1
|
Yang Y, Jiang S, Mu Y, Liu C, Han Y, Jiang J, Wang Y. Berberine prevents against myocardial injury induced by acute β-adrenergic overactivation in rats. J Appl Toxicol 2024; 44:1700-1713. [PMID: 38981847 DOI: 10.1002/jat.4659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024]
Abstract
The overactivation of β-adrenergic receptors (β-ARs) can result in acute myocardial ischemic injury, culminating in myocardial necrosis. Berberine (BBR) has exhibited promising potential for prevention and treatment in various heart diseases. However, its specific role in mitigating myocardial injury induced by acute β-AR overactivation remains unexplored. This study aimed to investigate the effects and underlying mechanisms of BBR pretreatment in a rat model of acute β-AR overactivation induced by a single dose of the nonselective β-adrenergic agonist isoprenaline (ISO). Rats were pretreated with saline or BBR (100 mg/kg/day) via gavage for 14 consecutive days, followed by a subcutaneous injection of ISO or saline on the 14th day. The findings indicated that BBR pretreatment significantly attenuated myocardial injury in ISO-stimulated rats, as evidenced by reduced pathological inflammatory infiltration, necrosis, and serum markers of myocardial damage. Additionally, BBR decreased oxidative stress and inflammation in the system and heart. Furthermore, BBR pretreatment enhanced myocardial ATP levels, improved mitochondrial dysfunction through increased Drp1 phosphorylation, and augmented myocardial autophagy. In a CoCl2-induced H9c2 cell hypoxic injury model, BBR pretreatment mitigated cellular injury, apoptosis, and oxidative stress while upregulating Drp1 and autophagy-associated proteins. Mechanistically, BBR pretreatment activated AKT, AMPK, and LKB1 both in vivo and in vitro, implicating the involvement of the AKT and LKB1/AMPK signaling pathways in its cardioprotective effects. Our study demonstrated the protective effects of BBR against myocardial injury induced by acute β-AR overactivation in rats, highlighting the potential of BBR as a preventive agent for myocardial injury associated with β-adrenergic overactivation.
Collapse
Affiliation(s)
- Yalin Yang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuang Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Mu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chilu Liu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuhong Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
The insulin receptor family in the heart: new light on old insights. Biosci Rep 2022; 42:231495. [PMID: 35766350 PMCID: PMC9297685 DOI: 10.1042/bsr20221212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Insulin was discovered over 100 years ago. Whilst the first half century defined many of the physiological effects of insulin, the second emphasised the mechanisms by which it elicits these effects, implicating a vast array of G proteins and their regulators, lipid and protein kinases and counteracting phosphatases, and more. Potential growth-promoting and protective effects of insulin on the heart emerged from studies of carbohydrate metabolism in the 1960s, but the insulin receptors (and the related receptor for insulin-like growth factors 1 and 2) were not defined until the 1980s. A related third receptor, the insulin receptor-related receptor remained an orphan receptor for many years until it was identified as an alkali-sensor. The mechanisms by which these receptors and the plethora of downstream signalling molecules confer cardioprotection remain elusive. Here, we review important aspects of the effects of the three insulin receptor family members in the heart. Metabolic studies are set in the context of what is now known of insulin receptor family signalling and the role of protein kinase B (PKB or Akt), and the relationship between this and cardiomyocyte survival versus death is discussed. PKB/Akt phosphorylates numerous substrates with potential for cardioprotection in the contractile cardiomyocytes and cardiac non-myocytes. Our overall conclusion is that the effects of insulin on glucose metabolism that were initially identified remain highly pertinent in managing cardiomyocyte energetics and preservation of function. This alone provides a high level of cardioprotection in the face of pathophysiological stressors such as ischaemia and myocardial infarction.
Collapse
|
3
|
Effects and Mechanisms of Traditional Chinese Herbal Medicine in the Treatment of Ischemic Cardiomyopathy. Pharmacol Res 2020; 151:104488. [DOI: 10.1016/j.phrs.2019.104488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/28/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
|
4
|
Ahmed N. Cardioprotective mechanism of FTY720 in ischemia reperfusion injury. J Basic Clin Physiol Pharmacol 2019; 30:jbcpp-2019-0063. [PMID: 31469655 DOI: 10.1515/jbcpp-2019-0063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/06/2019] [Indexed: 12/17/2022]
Abstract
Cardioprotection is a very challenging area in the field of cardiovascular sciences. Myocardial damage accounts for nearly 50% of injury due to reperfusion, yet there is no effective strategy to prevent this to reduce the burden of heart failure. During last couple of decades, by combining genetic and bimolecular studies, many new drugs have been developed to treat hypertension, heart failure, and cancer. The use of percutaneous coronary intervention has reduced the mortality and morbidity of acute coronary syndrome dramatically. However, there is no standard therapy available that can mitigate cardiac reperfusion injury, which contributes to up to half of myocardial infarcts. Literature shows that the activation of sphingosine receptors, which are G protein-coupled receptors, induces cardioprotection both in vitro and in vivo. The exact mechanism of this protection is not clear yet. In this review, we discuss the mechanism of ischemia reperfusion injury and the role of the FDA-approved sphingosine 1 phosphate drug fingolimod in cardioprotection.
