1
|
Zhang Y, Cao H, Qiu X, Xu D, Chen Y, Barnes GN, Tu Y, Gyabaah AT, Gharbal AHAA, Peng C, Cai J, Cai X. Neuroprotective Effects of Adenosine A1 Receptor Signaling on Cognitive Impairment Induced by Chronic Intermittent Hypoxia in Mice. Front Cell Neurosci 2020; 14:202. [PMID: 32733207 PMCID: PMC7363980 DOI: 10.3389/fncel.2020.00202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022] Open
Abstract
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a breathing disorder associated with cognitive impairment. However, the mechanisms leading to cognitive deficits in OSAHS remain uncertain. In this study, a mouse model of chronic intermittent hypoxia (CIH) exposures were applied for simulating the deoxygenation-reoxygenation events occurring in OSAHS. The conventional adenosine A1 receptor gene (A1R) knockout mice and the A1R agonist CCPA- or antagonist DPCPX-administrated mice were utilized to determine the precise function of A1R signaling in the process of OSAHS-relevant cognitive impairment. We demonstrated that CIH induced morphological changes and apoptosis in hippocampal neurons. Further, CIH blunted hippocampal long-term potentiation (LTP) and resulted in learning/memory impairment. Disruption of adenosine A1R exacerbated morphological, cellular, and functional damage induced by CIH. In contrast, activation of adenosine A1R signaling reduced morphological changes and apoptosis of hippocampal neurons, promoted LTP, and enhanced learning and memory. A1Rs may up-regulate protein kinase C (PKC) and its subtype PKC-ζ through the activation of Gα(i) improve spatial learning and memory disorder induced by CIH in mice. Taken together, A1R signaling plays a neuroprotective role in CIH-induced cognitive dysfunction and pathological changes in the hippocampus.
Collapse
Affiliation(s)
- Yichun Zhang
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hongchao Cao
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Department of Internal Medicine, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo, China
| | - Xuehao Qiu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Danfen Xu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yifeng Chen
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Gregory N Barnes
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY, United States.,Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY, United States
| | - Yunjia Tu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Adwoa Takyiwaa Gyabaah
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | | | - Chenlei Peng
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Department of Internal Medicine, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo, China
| | - Jun Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY, United States
| | - Xiaohong Cai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Kim K, Jeong W, Jun IG, Park JY. Antiallodynic and anti-inflammatory effects of intrathecal R-PIA in a rat model of vincristine-induced peripheral neuropathy. Korean J Anesthesiol 2020; 73:434-444. [PMID: 32046474 PMCID: PMC7533172 DOI: 10.4097/kja.19481] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/04/2020] [Indexed: 01/09/2023] Open
Abstract
Background Studies investigating the correlation between spinal adenosine A1 receptors and vincristine-induced peripheral neuropathy (VIPN) are limited. This study explored the role of intrathecal N6-(2-phenylisopropyl)-adenosine R-(-)isomer (R-PIA) in the rat model of VIPN. Methods Vincristine (100 μg/kg) was intraperitoneally administered for 10 days (two 5-day cycles with a 2-day pause) and VIPN was induced in rats. Pain was assessed by evaluating mechanical hyperalgesia, mechanical dynamic allodynia, thermal hyperalgesia, cold allodynia, and mechanical static allodynia. Biochemically, tumor necrosis factor-alpha (TNF-α) level and myeloperoxidase (MPO) activity were measured in the tissue from beneath the sciatic nerve. Results Vincristine administration resulted in the development of cold allodynia, mechanical hyperalgesia, thermal hyperalgesia, mechanical dynamic allodynia, and mechanical static allodynia. Intrathecally administered R-PIA (1.0 and 3.0 μg/10 μl) reversed vincristine-induced neuropathic pain (cold and mechanical static allodynia). The attenuating effect peaked 15 min after intrathecal administration of R-PIA after which it decreased until 180 min. However, pretreatment with 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 10 μg/10 μl) 15 min before intrathecal R-PIA administration significantly attenuated the antiallodynic effect of R-PIA. This antiallodynic effect of intrathecal R-PIA may be mediated through adenosine A1 receptors in the spinal cord. Intrathecally administered R-PIA also attenuated vincristine-induced increases in TNF-α level and MPO activity. However, pretreatment with intrathecal DPCPX significantly reversed this attenuation. Conclusions These results suggest that intrathecally administered R-PIA attenuates cold and mechanical static allodynia in a rat model of VIPN, partially due to its anti-inflammatory actions.
