesterase type 5 (PDE5A). It is accepted that once consolidation is completed memory becomes permanent, but it has also been suggested that reactivation (memory retrieval) of the original memory makes it sensitive to the same treatments that affect memory consolidation when given after training. This new period of sensitivity coined the term reconsolidation. Sildenafil (1, 3, and 10mg/kg, ip), a cGMP-PDE5 inhibitor, facilitated retention performance of a one-trial step-through inhibitory avoidance task, when administered to CF-1 male mice immediately after retrieval. The effects of sildenafil (1mg/kg, ip) were time-dependent, long-lasting and inversely correlated with memory age. The administration of sildenafil (1mg/kg, ip) 30 min prior to the 2nd retention test did not affect retention of mice given post-retrieval injections of either vehicle or sildenafil (1mg/kg, ip). Finally, an enhancement of retention was also observed in CF-1 female mice receiving sildenafil (1mg/kg, ip) immediately, but not 180 min after retrieval. In the present paper we reported for the first time that systemic administration of sildenafil after memory reactivation enhances retention performance of the original learning. Our results indirectly point out cGMP, a component of the NO/cGMP/PKG pathway, as a necessary factor for memory reconsolidation.
Collapse
Affiliation(s)
- M M Boccia
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
21
|
Rosa DV, Souza RP, Souza BR, Lima FF, Valvassori SS, Gomez MV, Quevedo J, Romano-Silva MA. Inhibitory avoidance task does not change NCS-1 level in rat brain. Brain Res Bull 2010; 82:289-92. [DOI: 10.1016/j.brainresbull.2010.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 04/27/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
|
22
|
Rezayat M, Niasari H, Ahmadi S, Parsaei L, Zarrindast MR. N-methyl-D-aspartate receptors are involved in lithium-induced state-dependent learning in mice. J Psychopharmacol 2010; 24:915-21. [PMID: 19164491 DOI: 10.1177/0269881108100093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have previously shown lithium-induced state-dependent learning in a step-down inhibitory avoidance task. In the present study, the effects of intracerebroventricular injections of N-methyl-D-aspartate (NMDA) receptor agents on the lithium-induced state-dependent learning have been investigated. A single-trial step-down inhibitory avoidance task was used to assess memory in male Naval Medical Research Institute (NMRI) mice. The results showed that post-training lithium (10 mg/kg) decreased the step-down latency on the test day, which was reversed by pre-test administration of the same dose of the drug; indicating state-dependent learning induced by lithium. Pre-test administration of NMDA (0.0001, 0.001 and 0.01 microg/mouse, intracerebroventricular) could also substitute for pre-test lithium to reverse the decrease of the step-down latency induced by post-training lithium. Furthermore, pre-test co-administration of an ineffective dose of NMDA (0.00001 microg/mouse, intracerebroventricular.) with lower doses of lithium (1.25, 2.5 and 5 mg/kg, intraperitoneally.) synergistically reversed the decrease of the step-down latency. On the contrary, pre-test injections of NMDA receptor antagonist D-AP5 (0.25, 0.5, 1 and 2 microg/mouse, intracerebroventricular.) disrupted state-dependent learning induced by lithium. The results suggest that NMDA receptors may be involved, at least partly, in the lithium-induced state-dependent learning.
Collapse
Affiliation(s)
- M Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
23
|
Sticht M, Mitsubata J, Tucci M, Leri F. Reacquisition of heroin and cocaine place preference involves a memory consolidation process sensitive to systemic and intra-ventral tegmental area naloxone. Neurobiol Learn Mem 2009; 93:248-60. [PMID: 19857583 DOI: 10.1016/j.nlm.2009.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 09/29/2009] [Accepted: 10/20/2009] [Indexed: 02/08/2023]
Abstract
To investigate the effect of naloxone on a putative memory consolidation process underlying reacquisition of heroin and cocaine conditioned place preference, four studies were conducted in male Sprague-Dawley rats using a common procedure involving: place conditioning (0.3 or 1mg/kg heroin or 20mg/kg cocaine; x4 sessions), extinction (vehiclex4 sessions), and reconditioning (0 or 1mg/kg heroin or 20mg/kg cocaine; x1 session). Systemic naloxone injections (0, 1 and 3mg/kg) or bilateral intra-ventral tegmental area (VTA) naloxone methiodide infusions (2 nmol in 0.5 microl x side) were administered at different times following reconditioning. Post-reconditioning administration of naloxone dose-dependently blocked, attenuated and had no effect on reacquisition of heroin CPP when administered immediately, 1h and 6h after reconditioning, respectively. The highest dose of naloxone also blocked reacquisition of cocaine CPP, and did not produce a conditioned place aversion in heroin-naïve and heroin pre-treated animals. Post-reconditioning infusions in the VTA, but not in adjacent structures, blocked reacquisition of heroin CPP when administered immediately, but not 6h, after reconditioning. These data suggest that reacquisition of drug-cues associations involves a memory consolidation process sensitive to manipulations of the endogenous opioid system, and indicate that opioid receptors in the VTA may be critically involved in the re-emergence of drug seeking behavior.