Collapse
Affiliation(s)
- Naseer Ahmed
- The Aga Khan University, Medical College, Karachi, Pakistan, Phone: +92 21 3486 4465
| |
Collapse
|
5
|
Du J, Liu J, Zhen J, Yang ST, Zheng EL, Leng JY. Astragaloside IV protects cardiomyocytes from hypoxia-induced injury by down-regulation of lncRNA GAS5. Biomed Pharmacother 2019; 116:109028. [DOI: 10.1016/j.biopha.2019.109028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 01/05/2023] Open
|
6
|
Realgar transforming solution as a novel arsenic agent with a lower risk of cardiotoxicity. J Pharmacol Sci 2019; 140:162-170. [DOI: 10.1016/j.jphs.2019.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 12/19/2022] Open
|
7
|
Meijles DN, Zoumpoulidou G, Markou T, Rostron KA, Patel R, Lay K, Handa BS, Wong B, Sugden PH, Clerk A. The cardiomyocyte "redox rheostat": Redox signalling via the AMPK-mTOR axis and regulation of gene and protein expression balancing survival and death. J Mol Cell Cardiol 2019; 129:118-129. [PMID: 30771309 PMCID: PMC6497135 DOI: 10.1016/j.yjmcc.2019.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/16/2019] [Accepted: 02/12/2019] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS) play a key role in development of heart failure but, at a cellular level, their effects range from cytoprotection to induction of cell death. Understanding how this is regulated is crucial to develop novel strategies to ameliorate only the detrimental effects. Here, we revisited the fundamental hypothesis that the level of ROS per se is a key factor in the cellular response by applying different concentrations of H2O2 to cardiomyocytes. High concentrations rapidly reduced intracellular ATP and inhibited protein synthesis. This was associated with activation of AMPK which phosphorylated and inhibited Raptor, a crucial component of mTOR complex-1 that regulates protein synthesis. Inhibition of protein synthesis by high concentrations of H2O2 prevents synthesis of immediate early gene products required for downstream gene expression, and such mRNAs (many encoding proteins required to deal with oxidant stress) were only induced by lower concentrations. Lower concentrations of H2O2 promoted mTOR phosphorylation, associated with differential recruitment of some mRNAs to the polysomes for translation. Some of the upregulated genes induced by low H2O2 levels are cytoprotective. We identified p21Cip1/WAF1 as one such protein, and preventing its upregulation enhanced the rate of cardiomyocyte apoptosis. The data support the concept of a "redox rheostat" in which different degrees of ROS influence cell energetics and intracellular signalling pathways to regulate mRNA and protein expression. This sliding scale determines cell fate, modulating survival vs death.
Collapse
Affiliation(s)
- Daniel N Meijles
- Molecular and Clinical Sciences Research Institute, St George's University of London, London SW17 0RE, UK; School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK.
| | - Georgia Zoumpoulidou
- National Heart and Lung Institute (Cardiovascular Sciences), Faculty of Medicine, Flowers Building, Imperial College, SW7 2AZ, UK and Dovehouse Street, London SW3 6LY, UK
| | - Thomais Markou
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK; National Heart and Lung Institute (Cardiovascular Sciences), Faculty of Medicine, Flowers Building, Imperial College, SW7 2AZ, UK and Dovehouse Street, London SW3 6LY, UK
| | - Kerry A Rostron
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK
| | - Rishi Patel
- National Heart and Lung Institute (Cardiovascular Sciences), Faculty of Medicine, Flowers Building, Imperial College, SW7 2AZ, UK and Dovehouse Street, London SW3 6LY, UK
| | - Kenneth Lay
- National Heart and Lung Institute (Cardiovascular Sciences), Faculty of Medicine, Flowers Building, Imperial College, SW7 2AZ, UK and Dovehouse Street, London SW3 6LY, UK
| | - Balvinder S Handa
- National Heart and Lung Institute (Cardiovascular Sciences), Faculty of Medicine, Flowers Building, Imperial College, SW7 2AZ, UK and Dovehouse Street, London SW3 6LY, UK
| | - Bethany Wong
- National Heart and Lung Institute (Cardiovascular Sciences), Faculty of Medicine, Flowers Building, Imperial College, SW7 2AZ, UK and Dovehouse Street, London SW3 6LY, UK
| | - Peter H Sugden
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK; National Heart and Lung Institute (Cardiovascular Sciences), Faculty of Medicine, Flowers Building, Imperial College, SW7 2AZ, UK and Dovehouse Street, London SW3 6LY, UK
| | - Angela Clerk
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK; National Heart and Lung Institute (Cardiovascular Sciences), Faculty of Medicine, Flowers Building, Imperial College, SW7 2AZ, UK and Dovehouse Street, London SW3 6LY, UK
| |
Collapse
|
8
|
Loi H, Boal F, Tronchere H, Cinato M, Kramar S, Oleshchuk O, Korda M, Kunduzova O. Metformin Protects the Heart Against Hypertrophic and Apoptotic Remodeling After Myocardial Infarction. Front Pharmacol 2019; 10:154. [PMID: 30873028 PMCID: PMC6400884 DOI: 10.3389/fphar.2019.00154] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/08/2019] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular complications are the most prevalent cause of morbidity and mortality in diabetic patients. Metformin is currently the first-line blood glucose-lowering agent with potential relevance to cardiovascular diseases. However, the underpinning mechanisms of action remain elusive. Here, we report that metformin represses cardiac apoptosis at least in part through inhibition of Forkhead box O1 (FoxO1) pathway. In a mouse model of ischemia-reperfusion (I/R), treatment with metformin attenuated cardiac and hypertrophic remodeling after 14 days of post-reperfusion. Additionally, cardiac expression of brain-like natriuretic peptide (BNP) was significantly reduced in metformin-treated mice after 14 days of cardiac I/R. In cultured H9C2 cells, metformin counteracted hypertrophic and apoptotic responses to metabolic or hypoxic stress. FoxO1 silencing by siRNA abolished anti-apoptotic effect of metformin under hypoxic stress in H9C2 cells. Taken together, these results suggest that metformin protects the heart against hypertrophic and apoptotic remodeling after myocardial infarction.
Collapse
Affiliation(s)
- Halyna Loi
- Department of Pharmacology, I. Horbachevsky Ternopil State Medical University, Ternopil, Ukraine
| | - Frederic Boal
- National Institute of Health and Medical Research (INSERM) U1048, Institute of Cardiovascular and Metabolic Diseases, Toulouse, France.,UMR1048, Paul Sabatier University, Toulouse, France
| | - Helene Tronchere
- National Institute of Health and Medical Research (INSERM) U1048, Institute of Cardiovascular and Metabolic Diseases, Toulouse, France.,UMR1048, Paul Sabatier University, Toulouse, France
| | - Mathieu Cinato
- National Institute of Health and Medical Research (INSERM) U1048, Institute of Cardiovascular and Metabolic Diseases, Toulouse, France.,UMR1048, Paul Sabatier University, Toulouse, France
| | - Solomiia Kramar
- Department of Pharmacology, I. Horbachevsky Ternopil State Medical University, Ternopil, Ukraine
| | - Oleksandra Oleshchuk
- Department of Pharmacology, I. Horbachevsky Ternopil State Medical University, Ternopil, Ukraine
| | - Mykhaylo Korda
- Department of Pharmacology, I. Horbachevsky Ternopil State Medical University, Ternopil, Ukraine
| | - Oksana Kunduzova
- National Institute of Health and Medical Research (INSERM) U1048, Institute of Cardiovascular and Metabolic Diseases, Toulouse, France.,UMR1048, Paul Sabatier University, Toulouse, France
| |
Collapse
|
9
|
Liu L, Zuo Z, Lu S, Wang L, Liu A, Liu X. Silencing of PINK1 represses cell growth, migration and induces apoptosis of lung cancer cells. Biomed Pharmacother 2018; 106:333-341. [PMID: 29966978 DOI: 10.1016/j.biopha.2018.06.128] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022] Open
Abstract
PTEN induced putative kinase 1 (PINK1) has been found to be up-regulated, which promotes the proliferation and chemoresistance in lung cancer. Nevertheless, the role and detailed mechnisms of PINK1 in lung cancer have not been fully understood, which need to be further clarified. In this study, the resluts showed that silencing of PINK1 inhibited proliferation and blocked cell cycle of lung cancer cells. Furthermore, the apoptosis rate was enhanced by PINK1 suppression, as evidenced by increased protein levels of Bax, cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase (PARP), and decreased level of Bcl-2. The migration and invasion abilities were also restrained by PINK1 silencing. Silencing of PINK1 also resulted in oxygen species (ROS) overproduction and decreased mitochondrial membrane potential. Finally, suppression of PINK1 repressed the growth of xenograft tumor and induced apoptosis in tumor tissues in vivo. This study might lead to PINK1 kinase as a novel therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Lihua Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Zhongfu Zuo
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Sijing Lu
- Department of Respiratory Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Lihua Wang
- Medical Record Room, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Aihua Liu
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Xuezheng Liu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China.