Collapse
Affiliation(s)
- Kyungmi Kim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Wonyeong Jeong
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In Gu Jun
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Yeon Park
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Cunha RA. How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem 2016; 139:1019-1055. [PMID: 27365148 DOI: 10.1111/jnc.13724] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/23/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022]
Abstract
The adenosine modulation system mostly operates through inhibitory A1 (A1 R) and facilitatory A2A receptors (A2A R) in the brain. The activity-dependent release of adenosine acts as a brake of excitatory transmission through A1 R, which are enriched in glutamatergic terminals. Adenosine sharpens salience of information encoding in neuronal circuits: high-frequency stimulation triggers ATP release in the 'activated' synapse, which is locally converted by ecto-nucleotidases into adenosine to selectively activate A2A R; A2A R switch off A1 R and CB1 receptors, bolster glutamate release and NMDA receptors to assist increasing synaptic plasticity in the 'activated' synapse; the parallel engagement of the astrocytic syncytium releases adenosine further inhibiting neighboring synapses, thus sharpening the encoded plastic change. Brain insults trigger a large outflow of adenosine and ATP, as a danger signal. A1 R are a hurdle for damage initiation, but they desensitize upon prolonged activation. However, if the insult is near-threshold and/or of short-duration, A1 R trigger preconditioning, which may limit the spread of damage. Brain insults also up-regulate A2A R, probably to bolster adaptive changes, but this heightens brain damage since A2A R blockade affords neuroprotection in models of epilepsy, depression, Alzheimer's, or Parkinson's disease. This initially involves a control of synaptotoxicity by neuronal A2A R, whereas astrocytic and microglia A2A R might control the spread of damage. The A2A R signaling mechanisms are largely unknown since A2A R are pleiotropic, coupling to different G proteins and non-canonical pathways to control the viability of glutamatergic synapses, neuroinflammation, mitochondria function, and cytoskeleton dynamics. Thus, simultaneously bolstering A1 R preconditioning and preventing excessive A2A R function might afford maximal neuroprotection. The main physiological role of the adenosine modulation system is to sharp the salience of information encoding through a combined action of adenosine A2A receptors (A2A R) in the synapse undergoing an alteration of synaptic efficiency with an increased inhibitory action of A1 R in all surrounding synapses. Brain insults trigger an up-regulation of A2A R in an attempt to bolster adaptive plasticity together with adenosine release and A1 R desensitization; this favors synaptotocity (increased A2A R) and decreases the hurdle to undergo degeneration (decreased A1 R). Maximal neuroprotection is expected to result from a combined A2A R blockade and increased A1 R activation. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
Chauhan NK, Young AMJ, Gibson CL, Davidson C. Inhibition of pre-ischeamic conditioning in the mouse caudate brain slice by NMDA- or adenosine A1 receptor antagonists. Eur J Pharmacol 2012; 698:322-9. [PMID: 23099254 PMCID: PMC3556740 DOI: 10.1016/j.ejphar.2012.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/01/2012] [Accepted: 10/13/2012] [Indexed: 12/16/2022]
Abstract
Evidence suggests that pre-ischeamic conditioning (PIC) offers protection against a subsequent ischeamic event. Although some brain areas such as the hippocampus have received much attention, the receptor mechanisms of PIC in other brain regions are unknown. We have previously shown that 10 min oxygen and glucose deprivation (OGD) evokes tolerance to a second OGD event in the caudate. Here we further examine the effect of length of conditioning event on the second OGD event. Caudate mouse brain slices were superfused with artificial cerebro-spinal fluid (aCSF) bubbled with 95%O2/5%CO2. OGD was achieved by reducing the aCSF glucose concentration and by bubbling with 95%N2/5%CO2. After approximately 5 min OGD a large dopamine efflux was observed, presumably caused by anoxic depolarisation. On applying a second OGD event, 60 min later, dopamine efflux was delayed and reduced. We first examined the effect of varying the length of the conditioning event from 5 to 40 min and found tolerance to PIC increased with increasing duration of conditioning. We then examined the receptor mechanism(s) underlying PIC. We found that pre-incubation with either MK-801 or 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) reduced tolerance to the second OGD event. These data suggest that either N-methyl-d-aspartate (NMDA) or adenosine A1 receptor activation evokes PIC in the mouse caudate.
Collapse
Affiliation(s)
- Nikky K Chauhan
- School of Psychology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | | | | | | |
Collapse
|
5
|
Dave KR, Christian SL, Perez-Pinzon MA, Drew KL. Neuroprotection: lessons from hibernators. Comp Biochem Physiol B Biochem Mol Biol 2012; 162:1-9. [PMID: 22326449 PMCID: PMC3334476 DOI: 10.1016/j.cbpb.2012.01.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 12/15/2022]
Abstract
Mammals that hibernate experience extreme metabolic states and body temperatures as they transition between euthermia, a state resembling typical warm blooded mammals, and prolonged torpor, a state of suspended animation where the brain receives as low as 10% of normal cerebral blood flow. Transitions into and out of torpor are more physiologically challenging than the extreme metabolic suppression and cold body temperatures of torpor per se. Mammals that hibernate show unprecedented capacities to tolerate cerebral ischemia, a decrease in blood flow to the brain caused by stroke, cardiac arrest or brain trauma. While cerebral ischemia often leads to death or disability in humans and most other mammals, hibernating mammals suffer no ill effects when blood flow to the brain is dramatically decreased during torpor or experimentally induced during euthermia. These animals, as adults, also display rapid and pronounced synaptic flexibility where synapses retract during torpor and rapidly re-emerge upon arousal. A variety of coordinated adaptations contribute to tolerance of cerebral ischemia in these animals. In this review we discuss adaptations in heterothermic mammals that may suggest novel therapeutic targets and strategies to protect the human brain against cerebral ischemic damage and neurodegenerative disease.