Collapse
Affiliation(s)
- Martin Sticht
- Department of Psychology, University of Guelph, Guelph, Canada N1G 2W1
| | | | | | | |
Collapse
|
24
|
Baratti CM, Boccia MM, Blake MG. Pharmacological effects and behavioral interventions on memory consolidation and reconsolidation. Braz J Med Biol Res 2009; 42:148-54. [PMID: 19274341 DOI: 10.1590/s0100-879x2009000200001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 01/05/2009] [Indexed: 01/02/2023] Open
Abstract
In this article, we will review some behavioral, pharmacological and neurochemical studies from our laboratory on mice, which might contribute to our understanding of the complex processes of memory consolidation and reconsolidation. We discuss the post-training (memory consolidation) and post-reactivation (memory reconsolidation) effects of icv infusions of hemicholinium, a central inhibitor of acetylcholine synthesis, of intraperitoneal administration of L-NAME, a non-specific inhibitor of nitric oxide synthase, of intrahippocampal injections of an inhibitor of the transcription factor NF-kappaB, and the exposure of mice to a new learning situation on retention performance of an inhibitory avoidance response. All treatments impair long-term memory consolidation and retrieval-induced memory processes different from extinction, probably in accordance with the 'reconsolidation hypothesis'.
Collapse
Affiliation(s)
- C M Baratti
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | |
Collapse
|
25
|
Enhancing effect of heroin on social recognition learning in male Sprague-Dawley rats: modulation by heroin pre-exposure. Psychopharmacology (Berl) 2009; 204:413-21. [PMID: 19183963 DOI: 10.1007/s00213-009-1473-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 01/14/2009] [Indexed: 10/21/2022]
Abstract
RATIONALE There is evidence that pre-exposure to drugs of abuse can induce sensitization to several of their effects. OBJECTIVE Four experiments were conducted to investigate the effect of heroin pre-exposure on modulation of memory consolidation as indexed by heroin's action on rate of learning. MATERIALS AND METHODS Male Sprague-Dawley rats were tested on a social recognition learning task which assesses changes in investigation during repeated exposure to the same rat (habituation training: four sessions) and during exposure to a novel rat (dishabituation test). In the first experiment, rats received 0, 0.3, or 1 mg/kg heroin s.c. immediately following each training session, or 1 mg/kg heroin 2 h post-training. In experiments 2 and 3, rats received 1 mg/kg heroin post-training after a 7-day drug-free period from heroin pre-exposure achieved through conditioned place preference (1 mg/kg s.c., 1 injection/day x 4 days) or intravenous self-administration (0.05 mg/kg/infusion i.v., 3 h/day x 9 days) training. In experiment 4, rats received 0, 0.03, 0.3, or 3 mg/kg heroin post-training after a 7-day drug-free period from a regimen of heroin administration (i.e., 1 mg/kg heroin/day s.c. x 7 days) that induced locomotor sensitization. RESULTS Post-training administration of heroin enhanced social recognition learning in a dose- and time-dependent manner. Importantly, no regimen of heroin pre-exposure significantly altered this effect of heroin. CONCLUSIONS These results do not support the hypothesis that heroin pre-exposure leads to sensitization to its effect on memory consolidation of non-drug-related learning. However, this requires further testing using alternative heroin pre-exposure regimens, a wider range of post-training heroin doses, as well as other types of learning tasks.
Collapse
|
26
|
Streck EL, Comim CM, Barichello T, Quevedo J. The septic brain. Neurochem Res 2008; 33:2171-7. [PMID: 18461451 DOI: 10.1007/s11064-008-9671-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 03/13/2008] [Indexed: 12/21/2022]
Abstract
Sepsis is a major disease entity with important clinical implications. Sepsis-induced multiple organ failure is associated with a high mortality rate in humans and is clinically characterized by pulmonary, cardiovascular, renal and gastrointestinal dysfunction. Recently, several studies have demonstrated that sepsis survivors present long-term cognitive impairment, including alterations in memory, attention, concentration and/or global loss of cognitive function. However, the pathogenesis and natural history of septic encephalopathy and cognitive impairment are still poorly known and further understanding of these processes is necessary for the development of effective preventive and therapeutic interventions. This review discusses the clinical presentation and underlying pathophysiology of the encephalopathy and cognitive impairment associated with sepsis.