| |
Collapse
|
10
|
Tian Y, Du YY, Shang H, Wang M, Sun ZH, Wang BQ, Deng D, Wang S, Xu XD, Sun GB, Sun XB. Calenduloside E Analogues Protecting H9c2 Cardiomyocytes Against H 2O 2-Induced Apoptosis: Design, Synthesis and Biological Evaluation. Front Pharmacol 2017; 8:862. [PMID: 29218010 PMCID: PMC5703861 DOI: 10.3389/fphar.2017.00862] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/09/2017] [Indexed: 01/08/2023] Open
Abstract
Modulation of apoptosis is therapeutically effective in cardiomyocytes damage. Calenduloside E (CE), a naturally occurring triterpenoid saponin, is a potent anti-apoptotic agent. However, little is known about its synthetic analogues on the protective effects in apoptosis of cardiomyocytes. The present research was performed to investigate the potential protective effect of CE analogues against H2O2-induced apoptosis in H9c2 cardiomyocytes and the underlying mechanisms. Sixteen novel CE anologues have been designed, synthesized and biological evaluation. Among the 16 CE anologues, as well as the positive control CE tested, compound 5d was the most effective in improving cardiomyocytes viability. Pretreatment with anologue 5d inhibited ROS generation, maintained the mitochondrial membrane potential and reduced apoptotic cardiomyocytes. Moreover, exposure to H2O2 significantly increased the levels of Bax, cleaved caspase-3, and cleaved PARP, and decreased the level of Bcl-2, resulting in cell apoptosis. Pretreatment with anologue 5d (0.02-0.5 μg/mL) dose-dependently upregulated antiapoptotic proteins and downregulated proapoptotic proteins mentioned above during H2O2-induced apoptosis. These results suggested that CE analogues provide protection to H9c2 cardiomyocytes against H2O2-induced oxidative stress and apoptosis, most likely via anti-apoptotic mechanism, and provided the basis for the further optimization of the CE analogues.
Collapse
Affiliation(s)
- Yu Tian
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Yang Du
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai Shang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhong-Hao Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bao-Qi Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Center of Research and Development on Life Sciences and Environment Sciences, Harbin University of Commerce, Harbin, China
| | - Di Deng
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Center of Research and Development on Life Sciences and Environment Sciences, Harbin University of Commerce, Harbin, China
| | - Shan Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu-Dong Xu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gui-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Kankeu C, Clarke K, Passante E, Huber HJ. Doxorubicin-induced chronic dilated cardiomyopathy-the apoptosis hypothesis revisited. J Mol Med (Berl) 2016; 95:239-248. [PMID: 27933370 DOI: 10.1007/s00109-016-1494-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/17/2016] [Accepted: 11/25/2016] [Indexed: 01/08/2023]
Abstract
The chemotherapeutic agent doxorubicin (DOX) has significantly increased survival rates of pediatric and adult cancer patients. However, 10% of pediatric cancer survivors will 10-20 years later develop severe dilated cardiomyopathy (DCM), whereby the exact molecular mechanisms of disease progression after this long latency time remain puzzling. We here revisit the hypothesis that elevated apoptosis signaling or its increased likelihood after DOX exposure can lead to an impairment of cardiac function and cause a cardiac dilation. Based on recent literature evidence, we first argue why a dilated phenotype can occur when little apoptosis is detected. We then review findings suggesting that mature cardiomyocytes are protected against DOX-induced apoptosis downstream, but not upstream of mitochondrial outer membrane permeabilisation (MOMP). This lack of MOMP induction is proposed to alter the metabolic phenotype, induce hypertrophic remodeling, and lead to functional cardiac impairment even in the absence of cardiomyocyte apoptosis. We discuss findings that DOX exposure can lead to increased sensitivity to further cardiomyocyte apoptosis, which may cause a gradual loss in cardiomyocytes over time and a compensatory hypertrophic remodeling after treatment, potentially explaining the long lag time in disease onset. We finally note similarities between DOX-exposed cardiomyocytes and apoptosis-primed cancer cells and propose computational system biology as a tool to predict patient individual DOX doses. In conclusion, combining recent findings in rodent hearts and cardiomyocytes exposed to DOX with insights from apoptosis signal transduction allowed us to obtain a molecularly deeper insight in this delayed and still enigmatic pathology of DCM.