Collapse
Affiliation(s)
- Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
6
|
Navon H, Bromberg Y, Sperling O, Shani E. Neuroprotection by NMDA Preconditioning Against Glutamate Cytotoxicity is Mediated Through Activation of ERK 1/2, Inactivation of JNK, and by Prevention of Glutamate-Induced CREB Inactivation. J Mol Neurosci 2011; 46:100-8. [DOI: 10.1007/s12031-011-9532-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 04/25/2011] [Indexed: 02/05/2023]
|
7
|
Song JG, Hahm KD, Kim YK, Leem JG, Lee C, Jeong SM, Park PH, Shin JW. Adenosine triphosphate-sensitive potassium channel blockers attenuate the antiallodynic effect of R-PIA in neuropathic rats. Anesth Analg 2011; 112:1494-9. [PMID: 21543780 DOI: 10.1213/ane.0b013e318212b833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Nerve injury can generate neuropathic pain. The accompanying mechanical allodynia may be reduced by the intrathecal administration of adenosine. The neuroprotective effects of adenosine are mediated by the adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channel. We assessed the relationship between the adenosine A1 receptor agonist, N⁶-(R)-phenylisopropyl adenosine (R-PIA), and K(ATP) channels to determine whether the antiallodynic effects of R-PIA are also mediated through K(ATP) channels in a rat nerve ligation injury model of neuropathic pain. METHODS Mechanical allodynia was induced by tight ligation of the left lumbar fifth and sixth spinal nerves. Mechanical allodynia in the left hindpaw was evaluated using von Frey filaments to measure withdrawal thresholds. R-PIA (0.5, 1, or 2 μg) was administered intrathecally to induce antiallodynia. We assessed whether pretreatment with the K(ATP) channel blockers glibenclamide or 5-hydroxydecanoate reversed the antiallodynic effect of R-PIA. Also, we evaluated whether diazoxide, a K(ATP) channel opener, had an antiallodynic effect and promoted the antiallodynic effect of R-PIA. Lastly, we investigated whether the voltage-activated K channel blocker 4-aminopyridine attenuated the effect of R-PIA. RESULTS Intrathecal R-PIA produced maximal antiallodynia at 2 μg (P < 0.05). Intrathecal pretreatment with glibenclamide and intraperitoneal pretreatment 5-hydroxydecanoate significantly reduced the antiallodynic effect of R-PIA. Diazoxide produced an antiallodynic effect and also enhanced the antiallodynic action of R-PIA. 4-Aminopyridine had no effect on the antiallodynic action of R-PIA. CONCLUSIONS The antiallodynic effects of adenosine A1 receptor stimulation may be related to K(ATP) channel activity in a rat model of nerve ligation injury.
Collapse
Affiliation(s)
- Jun-Gol Song
- Department of Anesthesiology and Pain Medicine, University of Ulsan College of Medicine, Asan Medical Center, Songpa-gu, Seoul, 138-736, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Malhotra S, Naggar I, Stewart M, Rosenbaum DM. Neurogenic pathway mediated remote preconditioning protects the brain from transient focal ischemic injury. Brain Res 2011; 1386:184-90. [DOI: 10.1016/j.brainres.2011.02.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 02/07/2011] [Accepted: 02/14/2011] [Indexed: 01/24/2023]
|
9
|
Faries PL, DeRubertis B, Trocciola S, Karwowski J, Kent KC, Chaer RA. Ischemic preconditioning during the use of the PercuSurge occlusion balloon for carotid angioplasty and stenting. Vascular 2008; 16:1-9. [PMID: 18258156 DOI: 10.2310/6670.2008.00012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ischemic preconditioning (IP) uses transient ischemia to render tissues tolerant to subsequent, prolonged ischemia. This study sought to evaluate factors that contributed to the development of cerebral ischemia during PercuSurge balloon (Medtronic, Santa Rosa, CA) occlusion in patients undergoing carotid angioplasty and stenting (CAS). The PercuSurge occlusion balloon was used in 43 of 165 patients treated with CAS for high-grade stenosis; 20% were symptomatic. Symptoms of cerebral hypoperfusion during temporary occlusion of the internal carotid artery occurred in 10 of 43 patients and included dysarthria, agitation, decreased level of consciousness, and focal hemispheric deficit. The development of neurologic symptoms after initial PercuSurge balloon inflation and occluded internal carotid artery flow was associated with a decrease in the mean Glasgow Coma Scale (GCS) from 15 to 10 (range 9-14); the GCS returned to normal after occlusion balloon deflation. The mean time to spontaneous recovery of full neurologic function was 8 minutes (range 4-15 minutes). The mean subsequent procedure duration was 11.9 minutes (range 6-21 minutes). No recurrence of neurologic symptoms occurred when the occlusion balloon was reinflated. All 10 patients underwent successful CAS without occlusion, dissection, cerebrovascular accident, or death. Ischemic preconditioning can be used to enable CAS with embolic protection in patients who cannot tolerate initial interruption of antegrade cerebral perfusion by PercuSurge occlusion.
Collapse
Affiliation(s)
- Peter L Faries
- Division of Vascular Surgery, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Shani V, Bromberg Y, Sperling O, Zoref-Shani E. Involvement of Src tyrosine kinases (SFKs) and of focal adhesion kinase (FAK) in the injurious mechanism in rat primary neuronal cultures exposed to chemical ischemia. J Mol Neurosci 2008; 37:50-9. [PMID: 18584337 DOI: 10.1007/s12031-008-9113-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Accepted: 05/20/2008] [Indexed: 12/25/2022]
Abstract
Src family of kinases (SFKs) and focal adhesion kinase (FAK) are two important cellular signaling components known to act cooperatively in the transduction of death and survival signals. We investigated the involvement of these proteins in the mechanism of the injurious response in rat primary neuronal cultures exposed to an insult composed of chemical ischemia (poisoning with iodoacetic acid; 100 muM, for 150 min) followed by 1 h of incubation in the regular medium, an insult shown before to be associated with generation of reactive oxygen species and with the depletion of adenosine triphisphate. The exposure of the neuronal cultures to the insult resulted in cell injury, assessed by the increased release of cytoplasmic lactate dehydrogenase (LDH) into the culture media, which could be attenuated markedly by the presence of the antioxidant LY 231617. The insult resulted in the decreased level of phosphorylation of the SFKs members Src, Fyn, and Yes at the Src Y416-equivalent activation sites and of the FAK Y397 activation site, degradation of FAK to a p85 fragment, and disassembling of the FAK-SFKs complexes. The inhibition of SFKs was found to be responsible for part of the insult-induced cell damage manifested in increased LDH release. Pervanadate, an inhibitor of the phosphotyrosine phosphatases (PTPs), abrogated the inactivation of SFKs and attenuated cell injury, indicating that insult-induced activation of PTPs is involved in SFKs inhibition and the ensued damage. The inhibition of SFKs and FAK is probably the cause of the disassembling of SFKs-FAK complexes, a process known to be associated with apoptosis.