Collapse
Affiliation(s)
- Emilio L Streck
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000, Criciuma, SC, Brazil
| | | | | | | |
Collapse
|
27
|
Alvarez EO, Banzan AM. The activation of histamine-sensitive sites of the ventral hippocampus modulates the consolidation of a learned active avoidance response in rats. Behav Brain Res 2008; 189:92-9. [DOI: 10.1016/j.bbr.2007.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
|
28
|
Baratti CM, Boccia MM, Blake MG, Acosta GB. Reactivated memory of an inhibitory avoidance response in mice is sensitive to a nitric oxide synthase inhibitor. Neurobiol Learn Mem 2008; 89:426-40. [DOI: 10.1016/j.nlm.2007.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Revised: 11/08/2007] [Accepted: 11/09/2007] [Indexed: 10/22/2022]
|
29
|
Rosa DVF, Souza RP, Souza BR, Guimarães MM, Carneiro DS, Valvassori SS, Gomez MV, Quevedo J, Romano-Silva MA. DARPP-32 Expression in Rat Brain After an Inhibitory Avoidance Task. Neurochem Res 2008; 33:2257-62. [DOI: 10.1007/s11064-008-9706-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 04/03/2008] [Indexed: 11/30/2022]
|
30
|
Ahmadi S, Zarrindast MR, Nouri M, Haeri-Rohani A, Rezayof A. N-Methyl-d-aspartate receptors in the ventral tegmental area are involved in retrieval of inhibitory avoidance memory by nicotine. Neurobiol Learn Mem 2007; 88:352-8. [PMID: 17707662 DOI: 10.1016/j.nlm.2007.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2007] [Revised: 06/03/2007] [Accepted: 07/05/2007] [Indexed: 01/04/2023]
Abstract
The interaction of opiate, cholinergic, glutamatergic and (possibly) dopaminergic inputs in the ventral tegmental area (VTA) influencing a learned behavior is certainly a topic of great interest. In the present study, the effect of intra-VTA administration of N-methyl-d-aspartate (NMDA) receptor agents on nicotine's effect in morphine state-dependent learning was investigated. An inhibitory avoidance (IA) task was used for memory assessment in male Wistar rats. Subcutaneous (s.c.) administration of morphine (5 and 7.5mg/kg) immediately after training decreased IA response on the test day, which was reinstated by pre-test administration of the same doses of the opioid; this is known as state-dependency. Moreover, pre-test administration of nicotine (0.2, 0.4 and 0.6 mg/kg, s.c.) also reversed the decrease in IA response because of post-training morphine (5mg/kg). Here, we also show that when infused into the VTA before testing, NMDA (0.01 and 0.1 microg/rat) reverse the post-training morphine effect on memory. In addition, the sub-effective doses of NMDA (0.0001 and 0.001 microg/rat) in combination with a low dose of nicotine (0.1mg/kg) which had no effects by themselves, synergistically improved retrieval of IA memory on the test day. In contrast, pre-test administration of a competitive NMDA receptor antagonist D-AP5 (0.5, 1 and 2 microg/rat) which had no effect alone prevented the nicotine reversal of morphine effect on memory. Our data indicate that NMDA receptors in the VTA are involved in the reversing effect of nicotine on morphine induced state-dependency.
Collapse
Affiliation(s)
- Shamseddin Ahmadi
- Department of Animal Biology, School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | | | | | | | | |
Collapse
|
31
|
Pereira P, Vinadé E, Rodrigues L, De David e Silva TL, Ardenghi P, da Silva Brum LF, Gonçalves CA, Izquierdo I. Effect of Radicicol Infusion on the Src Tyrosine Kinase Activity of Rat Hippocampus before and after Training in an Inhibitory Avoidance Task. Neurochem Res 2007; 32:1150-5. [PMID: 17401665 DOI: 10.1007/s11064-007-9284-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
The participation of protein serine/threonine kinases in memory formation and retrieval is well established. In contrast, relatively little is known on the role of protein tyrosine kinases (PTKs). Previous work showed that intra-hippocampal infusion of the Src-PTK inhibitor radicicol inhibits memory acquisition, consolidation, and retrieval of one-trial step-down inhibitory avoidance task. In this study, we investigated the possible interaction between levels of Src-PTK activity in hippocampus and memory acquisition, formation, and retrieval of this task. Radicicol (0.5 microg/ml) was infused into the CA1 region of the hippocampus of rats trained in a one-trial step-down inhibitory avoidance task. Radicicol infused 15 min before training decreased Src-PTK activity, as measured 0, 1.5, and 24 h after training, and impaired memory acquisition of the task. When given immediately after training, there was a decrease in Src-PTK activity 1.5 h, but not 0 or 24 h after training. This treatment depressed memory consolidation. Radicicol infused into CA1 10 min prior to retrieval testing inhibited hippocampal Src-PTK activity, as measured immediately after the test session. The results suggest that Src-PTKs participate in memory acquisition, consolidation, and retrieval processes, but the timing of the role of the enzyme is different in each case.
Collapse
Affiliation(s)
- Patrícia Pereira
- Centro de Memória, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcellos 2600, anexo, Porto Alegre, 90035-003, RS, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
da Silva AL, Piato AL, Ferreira JG, Martins BS, Nunes DS, Elisabetsky E. Promnesic effects of Ptychopetalum olacoides in aversive and non-aversive learning paradigms. JOURNAL OF ETHNOPHARMACOLOGY 2007; 109:449-57. [PMID: 17023132 DOI: 10.1016/j.jep.2006.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 08/01/2006] [Accepted: 08/21/2006] [Indexed: 05/12/2023]
Abstract
Homemade remedies with Ptychopetalum olacoides (PO) roots are used by Amazonian peoples for treating various age-related conditions. We previously reported that Ptychopetalum olacoides ethanol extract significantly improved step-down inhibitory avoidance long-term memory in adult and reversed memory deficits in aging mice. Adding to previous data, this study shows that a single i.p. administration of Ptychopetalum olacoides ethanol extract (POEE 50 and 100 mg/kg) improved step-down inhibitory avoidance short-term memory (STM) 3 h after training in adult (2.5 month) mice; comparable results were obtained with POEE given p.o. at 800 mg/kg. Moreover, memory improvement was also observed in aging (14 months) mice presenting memory deficit as compared to adult mice. Furthermore, POEE (100 mg/kg) improved non-aversive memory systems in adult mice in an object recognition paradigm. Consistently with its traditional use this study add to previously reported data and reinforces that POEE facilitates memory processes. Although the acetylcholinesterase inhibitory properties described for this extract may be of relevance for improving memory processes, the molecular mechanism(s) underlying the memory improvement here reported needs further scrutiny.