Collapse
Affiliation(s)
- Cynthia Kankeu
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Kylie Clarke
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Egle Passante
- School of Pharmacy and Biomedical Sciences, Univ. of Central Lancashire, Preston, UK
| | - Heinrich J Huber
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium. .,Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland.
| |
Collapse
|
12
|
Barlaka E, Görbe A, Gáspár R, Pálóczi J, Ferdinandy P, Lazou A. Activation of PPARβ/δ protects cardiac myocytes from oxidative stress-induced apoptosis by suppressing generation of reactive oxygen/nitrogen species and expression of matrix metalloproteinases. Pharmacol Res 2015; 95-96:102-10. [PMID: 25828396 DOI: 10.1016/j.phrs.2015.03.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 03/15/2015] [Accepted: 03/15/2015] [Indexed: 01/26/2023]
Abstract
Heart failure still remains one of the leading causes of morbidity and mortality worldwide. A major contributing factor is reactive oxygen/nitrogen species (RONS) overproduction which is associated with cardiac remodeling partly through cardiomyocyte apoptosis. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that belong to the nuclear receptor superfamily and have been implicated in cardioprotection. However, the molecular mechanisms are largely unexplored. In this study we sought to investigate the potential beneficial effects evoked by activation of PPARβ/δ under the setting of oxidative stress induced by H2O2 in adult rat cardiac myocytes. The selective PPARβ/δ agonist GW0742 inhibited the H2O2-induced apoptosis and increased cell viability. In addition, generation of RONS was attenuated in cardiac myocytes in the presence of PPARβ/δ agonist. These effects were abolished in the presence of the PPARβ/δ antagonist indicating that the effect was through PPARβ/δ receptor activation. Treatment with PPARβ/δ agonist was also associated with attenuation of caspase-3 and PARP cleavage, upregulation of anti-apoptotic Bcl-2 and concomitant downregulation of pro-apoptotic Bax. In addition, activation of PPARβ/δ inhibited the oxidative-stress-induced MMP-2 and MMP-9 mRNA upregulation. It is concluded that PPARβ/δ activation exerts a cytoprotective effect in adult rat cardiac myocytes subjected to oxidative stress via inhibition of oxidative stress, MMP expression, and apoptosis. Our data suggest that the novel connection between PPAR signaling and MMP down-regulation in cardiac myocytes might represent a new target for the management of oxidative stress-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Eleftheria Barlaka
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Greece
| | - Anikó Görbe
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Renáta Gáspár
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Hungary
| | - János Pálóczi
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Antigone Lazou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Greece.
| |
Collapse
|
13
|
Park M, Sabetski A, Kwan Chan Y, Turdi S, Sweeney G. Palmitate induces ER stress and autophagy in H9c2 cells: implications for apoptosis and adiponectin resistance. J Cell Physiol 2015; 230:630-9. [PMID: 25164368 DOI: 10.1002/jcp.24781] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/22/2014] [Indexed: 02/06/2023]
Abstract
The association between obesity and heart failure is well documented and recent studies have indicated that understanding the physiological role of autophagy will be of great significance. Cardiomyocyte apoptosis is one component of cardiac remodeling which leads to heart failure and in this study we used palmitate-treated H9c2 cells as an in vitro model of lipotoxicity to investigate the role of autophagy in cell death. Temporal analysis revealed that palmitate (100 μM) treatment induced a gradual increase of intracellular lipid accumulation as well as apoptotic cell death. Palmitate induced autophagic flux, determined via increased LC3-II formation and p62 degradation as well as by detecting reduced colocalization of GFP with RFP in cells overexpressing tandem fluorescent GFP/RFP-LC3. The increased level of autophagy indicated by these measures were confirmed using transmission electron microscopy (TEM). Upon inhibiting autophagy using bafilomycin we observed an increased level of palmitate-induced cell death assessed by Annexin V/PI staining, detection of active caspase-3 and MTT cell viability assay. Interestingly, using TEM and p-PERK or p-eIF2α detection we observed increased endoplasmic reticulum (ER) stress in response to palmitate. Autophagy was induced as an adaptive response against ER stress since it was sensitive to ER stress inhibition. Palmitate-induced ER stress also induced adiponectin resistance, assessed via AMPK phosphorylation, via reducing APPL1 expression. This effect was independent of palmitate-induced autophagy. In summary, our data indicate that palmitate induces autophagy subsequent to ER stress and that this confers a prosurvival effect against lipotoxicity-induced cell death. Palmitate-induced ER stress also led to adiponecin resistance.
Collapse
Affiliation(s)
- Min Park
- Department of Biology, York University, Toronto, Canada
| | | | | | | | | |
Collapse
|
14
|
Aconitine-induced Ca2+ overload causes arrhythmia and triggers apoptosis through p38 MAPK signaling pathway in rats. Toxicol Appl Pharmacol 2014; 279:8-22. [DOI: 10.1016/j.taap.2014.05.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 05/01/2014] [Accepted: 05/10/2014] [Indexed: 02/06/2023]
|
15
|
A novel protective mechanism for mitochondrial aldehyde dehydrogenase (ALDH2) in type i diabetes-induced cardiac dysfunction: role of AMPK-regulated autophagy. Biochim Biophys Acta Mol Basis Dis 2014; 1852:319-31. [PMID: 24874076 DOI: 10.1016/j.bbadis.2014.05.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/12/2014] [Accepted: 05/17/2014] [Indexed: 12/18/2022]
Abstract
Mitochondrial aldehyde dehydrogenase (ALDH2) is known to offer myocardial protection against stress conditions including ischemia-reperfusion injury, alcoholism and diabetes mellitus although the precise mechanism is unclear. This study was designed to evaluate the effect of ALDH2 on diabetes-induced myocardial injury with a focus on autophagy. Wild-type FVB and ALDH2 transgenic mice were challenged with streptozotozin (STZ, 200mg/kg, i.p.) for 3months to induce experimental diabetic cardiomyopathy. Diabetes triggered cardiac remodeling and contractile dysfunction as evidenced by cardiac hypertrophy, decreased cell shortening and prolonged relengthening duration, the effects of which were mitigated by ALDH2. Lectin staining displayed that diabetes promoted cardiac hypertrophy, the effect of which was alleviated by ALDH2. Western blot analysis revealed dampened autophagy protein markers including LC3B ratio and Atg7 along with upregulated p62 following experimental diabetes, the effect of which was reconciled by ALDH2. Phosphorylation level of AMPK was decreased and its downstream signaling molecule FOXO3a was upregulated in both diabetic cardiac tissue and in H9C2 cells with high glucose exposure. All these effect were partly abolished by ALDH2 overexpression and ALDH2 agonist Alda1. High glucose challenge dampened autophagy in H9C2 cells as evidenced by enhanced p62 levels and decreased levels of Atg7 and LC3B, the effect of which was alleviated by the ALDH2 activator Alda-1. High glucose-induced cell death and apoptosis were reversed by Alda-1. The autophagy inhibitor 3-MA and the AMPK inhibitor compound C mitigated Alda-1-offered beneficial effect whereas the autophagy inducer rapamycin mimicked or exacerbated high glucose-induced cell injury. Moreover, compound C nullified Alda-1-induced protection against STZ-induced changes in autophagy and function. Our results suggested that ALDH2 protects against diabetes-induced myocardial dysfunction possibly through an AMPK -dependent regulation of autophagy. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Collapse
|
16
|
Effects of downregulation of microRNA-181a on H2O2-induced H9c2 cell apoptosis via the mitochondrial apoptotic pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:960362. [PMID: 24683439 PMCID: PMC3942394 DOI: 10.1155/2014/960362] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 12/16/2013] [Accepted: 12/19/2013] [Indexed: 01/07/2023]
Abstract
Glutathione peroxidase-1 (GPx1) is a pivotal intracellular antioxidant enzyme that enzymatically reduces hydrogen peroxide to water to limit its harmful effects. This study aims to identify a microRNA (miRNA) that targets GPx1 to maintain redox homeostasis. Dual luciferase assays combined with mutational analysis and immunoblotting were used to validate the bioinformatically predicted miRNAs. We sought to select miRNAs that were responsive to oxidative stress induced by hydrogen peroxide (H2O2) in the H9c2 rat cardiomyocyte cell line. Quantitative real-time PCR (qPCR) demonstrated that the expression of miR-181a in H2O2-treated H9c2 cells was markedly upregulated. The downregulation of miR-181a significantly inhibited H2O2-induced cellular apoptosis, ROS production, the increase in malondialdehyde (MDA) levels, the disruption of mitochondrial structure, and the activation of key signaling proteins in the mitochondrial apoptotic pathway. Our results suggest that miR-181a plays an important role in regulating the mitochondrial apoptotic pathway in cardiomyocytes challenged with oxidative stress. MiR-181a may represent a potential therapeutic target for the treatment of oxidative stress-associated cardiovascular diseases.