Collapse
Affiliation(s)
- Vered Shani
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | | | | |
Collapse
|
11
|
Schock SC, Munyao N, Yakubchyk Y, Sabourin LA, Hakim AM, Ventureyra ECG, Thompson CS. Cortical spreading depression releases ATP into the extracellular space and purinergic receptor activation contributes to the induction of ischemic tolerance. Brain Res 2007; 1168:129-38. [PMID: 17706620 DOI: 10.1016/j.brainres.2007.06.070] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 06/14/2007] [Accepted: 06/15/2007] [Indexed: 11/29/2022]
Abstract
Cortical Spreading Depression (CSD) is a well-studied model of preconditioning that provides a high degree of tolerance to a subsequent ischemic event in the brain. The present study was undertaken in order to determine whether the release of ATP during CSD could contribute to the induction of ischemic tolerance. Direct measurement of ATP levels during CSD indicates that with each CSD wave ATP is released into the extracellular space at levels exceeding 100 microM. Cultures of rat primary cortical neurons exposed to low levels of extracellular ATP developed tolerance to subsequent oxygen-glucose deprivation (OGD) or metabolic hypoxia. The preconditioning effect requires new protein synthesis and develops with time, suggesting that a complex genomic response is required for the induction of tolerance. Multiple purinergic receptors are involved in mediating tolerance, with P2Y receptor activation having the greatest effect. Although extracellular adenosine or glutamate may make a small contribution, most of the tolerance was found to be induced independently of adenosine or glutamate receptor activation. Multiple signal transduction pathways mediate the response to extracellular ATP with the protein kinase A pathway and activation of phospholipase C contributing the most. The results are consistent with the proposal that CSD releases ATP into the extracellular space and the subsequent activation of P2Y receptors makes a major contribution to the induction of ischemic tolerance in the brain.
Collapse
Affiliation(s)
- Sarah C Schock
- Department of Cellular and Molecular Medicine, University of Ottawa, ON, Canada K1H 8M5
| | | | | | | | | | | | | |
Collapse
|
12
|
Chaer RA, Trocciola S, DeRubertis B, Lin SC, Kent KC, Faries PL. Cerebral ischemia associated with PercuSurge balloon occlusion balloon during carotid stenting: Incidence and possible mechanisms. J Vasc Surg 2006; 43:946-52; discussion 952. [PMID: 16678688 DOI: 10.1016/j.jvs.2006.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 01/06/2006] [Indexed: 11/21/2022]
Abstract
BACKGROUND Interruption of antegrade cerebral perfusion results in transient neurologic intolerance in some patients undergoing carotid angioplasty and stenting (CAS). This study sought to evaluate factors that contributed to the development of cerebral ischemia during PercuSurge balloon occlusion and techniques used to allow successful completion of the CAS procedure. METHODS The PercuSurge occlusion balloon was used in 43 of 165 patients treated with CAS for high-grade stenosis (mean stenosis, 90%). All 43 patients were at increased risk for endarterectomy (7 restenosis, 3 irradiation, 3 contralateral occlusion, and 30 Goldman class II-III); 20% were symptomatic. Symptoms of cerebral hypoperfusion during temporary occlusion of the internal carotid artery occurred in 10 of 43 and included dysarthria (7/10), agitation (6/10), decreased level of consciousness (5/10), and focal hemispheric deficit (3/10). An incomplete circle of Willis or contralateral carotid artery occlusion, or both, was present in 8 of 10 patients. Symptoms resulting from PercuSurge balloon occlusion were managed by balloon deflation with or without evacuation of blood from the internal carotid artery using the Export catheter. All symptoms resolved completely without deficit after deflation of the occlusion balloon. RESULTS The development of neurologic symptoms after initial PercuSurge balloon inflation and occluded internal carotid artery flow was associated with a decrease in the mean Glasgow Coma Scale (GCS) from 15 to 10 (range, 9 to 14); the GCS returned to normal after occlusion balloon deflation and remained normal during subsequent reinflation. The mean time to spontaneous recovery of full neurologic function was 8 minutes (range, 4 to 15 minutes). No thrombotic or embolic events were present on cerebral angiography or computed tomography scan. Balloon reinflation was performed after a mean reperfusion interval of 10 minutes after full neurologic recovery (range, 4 to 20 minutes). The mean subsequent procedure duration was 11.9 minutes (range, 6 to 21 minutes). No recurrence of neurologic symptoms occurred when the occlusion balloon was reinflated. All 10 patients underwent successful CAS without occlusion, dissection, cerebrovascular accident, or death. CONCLUSION Several factors may contribute to the development of neurologic intolerance during CAS with balloon occlusion. Elucidation of the protective cellular mechanisms that invoke ischemic tolerance after the initial transient ischemic event may enable CAS with embolic protection in patients who cannot tolerate initial interruption of antegrade cerebral perfusion.