Collapse
Affiliation(s)
- Adriana L da Silva
- Laboratório de Etnofarmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil
| | | | | | | | | | | |
Collapse
|
33
|
Heinrichs SC. Enhancement of learning and memory performance. Neurobiol Learn Mem 2007. [DOI: 10.1016/b978-012372540-0/50018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Cammarota M, Bevilaqua LRM, Vianna MRM, Medina JH, Izquierdo I. The extinction of conditioned fear: structural and molecular basis and therapeutic use. REVISTA BRASILEIRA DE PSIQUIATRIA 2006. [DOI: 10.1590/s1516-44462006005000022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE: Through association, a large variety of stimuli acquire the property of signaling pleasant or aversive events. Pictures of a wedding or of a plane disaster may serve as cues to recall these events and/or others of a similar nature or emotional tone. Presentation of the cues unassociated with the events, particularly if repeated, reduces the tendency to retrieve the original learning based on that association. This attenuation of the expression of a learned response was discovered by Pavlov 100 years ago, who called it extinction. In this article we review some of the most recent findings about the behavioral and biochemical properties of extinction. RESULTS AND DISCUSSION: It has been shown that extinction is a new learning based on a new link formed by the cues and the absence of the original event(s) which originated the first association. Extinction does not consist of the erasure of the original memory, but of an inhibition of its retrieval: the original response reappears readily if the former association is reiterated, or if enough time is allowed to pass (spontaneous recovery). Extinction requires neural activity, signaling pathways, gene expression and protein synthesis in the ventromedial prefrontal cortex and/or basolateral amygdala, hippocampus, entorhinal cortex and eventually other areas. The site or sites of extinction vary with the task. CONCLUSIONS: Extinction was advocated by Freud in the 1920's for the treatment of phobias, and is used in cognitive therapy to treat diseases that rely on conditioned fear (phobias, panic, and particularly posttraumatic stress disorder). The treatment of learned fear disorders with medications is still unsatisfactory although some have been shown useful when used as adjuncts to behavioral therapy.
Collapse
Affiliation(s)
- Martín Cammarota
- Pontifícia Universidade Católica do Rio Grande do Sul, Brazil; Medical School, Argentina
| | | | | | | | - Iván Izquierdo
- Pontifícia Universidade Católica do Rio Grande do Sul, Brazil
| |
Collapse
|
35
|
Nissen C, Power AE, Nofzinger EA, Feige B, Voderholzer U, Kloepfer C, Waldheim B, Radosa MP, Berger M, Riemann D. M1 Muscarinic Acetylcholine Receptor Agonism Alters Sleep without Affecting Memory Consolidation. J Cogn Neurosci 2006; 18:1799-807. [PMID: 17069471 DOI: 10.1162/jocn.2006.18.11.1799] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Preclinical studies have implicated cholinergic neurotransmission, specifically M1 muscarinic acetylcholine receptor (mAChR) activation, in sleep-associated memory consolidation. In the present study, we investigated the effects of administering the direct M1 mAChR agonist RS-86 on pre-post sleep memory consolidation. Twenty healthy human participants were tested in a declarative word-list task and a procedural mirror-tracing task. RS-86 significantly reduced rapid eye movement (REM) sleep latency and slow wave sleep (SWS) duration in comparison with placebo. Presleep acquisition and postsleep recall rates were within the expected ranges. However, recall rates in both tasks were almost identical for the RS-86 and placebo conditions. These results indicate that selective M1 mAChR activation in healthy humans has no clinically relevant effect on pre-post sleep consolidation of declarative or procedural memories at a dose that reduces REM sleep latency and SWS duration.
Collapse
|
36
|
Rossato JI, Bevilaqua LRM, Medina JH, Izquierdo I, Cammarota M. Retrieval induces hippocampal-dependent reconsolidation of spatial memory. Learn Mem 2006; 13:431-40. [PMID: 16882860 PMCID: PMC1538920 DOI: 10.1101/lm.315206] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nonreinforced retrieval can cause extinction and/or reconsolidation, two processes that affect subsequent retrieval in opposite ways. Using the Morris water maze task we show that, in the rat, repeated nonreinforced expression of spatial memory causes extinction, which is unaffected by inhibition of protein synthesis within the CA1 region of the dorsal hippocampus. However, if the number of nonreinforced retrieval trials is insufficient to induce long-lasting extinction, then a hippocampal protein synthesis-dependent reconsolidation process recovers the original memory. Inhibition of hippocampal protein synthesis after reversal learning sessions impairs retention of the reversed preference and blocks persistence of the original one, suggesting that reversal learning involves reconsolidation rather than extinction of the original memory. Our results suggest the existence of a hippocampal protein synthesis-dependent reconsolidation process that operates to recover or update retrieval-weakened memories from incomplete extinction.
Collapse
Affiliation(s)
- Janine I Rossato
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | | | | | | | | |
Collapse
|
37
|
Izquierdo I, Bevilaqua LRM, Rossato JI, Bonini JS, Medina JH, Cammarota M. Different molecular cascades in different sites of the brain control memory consolidation. Trends Neurosci 2006; 29:496-505. [PMID: 16872686 DOI: 10.1016/j.tins.2006.07.005] [Citation(s) in RCA: 322] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 06/01/2006] [Accepted: 07/14/2006] [Indexed: 11/25/2022]
Abstract
To understand cognition, it is important to understand how a learned response becomes a long-lasting memory. This process of memory consolidation has been modeled extensively using one-trial avoidance learning, in which animals (or humans) establish a conditioned response by learning to avoid danger in just one trial. This relies on molecular events in the CA1 region of the hippocampus that resemble those involved in CA1 long-term potentiation (LTP), and it also requires equivalent events to occur with different timings in the basolateral amygdala and the entorhinal, parietal and cingulate cortex. Many of these steps are modulated by monoaminergic pathways related to the perception of and reaction to emotion, which at least partly explains why strong and resistant consolidation is typical of emotion-laden memories. Thus memory consolidation involves a complex network of brain systems and serial and parallel molecular events, even for a task as deceptively simple as one-trial avoidance. We propose that these molecular events might also be involved in many other memory types in animals and humans.