Collapse
|
17
|
Adikesavan G, Vinayagam MM, Abdulrahman LA, Chinnasamy T. (-)-Epigallocatechin-gallate (EGCG) stabilize the mitochondrial enzymes and inhibits the apoptosis in cigarette smoke-induced myocardial dysfunction in rats. Mol Biol Rep 2013; 40:6533-45. [PMID: 24197690 DOI: 10.1007/s11033-013-2673-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 09/14/2013] [Indexed: 01/08/2023]
Abstract
The present study brings out the preventive role of (-)-epigallocatechin-gallate (EGCG) on cardiac mitochondrial metabolism and apoptosis in cigarette smoke (CS)-exposed rats. The CS-exposed rats showed significantly decreased activities of TCA cycle enzymes and mitochondrial enzymatic antioxidants, on the other hand, mitochondrial lipid peroxidation was increased and GSH level was decreased. Further, CS exposure was found to induce cardiac apoptosis through release of cytochrome c into the cytosol, cleavage of pro-caspase-3 to active caspase-3, up-regulation of pro-apoptotic (Bax) and down-regulation of antiapoptotic (Bcl-2) molecules. The CS-induced apoptosis was further confirmed by mitochondrial and nuclear ultra structural apoptotic features as evaluated by electron microscopic studies. EGCG supplementation shelters the activities of TCA cycle enzymes and antioxidant enzymes, with concomitant decrease in lipid peroxidation and increase in GSH level. EGCG administration inhibited apoptosis through the inhibition of cytochrome c release into cytosol, activation of pro-caspase-3, down regulation of Bax and significant up regulation of Bcl-2. EGCG reversed the ultra structural apoptotic alterations of mitochondria and nucleus. The present study has provided experimental evidences that the EGCG treatment enduring to cardio protection at mitochondrial level.
Collapse
|
18
|
Recent advancements in tissue engineering for stem cell-based cardiac therapies. Ther Deliv 2013; 4:503-16. [PMID: 23557290 DOI: 10.4155/tde.13.13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Advances in cardiac tissue engineering have recently focused on utilizing stem cells to regenerate infarcted and scarred myocardium. Due to their proliferative nature and tremendous potential for differentiation, stem cells are presently being investigated for clinical applications. Unfortunately, limiting factors such as massive cell death and poor retention have hampered clinical outcomes. Consequently, the development of an efficient delivery system for stem cells to the target site is essential. The use of innovative tissue engineering techniques has opened up new horizons within the field of cellular cardiomyoplasty. This paper will present a comprehensive overview of the recent advancements in stem cell technology destined for myocardial tissue repair. In addition, the multidisciplinary approach to tissue engineering presented here will provide the reader with insight into the clinical realization of cellular cardiomyoplasty.
Collapse
|
19
|
Mellor KM, Reichelt ME, Delbridge LM. Autophagic predisposition in the insulin resistant diabetic heart. Life Sci 2013; 92:616-20. [DOI: 10.1016/j.lfs.2012.03.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/21/2012] [Accepted: 03/24/2012] [Indexed: 01/30/2023]
|
20
|
Peng L, Zhuang X, Liao L, He X, Li J, Chen X, Lu G, Ma H, Gao X. Changes in cell autophagy and apoptosis during age-related left ventricular remodeling in mice and their potential mechanisms. Biochem Biophys Res Commun 2012. [PMID: 23201404 DOI: 10.1016/j.bbrc.2012.11.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cardiac structures and functions change with advanced age, but the underlying mechanisms are not well understood. Autophagy and apoptosis play important roles in the process of cardiac remodeling. This study was designed to explore changes in cell autophagy and apoptosis during age-related left ventricular remodeling and to determine whether the mitogen-activated protein kinase (MAPK) pathway is an underlying mechanism. Eight 5-month-old (adult group) and eight 24-month-old male C57bl/6 mice (aged group) were studied. The heart mass index, left ventricular mass index and hydroxyproline content of both groups were compared. Western Blotting was used to quantitate the protein expression of microtubule-associated protein 1 light chain 3 (LC3), Beclin-1, caspase-3, B-cell leukemia-2 (Bcl-2) and MAPKs in the left ventricles of adult and aged mice. Our results showed that the heart mass index, left ventricular mass index and hydroxyproline content in the left ventricles of the aged mice were increased significantly compared with the adult mice, indicating that left ventricular remodeling occurs with aging. The expression of LC3 and Beclin-1 in the left ventricles of aged mice were decreased significantly compared to adult mice. Meanwhile, the level of myocardial caspase-3 in adult mice remained the same in aged mice, and the level of myocardial Bcl-2 increased significantly in aged mice. There were no differences in the expression level of myocardial extracellular signal-regulated kinase 1/2 (ERK1/2), activated/phospho-ERK1/2, c-Jun N-terminal kinase 1/2 (JNK1/2) and p38 between aged and adult mice. However, the expression of myocardial activated/phospho-JNK1/2 increased significantly in aged mice, while activated/phospho-p38 decreased significantly. These findings indicate that autophagy decreases without a concurrent change in apoptosis during age-related left ventricular remodeling in mice. The MAPK pathway may be involved in the regulation of age-related left ventricular remodeling by modulating autophagy.