Collapse
Affiliation(s)
- Rabih A Chaer
- Division of Vascular Surgery, New York Presbyterian Hospital, Cornell University, Weill Medical School and Columbia University, College of Physicians and Surgeons, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
13
|
Zhang J, Qian H, Zhao P, Hong SS, Xia Y. Rapid hypoxia preconditioning protects cortical neurons from glutamate toxicity through delta-opioid receptor. Stroke 2006; 37:1094-9. [PMID: 16514101 DOI: 10.1161/01.str.0000206444.29930.18] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Hypoxia preconditioning (HPC), rapid or delayed, has been reported to induce neuroprotection against subsequent severe stress. Because delta-opioid receptor (DOR) plays an important role in delayed HPC-induced neuroprotection against severe hypoxic injury, we asked whether DOR is also involved in the rapid HPC-induced neuroprotection. METHODS Cultured rat cortical neurons at culture days 8 to 9 were exposed to a short-term hypoxia (1% O2 for 30 minutes) to induce HPC followed by 30-minute normoxia before exposing to glutamate toxicity (100 micromol/L; 4 hours). Neuronal viability was assessed by lactate dehydrogenase leakage and morphological assessment. Protein and mRNA levels of DOR were detected by receptor binding and RT-PCR, respectively. Naltrindole was used to block DOR. Developmental changes in NMDA receptor expression was measured by Western blots. RESULTS HPC significantly reduced the glutamate-induced neuronal injury. Receptor binding showed that HPC increased DADLE (a DOR ligand) binding density in the cultured cortical neurons by >90% over control level (P<0.05), although RT-PCR did not detect any appreciable change in DOR mRNA. DOR inhibition with naltrindole had no effect on neuronal injury and completely abolished the HPC-induced neuroprotection. In contrast to HPC-induced increase in DADLE binding density, prolonged hypoxia caused severe neuronal injury with a significant decrease in DADLE binding density and DOR mRNA level. CONCLUSIONS DOR is involved in neuroprotection induced by rapid HPC in cortical neurons.
Collapse
Affiliation(s)
- Junhui Zhang
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
14
|
Geocadin RG, Malhotra AD, Tong S, Seth A, Moriwaki G, Hanley DF, Thakor NV. Effect of acute hypoxic preconditioning on qEEG and functional recovery after cardiac arrest in rats. Brain Res 2005; 1064:146-54. [PMID: 16289119 DOI: 10.1016/j.brainres.2005.04.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 04/07/2005] [Accepted: 04/13/2005] [Indexed: 11/30/2022]
Abstract
Acute hypoxic preconditioning (AHPC) can confer neuroprotection from global cerebral ischemia such as cardiac arrest. We hypothesize that acute neuroprotection by AHPC will be detected early by quantitative EEG (qEEG) entropy analysis after asphyxial cardiac arrest (aCA). Cerebral ischemia lowers EEG signal randomness leading to low entropy. A qEEG entropy index defined as the duration when the entropy measure is 15% below uninjured baseline entropy is used as a measure of injury. We compared 3 groups of adult Wistar rats: (1) untreated controls that were subjected to 5 min of aCA and were resuscitated (n = 5); (2) AHPC-treated group with 10% FI O2 for 30 min, then 25 min of room air, 5 min of aCA followed by resuscitation (n = 5); and (3) a surgical sham group (no aCA) (n = 3). Functional outcome was assessed by neurodeficit score (NDS) which consisted of level of consciousness, cranial nerve, motor-sensory function, and simple behavioral tests (best = 100 and brain dead = 0). We found that increasing entropy index of injury at 0-5 h from return of spontaneous circulation (ROSC) is associated with worsening NDS at 24 h (linear regression: r = 0.81, P < 0.001). The NDS of the group sham (84.7 +/- 2.8) (mean +/- SEM) and AHPC group (84.6 +/- 2.9, P > 0.05) was better than control injury group (52.2 +/- 8.4, P < 0.05) (ANOVA with Tukey test). We therefore conclude that AHPC confers acute neuroprotection at 24 h, which was detected by qEEG entropy during the first 5 h after injury.
Collapse
Affiliation(s)
- Romergryko G Geocadin
- Department of Neurology, The Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Background and Purpose—
Stroke is a leading cause of disability and death in the United States, yet limited therapeutic options exist. The need for novel neuroprotective agents has spurred efforts to understand the intracellular signaling pathways that mediate cellular response to stroke. Protein kinase C (PKC) plays a central role in mediating ischemic and reperfusion damage in multiple tissues, including the brain. However, because of conflicting reports, it remains unclear whether PKC is involved in cell survival signaling, or mediates detrimental processes.
Summary of Review—
This review will examine the role of PKC activity in stroke. In particular, we will focus on more recent insights into the PKC isozyme-specific responses in neuronal preconditioning and in ischemia and reperfusion-induced stress.
Conclusion—
Examination of PKC isozyme activities during stroke demonstrates the clinical promise of PKC isozyme-specific modulators for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Rachel Bright
- Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | | |
Collapse
|
16
|
Kratsovnik E, Bromberg Y, Sperling O, Zoref-Shani E. Oxidative stress activates transcription factor NF-kB-mediated protective signaling in primary rat neuronal cultures. J Mol Neurosci 2005; 26:27-32. [PMID: 15968083 DOI: 10.1385/jmn:26:1:027] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Accepted: 12/14/2004] [Indexed: 12/31/2022]
Abstract
Activation of transcription factor nuclear factor-kappaB (NF-kappaB) can result in enhanced de novo synthesis of both proteins that confer protection and those that cause death. The present study was undertaken to clarify in primary neuronal cultures the consequences of the oxidative stress-induced activation of NF-kappaB and mediation of death or survival signals. The neuronal cultures were exposed to chemical ischemia (iodoacetic acid), followed by reperfusion (I/R insult). This insult injured the neurons, as manifested in a 7- to 10-fold increase in LDH release, and decreased the cellular content of IkappaBalpha by 55-65 %, indicating NF-kappaB activation. The antioxidants LY231617, melatonin, and sodium salicylate and the antioxidant and inhibitor of NF-kappaB activation pyrrolidine dithiocarbamate, protected the neurons against the insult and prevented the decrease in cellular IkappaBalpha content. In contrast, inhibition of NF-kappaB translocation by SN50 in both uninsulted and insulted neuronal cultures resulted in a 2.9- and 2.4-fold increase in LDH release, respectively. The results indicate that the insult-induced oxidative stress activates transcription factor NF-kappaB associated with induction of protection and suggest that constitutive activation of NF-kappaB under physiological conditions acts to protect the neurons against physiological injury.