Collapse
Affiliation(s)
- Iván Izquierdo
- Centro de Memoria, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Hospital Sao Lucas, Av. Ipiranga 6690, 2 Andar, (90610-000) Porto Alegre, RS, Brasil.
| | | | | | | | | | | |
Collapse
|
38
|
Izquierdo I, Bevilaqua LRM, Rossato JI, Bonini JS, Da Silva WC, Medina JH, Cammarota M. The connection between the hippocampal and the striatal memory systems of the brain: A review of recent findings. Neurotox Res 2006; 10:113-21. [PMID: 17062373 DOI: 10.1007/bf03033240] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Two major memory systems have been recognized over the years (Squire, in Memory and Brain, 1987): the declarative memory system, which is under the control of the hippocampus and related temporal lobe structures, and the procedural or habit memory system, which is under the control of the striatum and its connections (Mishkin et al., in Neurobiology of Learning by G Lynch et al., 1984; Knowlton et al., Science 273:1399, 1996). Most if not all learning tasks studied in animals, however, involve either the performance or the suppression of movement. Animals acquire connections between environmental or discrete sensory cues (conditioned stimuli, CSs) and emotionally or otherwise significant stimuli (unconditioned stimuli, USs). As a result, they learn to perform or to inhibit the performance of certain motor responses to the CS which, when learned well, become what can only be called habits (Mishkin et al., 1984): to regularly walk or swim to a place or away from a place, or to inhibit one or several forms of movement. These responses can be viewed as conditioned responses (CRs) and may sometimes be very complex. This is of course also seen in humans: people learn how to play on a keyboard in response to a mental or written script and perform the piano or write a text; with practice, the performance improves and eventually reaches a high criterion and becomes a habit, performed almost if not completely without awareness. Commuting to school in a big city in the shortest possible time and eschewing the dangers is a complex learning that children acquire to the point of near-perfection. It is agreed that the rules that connect the perception of the CS and the expression of the CR change from their first association to those that take place when the task is mastered. Does this change of rules involve a switch from one memory system to another? Are different brain systems used the first time one plays a sonata or goes to school as compared with the 100th time? Here we will comment on: 1) reversal learning in the Morris water maze (MWM), in which the declarative or spatial component of a task is changed but the procedural component (to swim) persists and needs to be re-linked with a different set of spatial cues; and 2) a series of observations on an inhibitory avoidance task that indicate that the brain systems involved change with further learning.
Collapse
Affiliation(s)
- I Izquierdo
- Centro de Memoria, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Andar (90610-000) Porto Alegre, RS, Brasil
| | | | | | | | | | | | | |
Collapse
|
39
|
Prickaerts J, Sik A, van der Staay FJ, de Vente J, Blokland A. Dissociable effects of acetylcholinesterase inhibitors and phosphodiesterase type 5 inhibitors on object recognition memory: acquisition versus consolidation. Psychopharmacology (Berl) 2005; 177:381-90. [PMID: 15630588 DOI: 10.1007/s00213-004-1967-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Accepted: 06/14/2004] [Indexed: 10/26/2022]
Abstract
RATIONALE Phosphodiesterase enzyme type 5 (PDE5) inhibitors and acetylcholinesterase (AChE) inhibitors have cognition-enhancing properties. However, it is not known whether these drug classes affect the same memory processes. OBJECTIVE We investigated the memory-enhancing effects of the PDE5 inhibitor sildenafil and AChE inhibitors metrifonate and donepezil in the object recognition task to find out whether acquisition or consolidation processes were affected by these drugs. METHODS The object recognition task measures whether rats remembered an object they have explored in a previous learning trial. All drugs were given orally 30 min before or immediately after learning to study acquisition and consolidation, respectively. RESULTS Sildenafil given immediately after the first trial improved the memory performance after 24 h and resulted in an inverted U-shaped dose-effect curve with the peak dose at 3 mg/kg. When given before the first trial, sildenafil also improved the memory performance. However, the dose needed for the best performance under this condition was 10 mg/kg, suggesting that the dose-effect curve shifted to the right. This can be explained by the metabolic clearance of the high dose of sildenafil. Donepezil had no memory improving effect when given after the first trial. However, when given before the first trial, a gradually increasing dose-effect curve was found which had its maximum effect at the highest dose tested (1 mg/kg). Likewise, only when metrifonate (30 mg/kg) was given before the first trial did rats show an improved memory performance. CONCLUSION Our data strongly suggest that PDE5 inhibitors improve processes of consolidation of object information, whereas AChE inhibitors improve processes of acquisition of object information.