Collapse
Affiliation(s)
- Longyun Peng
- Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The phytoalexin camalexin mediates cytotoxicity towards aggressive prostate cancer cells via reactive oxygen species. J Nat Med 2012. [PMID: 23179315 DOI: 10.1007/s11418-012-0722-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Camalexin is a phytoalexin that accumulates in various cruciferous plants upon exposure to environmental stress and plant pathogens. Besides moderate antibacterial and antifungal activity, camalexin was reported to also exhibit antiproliferative and cancer chemopreventive effects in breast cancer and leukemia. We studied the cytotoxic effects of camalexin treatment on prostate cancer cell lines and whether this was mediated by reactive oxygen species (ROS) generation. As models, we utilized LNCaP and its aggressive subline, C4-2, as well as ARCaP cells stably transfected with empty vector (Neo) control or constitutively active Snail cDNA that represents an epithelial to mesenchymal transition (EMT) model and displays increased cell migration and tumorigenicity. We confirmed previous studies showing that C4-2 and ARCaP-Snail cells express more ROS than LNCaP and ARCaP-Neo, respectively. Camalexin increased ROS, decreased cell proliferation, and increased apoptosis more significantly in C4-2 and ARCaP-Snail cells as compared to LNCaP and ARCaP-Neo cells, respectively, while normal prostate epithelial cells (PrEC) were unaffected. Increased caspase-3/7 activity and increased cleaved PARP protein shown by Western blot analysis was suggestive of increased apoptosis. The ROS scavenger N-acetyl cysteine (NAC) antagonized the effects of camalexin, whereas the addition of exogenous hydrogen peroxide potentiated the effects of camalexin, showing that camalexin is mediating its effects through ROS. In conclusion, camalexin is more potent in aggressive prostate cancer cells that express high ROS levels, and this phytoalexin has a strong potential as a novel therapeutic agent for the treatment of especially metastatic prostate cancer.
Collapse
|
22
|
Jia Y, Dong X, Zhou P, Liu X, Pan L, Xin H, Zhu YZ, Wang Y. The synthesis and biological evaluation of novel Danshensu-cysteine analog conjugates as cardiovascular-protective agents. Eur J Med Chem 2012; 55:176-87. [PMID: 22841280 DOI: 10.1016/j.ejmech.2012.07.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/18/2012] [Accepted: 07/09/2012] [Indexed: 01/29/2023]
Abstract
A series of novel amide and thioester conjugates between Danshensu and cysteine derivatives have been designed and synthesized based on the strategy of "medicinal chemical hybridization". Pharmacological evaluation indicated that the amide conjugates 3a/4a/17a and thioester conjugates 6a-d exhibited obvious protective effects on H(2)O(2)-induced human umbilical vein endothelial cells (HUVECs). Pretreated with these conjugates could increase glutathione (GSH) activity and decrease malondialdehyde (MDA) level. Further study on mechanism of compound 4a revealed that it was related to its mitochondrial-protective effect and regulation of apoptosis-related proteins expression (Bax, p53, PARP, caspase-3, caspase-9 and Bcl-2). These results indicate that these Danshensu-cysteine analog conjugates possess significant cardiovascular-protective effects and merit further investigation.
Collapse
Affiliation(s)
- Yaoling Jia
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Liao J, Sun A, Xie Y, Isse T, Kawamoto T, Zou Y, Ge J. Aldehyde dehydrogenase-2 deficiency aggravates cardiac dysfunction elicited by endoplasmic reticulum stress induction. Mol Med 2012; 18:785-93. [PMID: 22430940 DOI: 10.2119/molmed.2011.00466] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/13/2012] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial aldehyde dehydrogenase-2 (ALDH2) has been characterized as an important mediator of endogenous cytoprotection in the heart. This study was designed to examine the role of ALDH2 knockout (KO) in the regulation of cardiac function after endoplasmic reticulum (ER) stress. Wild-type (WT) and ALDH2 KO mice were subjected to a tunicamycin challenge, and the echocardiographic property was examined. Protein levels of six items--78 kDa glucose-regulated protein (GRP78), phosphorylation of eukaryotic initiation factor 2 subunit α (p-eIF2α), CCAAT/enhancer-binding protein homologous protein (CHOP), phosphorylation of Akt, p47(phox) nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and 4-hydroxynonenal--were determined by using Western blot analysis. Cytotoxicity and apoptosis were estimated using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay and caspase-3 activity, respectively. ALDH2 deficiency exacerbated cardiac contractile dysfunction and promoted ER stress after ER stress induction, manifested by the changes of ejection fraction and fractional shortening. In vitro study revealed that tunicamycin significantly upregulated the levels of GRP78, p-eIF2α, CHOP, p47(phox) NADPH oxidase and 4-hydroxynonenal, which was exacerbated by ALDH2 knockdown and abolished by ALDH2 overexpression, respectively. Overexpression of ALDH2 abrogated tunicamycin-induced dephosphorylation Akt. Inhibition of phosphatidylinositol 3-kinase using LY294002 did not affect ALDH2-conferred protection against ER stress, although LY294002 reversed the antiapoptotic action of ALDH2 associated with p47(phox) NADPH oxidase. These results suggest a pivotal role of ALDH2 in the regulation of ER stress and ER stress-induced apoptosis. The protective role of ALDH2 against ER stress-induced cell death was probably mediated by Akt via a p47(phox) NADPH oxidase-dependent manner. These findings indicate the critical role of ALDH2 in the pathogenesis of ER stress in heart disease.