Collapse
Affiliation(s)
- Ella Kratsovnik
- Department of Clinical Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
17
|
Angeles DM, Wycliffe N, Michelson D, Holshouser BA, Deming DD, Pearce WJ, Sowers LC, Ashwal S. Use of opioids in asphyxiated term neonates: effects on neuroimaging and clinical outcome. Pediatr Res 2005; 57:873-8. [PMID: 15774841 DOI: 10.1203/01.pdr.0000157676.45088.8c] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Perinatal asphyxia is a common cause of neurologic morbidity in neonates who are born at term. Asphyxiated neonates are frequently treated with analgesic medications, including opioids, for pain and discomfort associated with their care. On the basis of previous laboratory studies suggesting that opioids may have neuroprotective effects, we conducted a retrospective review of medical records of 52 neonates who were admitted to our neonatal intensive care unit between 1995 and 2002 and had undergone magnetic resonance imaging (MRI) of the brain. Our review revealed that 33% of neonates received morphine or fentanyl. The neonates who received opioids also had experienced hypoxic/ischemic insults of greater magnitude as suggested by higher plasma lactate levels and lower 5-min Apgar scores. It is interesting that the MRI studies of neonates who were treated with opioids during the first week of life demonstrated significantly less brain injury in all regions studied. More important, follow-up studies of a subgroup of opioid-treated neonates whose MRI scans were obtained in the second postnatal week had better long-term neurologic outcomes. Our results suggest that the use of opioids in the first week of life after perinatal asphyxia have no significant long-term detrimental effects and may increase the brain's resistance to hypoxic-ischemic insults.
Collapse
|
18
|
Boeck CR, Kroth EH, Bronzatto MJ, Vendite D. Adenosine receptors co-operate with NMDA preconditioning to protect cerebellar granule cells against glutamate neurotoxicity. Neuropharmacology 2005; 49:17-24. [PMID: 15992577 DOI: 10.1016/j.neuropharm.2005.01.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 01/10/2005] [Accepted: 01/26/2005] [Indexed: 10/25/2022]
Abstract
N-Methyl-D-aspartate (NMDA) preconditioning is evoked by subtoxic concentrations of NMDA (50 microM), which has been shown previously to lead to transient resistance to subsequent lethal dose of glutamate or NMDA in cultured neurons. The purpose of this study was to investigate the participation of adenosine A1 and A2A receptors on NMDA preconditioning against glutamate-induced cellular damage in cerebellar granule cells. NMDA preconditioning prevented the stimulatory effect induced by glutamate on AMP hydrolysis, but not on ADP hydrolysis. The neuroprotection evoked by NMDA preconditioning against glutamate-induced cellular damage was prevented by the presence of adenosine A1 receptor antagonist, 8-cyclopentyl-1,3-dimethylxanthine (CPT, 100 nM), but not by the adenosine A2A receptors antagonist, (4-(2[7-amino-2-(2-furyl {1,2,4}-triazolo{2,3-a{1,3,5}triazian-5-yl-aminoethyl)phenol (ZM 241385, 50 nM). Interestingly, a long-term treatment with CPT or ZM 241385 alone protected cells against glutamate-induced neurotoxicity. Moreover, the functionality of adenosine A1 receptor was not affected by NMDA preconditioning, but this treatment promoted adenosine A2A receptor desensitization, measured by cAMP accumulation. Taken together, the results described herein suggest that the neuroprotection evoked by NMDA preconditioning against cellular damage elicited by glutamate occurs through mechanisms involving adenosine A2A receptors desensitization co-operating with adenosine A1 receptors activation in cerebellar granule cells.
Collapse
Affiliation(s)
- Carina R Boeck
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 (anexo), 90035-035, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
19
|
Schaller B. Ischemic preconditioning as induction of ischemic tolerance after transient ischemic attacks in human brain: its clinical relevance. Neurosci Lett 2005; 377:206-11. [PMID: 15755527 DOI: 10.1016/j.neulet.2004.12.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 11/30/2004] [Accepted: 12/01/2004] [Indexed: 11/22/2022]
Abstract
Ischemic preconditioning has been well-established in different animal models of cerebral ischemia. Suggesting that transient ischemic attack (TIAs) may represent a clinical model of ischemic tolerance, patients with ipsilateral TIA before ischemic stroke may have a better neurological outcome compared to patients without TIA before ischemic stroke. A retrospective case-control study. Analysis of clinical and neuroradiological findings of 130 patients treated with local intra-arterial thrombolysis using urokinase after ischemic stroke between January 2000 and May 2002. Eleven patients (8%) demonstrated prestroke ipsilateral TIA in the same vascular territory. Despite no significant differences in baseline characteristics, independence (modified Ranking Scale score) and neurological outcome (NIHS score) were significantly associated with prior TIA in multivariante models. Patients with prestroke TIA, showing a similar clinical picture (NIHS score) on admission, demonstrated a more favorable outcome (NIHS score (p<0.001) and modified Ranking score (p<0.0001)) compared to patients with unheralded ischemic stroke. The interval between TIA and ischemic stroke (1-7 days), duration of TIAs (0-20 min) and number of TIAs (2-3) influenced the better outcome in this patients' subgroup. In addition, we could show an induction of ischemic tolerance by prestroke ASA treatment in patients without previous new-onset TIA. Two to three ipsilateral TIA of the same vascular territory and of up to 20 min duration within 1-7 days may lead to ischemic tolerance to a subsequent ischemic stroke as demonstrated by significantly diminished infarct extention throughout all cortical imagines in neuroradiological studies. The role of ASA has to been further elucidated.