Collapse
Affiliation(s)
- Jos Prickaerts
- Department of Psychiatry and Neuropsychology, Brain and Behavior Institute, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
40
|
Cammarota M, Bevilaqua LRM, Medina JH, Izquierdo I. Retrieval does not induce reconsolidation of inhibitory avoidance memory. Learn Mem 2005; 11:572-8. [PMID: 15466311 PMCID: PMC523075 DOI: 10.1101/lm.76804] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It has been suggested that retrieval during a nonreinforced test induces reconsolidation instead of extinction of the mnemonic trace. Reconsolidation would preserve the original memory from the labilization induced by its nonreinforced recall through a hitherto uncharacterized mechanism requiring protein synthesis. Given the importance that such a process would have in terms of maintaining, as part of the animal behavioral repertoire, a learned response that has been devalued by experience, we analyzed its existence for the memory associated with a one-trial, step-down inhibitory avoidance task (IA), a memory whose consolidation and extinction require protein synthesis in the CA1 region of the dorsal hippocampus (CA1) and involve the participation of the basolateral amygdala (BLA) and entorhinal cortex (ENT). Rats were trained in IA, and 24 h later they were submitted either to a pure reactivation session (retrieval without stepping down), which was unable by itself to initiate extinction of the avoidance response, or to a second training session. Fifteen minutes before or 3 h after either the reactivation or the retraining sessions, animals were infused with the protein synthesis inhibitor anisomycin (ANI) into CA1, BLA, or ENT. Contrary to the prediction of the reconsolidation hypothesis, none of these treatments affected subsequent memory retention. Because reconsolidation is regarded to be a direct consequence of retrieval, one would expect that, when given before a retention test or a pure reactivation session, enhancers of memory expression should permanently improve retention and, therefore, facilitate retrieval both in that and in subsequent sessions. Using two well-known retrieval enhancers, noradrenaline and adrenocorticotropin(1-24), we could not find any evidence suggestive of reconsolidation. Hence, our results indicate that there is no retrieval-induced, protein synthesis-dependent process that would cause reconsolidation of IA memory.
Collapse
Affiliation(s)
- Martín Cammarota
- Memory Research Laboratory, Institute for Cell Biology and Neuroscience Prof. Dr. Eduardo de Robertis, School of Medicine, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, CP 1121, Argentina
| | | | | | | |
Collapse
|
41
|
Prickaerts J, Sik A, van Staveren WCG, Koopmans G, Steinbusch HWM, van der Staay FJ, de Vente J, Blokland A. Phosphodiesterase type 5 inhibition improves early memory consolidation of object information. Neurochem Int 2004; 45:915-28. [PMID: 15312986 DOI: 10.1016/j.neuint.2004.03.022] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The nitric oxide (NO)-cyclic GMP (cGMP) signaling pathway is assumed to play an important role in processes underlying learning and memory. We used phosphodiesterase type 5 (PDE5) inhibitors to study the role of cGMP in object- and spatial memory. Our results and those reported in other studies indicate that elevated hippocampal cGMP levels are required to improve the memory performance of rodents in object recognition and passive avoidance learning, but not in spatial learning. The timing of treatment modulates the effects on memory and strongly supports a role for cGMP in early stages of memory formation. Alternative explanations for the improved memory performance of PDE5 inhibitors are also discussed. Immunocytochemical studies showed that in vitro slice incubations with PDE5 inhibitors increase NO-stimulated cGMP levels mainly in hippocampal varicose fibers. Reviewing the available data on the localization of the different components of the NO-cGMP signaling pathway, indicates a complex interaction between NO and cGMP, which may be independent of each other. It is discussed that further studies are needed, immunocytochemical and behavioral, to better understand the cGMP-mediated molecular mechanisms underlying memory formation.
Collapse
Affiliation(s)
- Jos Prickaerts
- Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Cammarota M, Barros DM, Vianna MRM, Bevilaqua LRM, Coitinho A, Szapiro G, Izquierdo LA, Medina JH, Izquierdo I. The transition from memory retrieval to extinction. AN ACAD BRAS CIENC 2004; 76:573-82. [PMID: 15334255 DOI: 10.1590/s0001-37652004000300011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Memory is measured by measuring retrieval. Retrieval is often triggered by the conditioned stimulus (CS); however, as known since Pavlov, presentation of the CS alone generates extinction. One-trial avoidance (IA) is a much used conditioned fear paradigm in which the CS is the safe part of a training apparatus, the unconditioned stimulus (US) is a footshock and the conditioned response is to stay in the safe area. In IA, retrieval is measured without the US, as latency to step-down from the safe area (i.e., a platform). Extinction is installed at the moment of the first unreinforced test session, as clearly shown by the fact that many drugs, including PKA, ERK and protein synthesis inhibitors as well as NMDA receptor antagonists, hinder extinction when infused into the hippocampus or the basolateral amygdala at the moment of the first test session but not later. Some, but not all the molecular systems required for extinction are also activated by retrieval, further endorsing the hypothesis that although retrieval is behaviorally and biochemically necessary for the generation of extinction, this last process constitutes a new learning secondary to the unreinforced expression of the original trace.
Collapse
Affiliation(s)
- Martín Cammarota
- Centro de Memória, ICS, Departamento de Bioquímica, Universidade Federal Do Rio Grande Do Sul, 90035-003 Porto Alegre, RS, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Witkin JM, Nelson DL. Selective histamine H3 receptor antagonists for treatment of cognitive deficiencies and other disorders of the central nervous system. Pharmacol Ther 2004; 103:1-20. [PMID: 15251226 DOI: 10.1016/j.pharmthera.2004.05.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Evidence exists to implicate the monoamine histamine in the control of arousal and cognitive functions. Antagonists of H(3) receptors are postsynaptic and presynaptic modulators of neural transmission in a variety of neuronal circuits relevant to cognition. Accumulating neuroanatomical, neurochemical, pharmacological, and behavioral data support the idea that H(3) receptor antagonists may function to improve cognitive performances in disease states (e.g., Alzheimer's disease and mild cognitive impairment states). Thus, H(3) receptor antagonists have been shown to increase performance in attention and memory tests in nonhuman experiments and prevent the degradation in performances produced by scopolamine, MK-801, or age. In contrast, agonists of the H(3) receptor generally produce cognitive impairing effects in animal models. The role of H(3) receptors in these behavioral effects is substantiated by data indicating a central origin for their effects, the selectivity of some of the H(3) receptor antagonists studied, and the pharmacological modification of effects of H(3) receptor antagonists by selective H(3) receptor agonists. Data and issues that challenge the potential role for H(3) receptor antagonists in cognitive processes are also critically reviewed. H(3) receptor antagonists may also have therapeutic value in the management of obesity, pain, sleep disorders, schizophrenia, and attention deficit hyperactivity disorder.