Collapse
Affiliation(s)
- Jianquan Liao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Ge W, Ren J. mTOR-STAT3-notch signalling contributes to ALDH2-induced protection against cardiac contractile dysfunction and autophagy under alcoholism. J Cell Mol Med 2012; 16:616-26. [PMID: 21609394 PMCID: PMC3202644 DOI: 10.1111/j.1582-4934.2011.01347.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mitochondrial aldehyde dehydrogenase-2 (ALDH2) has been shown to benefit myopathic changes following alcohol intake, although the precise mechanism is still unclear. This study was designed to evaluate the role of ALDH2 on chronic alcohol intake-induced myocardial geometric and functional damage with a focus on autophagic signalling. Wild-type friendly virus B (FVB) and transgenic mice overexpressing ALDH2 driven by chicken β-actin promoter were fed a 4% alcohol liquid diet for 12 weeks. Cardiac geometry and function were assessed using echocardiographic and IonOptix systems. Western blot analysis was used to evaluate the essential autophagy markers, Akt and AMP-dependent protein kinase (AMPK) as well as their downstream signalling mammalian target of rapamycin (mTOR) and signal transducer and activator of transcription 3 (STAT3). Alcohol intake altered cardiac geometry and function as demonstrated by lessened LV wall and septal thickness, enlarged end systolic and diastolic diameters, decreased fractional shortening and cell shortening, the effects of which were mitigated by ALDH2 transgene. Chronic alcohol intake triggered myocardial autophagy as shown by LC3B II isoform switch, as well as decreased phosphorylation of mTOR, the effects of which were ablated by ALDH2. Chronic alcohol intake suppressed phosphorylation of Akt and AMPK, which was reconciled by ALDH2. Levels of Notch1 and STAT3 phosphorylation were dampened by chronic alcohol intake in FVB but not ALDH2 myocardium. Moreover, the γ-secretase Notch inhibitor N-[N-(3,5-difluorophenacetyl)-1-alany1]-S-phenyglycine t-butyl ester exacerbated ethanol-induced cardiomyocyte contractile dysfunction, apoptosis and autophagy. In summary, these findings suggested that ALDH2 elicits cardioprotection against chronic alcohol intake-induced cardiac geometric and functional anomalies by inhibition of autophagy possibly via restoring the Akt-mTOR-STAT3-Notch signalling cascade.
Collapse
Affiliation(s)
- Wei Ge
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | |
Collapse
|
25
|
Chen YL, Loh SH, Chen JJ, Tsai CS. Urotensin II prevents cardiomyocyte apoptosis induced by doxorubicin via Akt and ERK. Eur J Pharmacol 2012; 680:88-94. [DOI: 10.1016/j.ejphar.2012.01.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 01/27/2012] [Accepted: 01/28/2012] [Indexed: 12/23/2022]
|
26
|
Stulpinas A, Imbrasaitė A, Kalvelytė AV. Daunorubicin induces cell death via activation of apoptotic signalling pathway and inactivation of survival pathway in muscle-derived stem cells. Cell Biol Toxicol 2012; 28:103-14. [PMID: 22252735 DOI: 10.1007/s10565-011-9210-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 12/26/2011] [Indexed: 02/02/2023]
Abstract
Daunorubicin (as well as other anthracyclines) is known to be toxic to heart cells and other cells in organism thus limiting its applicability in human cancer therapy. To investigate possible mechanisms of daunorubicin cytotoxicity, we used stem cell lines derived from adult rabbit skeletal muscle. Recently, we have shown that daunorubicin induces apoptotic cell death in our cell model system and distinctly influences the activity of MAP kinases. Here, we demonstrate that two widely accepted antagonistic signalling pathways namely proapoptotic JNK and prosurvival PI3K/AKT participate in apoptosis. Using the Western blot method, we observed the activation of JNK and phosphorylation of its direct target c-Jun along with inactivation of AKT and its direct target GSK in the course of programmed cell death. By means of small-molecule kinase inhibitors and transfection of cells with the genes of the components of these pathways, c-Jun and AKT, we confirm that JNK signalling pathway is proapoptotic, whereas AKT is antiapoptotic in daunorubicin-induced muscle cells. These findings could contribute to new approaches which will result in less toxicity and fewer side effects that are currently associated with the use of daunorubicin in cancer therapies.
Collapse
Affiliation(s)
- Aurimas Stulpinas
- Vilnius University Institute of Biochemistry, Mokslininkų 12, Vilnius, 08662, Lithuania.
| | | | | |
Collapse
|
27
|
Regional imbalanced activation of the calcineurin/BAD apoptotic pathway and the PI3K/Akt survival pathway after myocardial infarction. Int J Cardiol 2011; 166:158-65. [PMID: 22088220 DOI: 10.1016/j.ijcard.2011.10.107] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 09/23/2011] [Accepted: 10/18/2011] [Indexed: 01/17/2023]
Abstract
BACKGROUND The underlying molecular mechanisms of the remodeling after myocardial infarction (MI) remain unclear. The purpose of this study was to investigate the role of a survival pathway (PI3K/Akt) and an apoptosis pathway (calcineurin/BAD) in the remodeling after MI in a large animal model. METHODS Ten Dorset hybrid sheep underwent 25% MI in the left ventricle (LV, n=10). Five sheep were used as sham control. The regional strain was calculated from sonomicrometry. Apoptosis and the activation of the PI3K/Akt and calcineurin/BAD pathways were evaluated in the non-ischemic adjacent zone and the remote zone relative to infarct by immunoblotting, immunoprecipitation, and immunofluorescence staining. RESULTS Dilation and dysfunction of LV were present at 12 weeks after MI. The regional strain in the adjacent zone was significantly higher than in the remote zone at 12 weeks (36.6 ± 4.0% vs 9.5 ± 3.6%, p<0.05). Apoptosis was more severe in the adjacent zone than in the remote zone. The PI3K/Akt and calcineurin/BAD pathways were activated in the adjacent zone. Dephosphorylation and translocation of BAD were evident in the adjacent zone. Regional correlation between the strain and the expression of calcineurin/BAD indicated that the activation was strain-related (R(2)=0.46, 0.48, 0.39 for calcineurin, BAD, mitochondrial BAD, respectively, p<0.05). CONCLUSIONS The PI3K/Akt survival and calcineurin/BAD apoptotic pathways were concomitantly activated in the non-ischemic adjacent zone after MI. The calcineurin/BAD pathway is strain related and its imbalanced activation may be one of the causes of progressive remodeling after MI.