Collapse
Affiliation(s)
- Bernhard Schaller
- Department of Neurology, University Hospital, Inselspital, Berne, Switzerland
| |
Collapse
|
20
|
Rogel A, Bromberg Y, Sperling O, Zoref-Shani E. Phospholipase C is involved in the adenosine-activated signal transduction pathway conferring protection against iodoacetic acid-induced injury in primary rat neuronal cultures. Neurosci Lett 2004; 373:218-21. [PMID: 15619546 DOI: 10.1016/j.neulet.2004.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 08/15/2004] [Accepted: 10/04/2004] [Indexed: 11/28/2022]
Abstract
We have demonstrated before that exposure of neuronal cultures to poisoning by iodoacetic acid, followed by "reperfusion" (iodoacetate-"reperfusion" insult; IAA-R insult), results in severe cytotoxicity. This insult was found to be associated with ATP depletion and generation of reactive oxygen species. The cultured neurons could be protected against the insult by activation of the adenosine A1 receptors and by presence of antioxidants. Previous studies in our laboratory demonstrated that the adenosine-activated signal transduction pathway (Ado-STP) conferring protection against the IAA-R insult, involves activation of protein kinase C-epsilon (PKCepsilon) and opening of ATP sensitive potassium (K(ATP)) channels. In this respect, the adenosine-activated protective mechanism against the IAA-R insult is similar to the Ado-STP in the neurons and in cardiomyocytes against ischemia-reperfusion injury. Phospholipase C (PLC) is an additional component demonstrated recently to participate in the myocardial Ado-STP protecting against ischemia-reperfusion. Here we provide proof for the involvement of PLC also in the neuronal Ado-STP protecting against the IAA-R insult. Primary rat neuronal cultures were exposed to the IAA-R insult. The neurons could be protected against this insult by activation of the adenosine A1 receptors by N6-(R)-phenylisopropyladenosine (R-PIA), a specific A1 adenosine receptor agonist. Exposure of the cultures to the PLC inhibitor U73122, abrogated the protection. The exposure of the cultures to R-PIA was found to enhance PLC activity, an effect that could be abrogated by presence of U73122. The R-PIA-induced increase in PLC activity was short-lived, in the range of minutes. These results demonstrate that activation of PLC is a vital step in the neuronal protective Ado-STP, but that it does not contribute directly to the relatively long time window of the protection signal shown previously to characterize the neuronal mechanism. The results also support the suggestion that the Ado-STP protecting against the IAA-R insult and that protecting against ischemia-reperfusion may represent the same mechanism.
Collapse
Affiliation(s)
- Amotz Rogel
- Department of Clinical Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
21
|
Lange-Asschenfeldt C, Raval AP, Dave KR, Mochly-Rosen D, Sick TJ, Pérez-Pinzón MA. Epsilon protein kinase C mediated ischemic tolerance requires activation of the extracellular regulated kinase pathway in the organotypic hippocampal slice. J Cereb Blood Flow Metab 2004; 24:636-45. [PMID: 15181371 DOI: 10.1097/01.wcb.0000121235.42748.bf] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ischemic preconditioning (IPC) promotes brain tolerance against subsequent ischemic insults. Using the organotypic hippocampal slice culture, we conducted the present study to investigate (1) the role of adenosine A1 receptor (A1AR) activation in IPC induction, (2) whether epsilon protein kinase C (epsilonPKC) activation after IPC is mediated by the phosphoinositol pathway, and (3) whether epsilonPKC protection is mediated by the extracellular signal-regulated kinase (ERK) pathway. Our results demonstrate that activation of A1AR emulated IPC, whereas blockade of the A1AR during IPC diminished neuroprotection. The neuroprotection promoted by the A1AR was also reduced by the epsilonPKC antagonist. To determine whether epsilonPKC activation in IPC and A1AR preconditioning is mediated by activation of the phosphoinositol pathway, we incubated slices undergoing IPC or adenosine treatment with a phosphoinositol phospholipase C inhibitor. In both cases, preconditioning neuroprotection was significantly attenuated. To further characterize the subsequent signal transduction pathway that ensues after epsilonPKC activation, mitogen-activated protein kinase kinase was blocked during IPC and pharmacologic preconditioning (PPC) (with epsilonPKC, NMDA, or A1AR agonists). This treatment significantly attenuated IPC- and PPC-induced neuroprotection. In conclusion, we demonstrate that epsilonPKC activation after IPC/PPC is essential for neuroprotection against oxygen/glucose deprivation in organotypic slice cultures and that the ERK pathway is downstream to epsilonPKC.