Collapse
Affiliation(s)
- J M Witkin
- Neuroscience Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285-0510, USA.
| | | |
Collapse
|
44
|
Abstract
A conditioned stimulus (CS) associated with a fearsome unconditioned stimulus (US) generates learned fear. Acquired fear is at the root of a variety of mental disorders, among which phobias, generalized anxiety, the posttraumatic stress disorder (PTSD) and some forms of depression. The simplest way to inhibit learned fear is to extinguish it, which is usually done by repeatedly presenting the CS alone, so that a new association, CS-"no US", will eventually overcome the previously acquired CS-US association. Extinction was first described by Pavlov as a form of "internal inhibition" and was recommended by Freud and Ferenczi in the 1920s (who called it "habituation") as the treatment of choice for phobic disorders. It is used with success till this day, often in association with anxiolytic drugs. Extinction has since then been applied, also successfully and also often in association with anxiolytics, to the treatment of panic, generalized anxiety disorders and, more recently, PTSD. Extinction of learned fear involves gene expression, protein synthesis, N-methyl-D-aspartate (NMDA) receptors and signaling pathways in the hippocampus and the amygdala at the time of the first CS-no US association. It can be enhanced by increasing the exposure to the "no US" component at the time of behavioral testing, to the point of causing the complete uninstallment of the original fear response. Some theorists have recently proposed that reiteration of the CS alone may induce a reconsolidation of the learned behavior instead of its extinction. Reconsolidation would preserve the original memory from the labilization induced by its retrieval. If true, this would of course be disastrous for the psychotherapy of fear-motivated disorders. Here we show that neither the CS nor retrieval cause anything remotely like reconsolidation, but just extinction. In fact, our findings indicate that the reconsolidation hypothesis is essentially incorrect, at least for the form of contextual fear most commonly studied in rodents. Therefore, it seems safe to continue using extinction-based forms of therapy for disorders secondary to acquired fear. Further, it is useful and desirable to device procedures by which the "no US" component of the extinction is strengthened in order to alleviate the symptoms of victims of acquired fear.
Collapse
Affiliation(s)
- Iván Izquierdo
- Centro de Memoria, ICBS, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2600--Anexo, Porto Alegre, RS 90035-003, Brasil.
| | | | | | | |
Collapse
|
45
|
Wetzel W, Wagner T, Balschun D. REM sleep enhancement induced by different procedures improves memory retention in rats. Eur J Neurosci 2003; 18:2611-7. [PMID: 14622163 DOI: 10.1046/j.1460-9568.2003.02890.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Growing evidence supports the idea that sleep following learning is critically involved in memory formation. Recent studies suggest that information acquired during waking is reactivated and possibly consolidated during subsequent sleep, especially during rapid-eye movement (REM) or paradoxical sleep (PS). Critical reviews, however, have questioned PS and memory relationships, particularly because of shortcomings of the PS deprivation paradigm applied in many studies. Therefore, in the present study we used an opposite strategy, i.e. we investigated the effects of PS enhancement on memory retention. In three experiments, we found that selective PS enhancement, induced by different procedures after discrimination training in rats, results in increased retention tested 24 h later. Moreover, calculated in all animals (n = 61), there was a highly significant correlation between post-training PS values and retention scores. Our results suggest that an experimentally induced increase of PS after learning facilitates memory consolidation.
Collapse
Affiliation(s)
- Wolfram Wetzel
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany.
| | | | | |
Collapse
|
46
|
Quevedo J, Feier G, Agostinho FR, Martins MR, Roesler R. [Memory consolidation and posttraumatic stress disorder]. BRAZILIAN JOURNAL OF PSYCHIATRY 2003; 25 Suppl 1:25-30. [PMID: 14523507 DOI: 10.1590/s1516-44462003000500007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extensive evidence from animal and human studies has shown that memory formation is enhanced by an endogenous modulatory system mediated by stress hormones and activation of the amygdala. This system is an evolutionarily adaptive method of enhancing important memories. Under emotional stress, this system is activated promoting the formation of vivid, long lasting traumatic memories, which are the hallmark of PTSD. The understanding of the mechanisms underlying memory modulation might lead to an improved ability to assess and treat PTSD.