Collapse
Affiliation(s)
- Christian Lange-Asschenfeldt
- Cerebral Vascular Disease Research Center, Department of Neurology and Neuroscience, University of Miami School of Medicine, Miami, Florida, USA
| | | | | | | | | | | |
Collapse
|
22
|
Sperling O, Bromberg Y, Oelsner H, Zoref-Shani E. Reactive oxygen species play an important role in iodoacetate-induced neurotoxicity in primary rat neuronal cultures and in differentiated PC12 cells. Neurosci Lett 2003; 351:137-40. [PMID: 14623125 DOI: 10.1016/s0304-3940(03)00858-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The role of reactive oxygen species in the pathogenesis of the neurotoxicity associated with ischemia-reperfusion, was investigated in a model of primary rat neuronal cultures and of differentiated PC12 cells, subjected to chemical ischemia by iodoacetic acid (IAA, 2.5 h) followed by a short period of reperfusion (1 h). The injury to the cells was assessed by lactate dehydrogenase (LDH) release into the culture media. The PC12 cells exhibited relative resistance to IAA cytotoxicity. Therefore these cells were studied at a 4-fold higher IAA concentration (400 microM instead of 100 microM for the neurons). The injury to both cell types was significantly greater in the short post-insult reperfusion (PIR) period than during the insult period. The presence, during the combined insult and PIR periods, of alpha-tocopherol (100 microM), melatonin (1 mM) and LY231617 (5 microM), conferred to both cell types considerable protection against the injury occurring during the insult and during the PIR periods (assessed separately). Superoxide dismutase (SOD; 500 IU/ml) conferred protection to the neurons, but not to the PC12 cells. When exposure to the antioxidants was limited to the short (15 min) pre insult period, only LY231617 conferred protection. In the neurons the protection occurred only during the insult period, whereas in the PC12 cells during both the insult and PIR periods. When the exposure to the antioxidants was limited to the PIR period, only SOD conferred protection and only in the neuronal cultures. These findings suggest that neuronal damage caused during ischemia-reperfusion can be diminished markedly by co-presence of antioxidants during the insult period. Certain antioxidants may protect the neurons even when present only before or after the insult.
Collapse
Affiliation(s)
- Oded Sperling
- Department of Clinical Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
23
|
Wink MR, Lenz G, Braganhol E, Tamajusuku ASK, Schwartsmann G, Sarkis JJF, Battastini AMO. Altered extracellular ATP, ADP and AMP catabolism in glioma cell lines. Cancer Lett 2003; 198:211-8. [PMID: 12957360 DOI: 10.1016/s0304-3835(03)00308-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to characterize the enzymes involved in the purine nucleotide catabolism as indicators of invasiveness and aggressiveness of malignant gliomas, the degradation of extracellular nucleotides by five different glioma cell lines was investigated and compared with primary astrocytes. Rapid hydrolysis of extracellular ATP and ADP by astrocytes was observed, whereas all glioma cell lines examined presented low rates of ATP hydrolysis. In contrast, ecto-5'-nucleotidase activity was increased in glioma cell lines when compared to astrocytes. Considering that ATP is recognized as a mitogenic factor that induces proliferation in human glioma cells, the substantial decrease in ATP and ADP hydrolysis observed in gliomas leads us to suggest that alterations in the ecto-nucleotidases pathway may represent an important mechanism associated with malignant transformation of glioma cell lines.
Collapse
Affiliation(s)
- Marcia R Wink
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos, 2600-anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
24
|
Hou ST, MacManus JP. Molecular mechanisms of cerebral ischemia-induced neuronal death. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 221:93-148. [PMID: 12455747 DOI: 10.1016/s0074-7696(02)21011-6] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The mode of neuronal death caused by cerebral ischemia and reperfusion appears on the continuum between the poles of catastrophic necrosis and apoptosis: ischemic neurons exhibit many biochemical hallmarks of apoptosis but remain cytologically necrotic. The position on this continuum may be modulated by the severity of the ischemic insult. The ischemia-induced neuronal death is an active process (energy dependent) and is the result of activation of cascades of detrimental biochemical events that include perturbion of calcium homeostasis leading to increased excitotoxicity, malfunction of endoplasmic reticulum and mitochondria, elevation of oxidative stress causing DNA damage, alteration in proapoptotic gene expression, and activation of the effector cysteine proteases (caspases) and endonucleases leading to the final degradation of the genome. In spite of strong evidence showing that brain infarction can be reduced by inhibiting any one of the above biochemical events, such as targeting excitotoxicity, up-regulation of an antiapoptotic gene, or inhibition of a down-stream effector caspase, it is becoming clear that targeting a single gene or factor is not sufficient for stroke therapeutics. An effective neuroprotective therapy is likely to be a cocktail aimed at all of the above detrimental events evoked by cerebral ischemia and the success of such therapeutic intervention relies upon the complete elucidation of pathways and mechanisms of the cerebral ischemia-induced active neuronal death.
Collapse
Affiliation(s)
- Sheng T Hou
- Experimental Stroke Group, Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, KIA 0R6, Canada
| | | |
Collapse
|
25
|
Di-Capua N, Sperling O, Zoref-Shani E. Protein kinase C-epsilon is involved in the adenosine-activated signal transduction pathway conferring protection against ischemia-reperfusion injury in primary rat neuronal cultures. J Neurochem 2003; 84:409-12. [PMID: 12559003 DOI: 10.1046/j.1471-4159.2003.01563.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adenosine activates a signal transduction pathway (STP) in the heart and the brain, conferring protection against ischemia-reperfusion insult. Activation of protein kinase C (PKC), probably mainly PKC-epsilon, has been demonstrated to be part of the heart STP, but its role in the neuronal pathway is less clear. Here, we provide proof for the participation of PKC-epsilon in the neuronal adenosine-activated STP. Primary rat neuronal cultures were exposed to chemical ischemia by iodoacetate, followed by reperfusion. The cultured neurons were protected against this insult by activation of the adenosine mechanism, by N6-(R)-phenylisopropyladenosine [R(-)-PIA], a specific A1 adenosine receptor agonist. Exposure of the cultures to bisindolylmaleimide I, a highly selective PKC inhibitor, abrogated the protection. The exposure of the cultures to R(-)-PIA was found to result in phosphorylation (activation) of PKC-epsilon. Furthermore, insertion into the cells of a specific peptide inhibitor of PKC-epsilon translocation (epsilonV1-2), also abrogated the protection conferred by R(-)-PIA. These results demonstrate that activation of PKC-epsilon is a vital step in the neuronal adenosine-activated STP.
Collapse
Affiliation(s)
- Noam Di-Capua
- Department of Clinical Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | |
Collapse
|