Collapse
Affiliation(s)
- João Quevedo
- Laboratório de Neurotoxicologia da Universidade do Extremo Sul Catarinense. Criciúma, SC, Brasil.
| | | | | | | | | |
Collapse
|
47
|
Summers MJ, Crowe SF, Ng KT. Memory retrieval in the day-old chick: a psychobiological approach. Neurosci Biobehav Rev 2003; 27:219-31. [PMID: 12788334 DOI: 10.1016/s0149-7634(03)00032-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This review integrates a series of studies conducted examining memory retrieval processes in the day-old chick. On the basis of these studies it is proposed that two processes are activated following retrieval of a memory. The first is an immediate memory recall or retrieval mechanism responsible for the chick's ability to remember the information and respond appropriately to the stimulus. The second process is activated following the completion of the first immediate retrieval phase. Further, it is proposed that the function of this secondary phase may be to allow for the modification of a memory undergoing storage processes. It is proposed that the processes of memory formation and memory retrieval are parallel at a cellular level, but at the functional level of information transfer they are interdependent.
Collapse
Affiliation(s)
- Mathew J Summers
- School of Psychology, University of Tasmania, Locked Bag 1342, 7250, Launceston, Tasmania, Australia.
| | | | | |
Collapse
|
48
|
Roozendaal B, Griffith QK, Buranday J, De Quervain DJF, McGaugh JL. The hippocampus mediates glucocorticoid-induced impairment of spatial memory retrieval: dependence on the basolateral amygdala. Proc Natl Acad Sci U S A 2003; 100:1328-33. [PMID: 12538851 PMCID: PMC298772 DOI: 10.1073/pnas.0337480100] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2002] [Indexed: 11/18/2022] Open
Abstract
Previous studies have indicated that stress-activated glucocorticoid hormones induce temporary memory retrieval impairment. The present study examined whether adrenal steroid receptors in the hippocampus mediate such glucocorticoid effects on spatial memory retrieval. The specific glucocorticoid receptor (GR) agonist 11beta, 17beta-dihydroxy-6,21-dimethyl-17alpha-pregna-4,6-trien-20yn-3-one (RU 28362; 5 or 15 ng) infused into the hippocampus of male Sprague-Dawley rats 60 min before water-maze retention testing, 24 h after training, dose-dependently impaired probe-trial retention performance, as assessed both by time spent in the training quadrant and initial latency to cross the platform location. The GR agonist did not affect circulating corticosterone levels immediately after the probe trial, indicating that RU 28362 infusions did not influence retention by altering glucocorticoid feedback mechanisms. As infusions of the GR agonist into the hippocampus 60 min before training did not influence water-maze acquisition or immediate recall, the findings indicated that the GR agonist-induced retention impairment was induced selectively by an influence on information retrieval. In contrast, pretest infusions of the GR agonist administered into the basolateral complex of the amygdala (BLA; 2 or 6 ng) did not alter retention performance in the water maze. However, N-methyl-d-aspartate-induced lesions of the BLA, made 1 week before training, blocked the memory retrieval impairment induced by intrahippocampal infusions of RU 28362 given 60 min before the retention test. These findings indicate that the effects of glucocorticoids on retrieval of long-term spatial memory depend on the hippocampus and, additionally, that neuronal input from the BLA is critical in enabling hippocampal glucocorticoid effects on memory retrieval.
Collapse
Affiliation(s)
- Benno Roozendaal
- Center for the Neurobiology of Learning and Memory and Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, USA.
| | | | | | | | | |
Collapse
|
49
|
Archer T, Schröder N, Fredriksson A. Neurobehavioural deficits following postnatal iron overload: II Instrumental learning performance. Neurotox Res 2003; 5:77-94. [PMID: 14628858 DOI: 10.1007/bf03033374] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
50
|
Boujabit M, Bontempi B, Destrade C, Gisquet-Verrier P. Exposure to a retrieval cue in rats induces changes in regional brain glucose metabolism in the amygdala and other related brain structures. Neurobiol Learn Mem 2003; 79:57-71. [PMID: 12482680 DOI: 10.1016/s1074-7427(02)00010-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pre-test exposure to training-related cues is known to improve subsequent retention performance. To identify brain regions engaged in processes promoted by retrieval cues, a brain imaging approach using the [6-14C]glucose autoradiographic technique was used. Sprague-Dawley rats trained in a brightness discrimination avoidance task were submitted to different cueing conditions after a 1- or a 21-day training-to-test interval (TTI). Animals were either non-cued, cued with a box, or cued with a box and the light that served as a discriminative stimulus. Effects of the different cueing conditions on retention performance or on metabolic activity in 58 different brain regions were investigated. Rats cued with the light exhibited a subsequent improvement of their retention performance relative to controls, when tested at the 1- but not 21-days TTI, confirming our previous results. At the 1-day retention interval, a comparison between rats cued with the box and rats cued with the box and the light showed that the light cue significantly increased glucose uptake in a neuronal network composed of the lateral, basal, and central nuclei of the amygdala, the anterior and suprachiasmatic hypothalamic nuclei, the nucleus accumbens, the medial septum, and the insular cortex. In contrast, at the 21-day retention interval, both groups demonstrated similar cerebral metabolic activity. The present results indicate that exposure to a light cue increased metabolic activity in the previously mentioned brain structures only when the light acted as an effective retrieval cue, suggesting an involvement of this network in the processes triggered by a retrieval cue. Arguments are provided supporting the notion that the amygdala may play a key role in these processes. Whether the amygdala is a part of a neural network involved in retrieval processes or in neuromodulating systems that favour the efficacy of retrieval processes is also discussed.
Collapse
Affiliation(s)
- M'Bark Boujabit
- Laboratoire de Neurobiologie de l'Apprentissage, de la Mémoire et de la Communication, CNRS UMR 8620, Université Paris Sud, 91405 Orsay Cedex, France
| | | | | | | |
Collapse
|