Collapse
|
28
|
Ge W, Guo R, Ren J. AMP-dependent kinase and autophagic flux are involved in aldehyde dehydrogenase-2-induced protection against cardiac toxicity of ethanol. Free Radic Biol Med 2011; 51:1736-48. [PMID: 21871561 PMCID: PMC3188331 DOI: 10.1016/j.freeradbiomed.2011.08.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 07/31/2011] [Accepted: 08/02/2011] [Indexed: 01/12/2023]
Abstract
Mitochondrial aldehyde dehydrogenase-2 (ALDH2) alleviates ethanol toxicity although the precise mechanism is unclear. This study was designed to evaluate the effect of ALDH2 on ethanol-induced myocardial damage with a focus on autophagy. Wild-type FVB and transgenic mice overexpressing ALDH2 were challenged with ethanol (3g/kg/day, ip) for 3days and cardiac mechanical function was assessed using the echocardiographic and IonOptix systems. Western blot analysis was used to evaluate essential autophagy markers, Akt and AMPK, and the downstream signal mTOR. Ethanol challenge altered cardiac geometry and function as evidenced by enlarged ventricular end systolic and diastolic diameters, decreased cell shortening and intracellular Ca(2+) rise, prolonged relengthening and intracellular Ca(2+) decay, as well as reduced SERCA Ca(2+) uptake, which effects were mitigated by ALDH2. Ethanol challenge facilitated myocardial autophagy as evidenced by enhanced expression of Beclin, ATG7, and LC3B II, as well as mTOR dephosphorylation, which was alleviated by ALDH2. Ethanol challenge-induced cardiac defect and apoptosis were reversed by the ALDH2 agonist Alda-1, the autophagy inhibitor 3-MA, and the AMPK inhibitor compound C, whereas the autophagy inducer rapamycin and the AMPK activator AICAR mimicked or exacerbated ethanol-induced cell injury. Ethanol promoted or suppressed phosphorylation of AMPK and Akt, respectively, in FVB but not ALDH2 murine hearts. Moreover, AICAR nullified Alda-1-induced protection against ethanol-triggered autophagic and functional changes. Ethanol increased GFP-LC3 puncta in H9c2 cells, the effect of which was ablated by Alda-1 and 3-MA. Lysosomal inhibition using bafilomycin A1, E64D, and pepstatin A obliterated Alda-1- but not ethanol-induced responses in GFP-LC3 puncta. Our results suggest that ALDH2 protects against ethanol toxicity through altered Akt and AMPK signaling and regulation of autophagic flux.
Collapse
Affiliation(s)
- Wei Ge
- Department of Geriatrics, Fourth Military Medical University, Xi’an, China 710032
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Rui Guo
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| |
Collapse
|
29
|
Markou T, Barlaka E, Bartucci M, Lazou A. Signal transduction pathways through cytoprotective, apoptotic and hypertrophic stimuli: a comparative study in adult cardiac myocytes. Cell Biochem Funct 2011; 29:442-51. [PMID: 21751224 DOI: 10.1002/cbf.1770] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 04/07/2011] [Accepted: 05/17/2011] [Indexed: 01/13/2023]
Abstract
In response to pathophysiological stresses, cardiac myocytes undergo hypertrophic growth or apoptosis. Multiple signalling pathways have been implicated in these responses and among them, kinases such as mitogen-activated protein kinases (MAPKs) and Akt. However, the distinction between signalling pathways originally believed to be specific for either hypertrophy, apoptosis or cell survival is fading. The existing data, coming from different experimental systems, often are conflicting. In this study, we sought to compare aspects of intracellular signalling activated by diverse stimuli in a single experimental system, adult rat cardiac myocytes. Furthermore, we assessed the role of these stimuli in eliciting a particular cell phenotype, i.e. whether they promote hypertrophy, cell survival or apoptosis. The results demonstrate that the hypertrophic agonist phenylephrine is the most potent activator of MAPKs/mitogen and stress- activated kinase MSK1, although its effect on Akt phosphorylation is relatively minor. The pro-apoptotic concentration of H₂O₂ activates strongly both MAPKs and PI3K/Akt pathways. Insulin-like growth factor-1 has a minimal effect on phosphorylation of MAPKs/MSK1, but it is a potent activator of Akt. In conclusion, hypertrophic, pro-survival or apoptotic stimuli operate through the same signalling pathways with different time course and amplitude of kinase activation. Thus, to determine the effect of different stimuli on cell fate, it is important to assess signalling pathways as a network and not as a single pathway.
Collapse
Affiliation(s)
- Thomais Markou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | |
Collapse
|
30
|
Zhang Y, Ren J. ALDH2 in alcoholic heart diseases: molecular mechanism and clinical implications. Pharmacol Ther 2011; 132:86-95. [PMID: 21664374 DOI: 10.1016/j.pharmthera.2011.05.008] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 05/13/2011] [Indexed: 01/12/2023]
Abstract
Alcoholic cardiomyopathy is manifested as cardiac hypertrophy, disrupted contractile function and myofibrillary architecture. An ample amount of clinical and experimental evidence has depicted a pivotal role for alcohol metabolism especially the main alcohol metabolic product acetaldehyde, in the pathogenesis of this myopathic state. Findings from our group and others have revealed that the mitochondrial isoform of aldehyde dehydrogenase (ALDH2), which metabolizes acetaldehyde, governs the detoxification of acetaldehyde formed following alcohol consumption and the ultimate elimination of alcohol from the body. The ALDH2 enzymatic cascade may evolve as a unique detoxification mechanism for environmental alcohols and aldehydes to alleviate the undesired cardiac anomalies in ischemia-reperfusion and alcoholism. Polymorphic variants of the ALDH2 gene encode enzymes with altered pharmacokinetic properties and a significantly higher prevalence of cardiovascular diseases associated with alcoholism. The pathophysiological effects of ALDH2 polymorphism may be mediated by accumulation of acetaldehyde and other reactive aldehydes. Inheritance of the inactive ALDH2*2 gene product is associated with a decreased risk of alcoholism but an increased risk of alcoholic complications. This association is influenced by gene-environment interactions such as those associated with religion and national origin. The purpose of this review is to recapitulate the pathogenesis of alcoholic cardiomyopathy with a special focus on ALDH2 enzymatic metabolism. It will be important to dissect the links between ALDH2 polymorphism and prevalence of alcoholic cardiomyopathy, in order to determine the mechanisms underlying such associations. The therapeutic value of ALDH2 as both target and tool in the management of alcoholic tissue damage will be discussed.
Collapse
Affiliation(s)
- Yingmei Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | | |
Collapse
|
31
|
Park M, Youn B, Zheng XL, Wu D, Xu A, Sweeney G. Globular adiponectin, acting via AdipoR1/APPL1, protects H9c2 cells from hypoxia/reoxygenation-induced apoptosis. PLoS One 2011; 6:e19143. [PMID: 21552570 PMCID: PMC3084258 DOI: 10.1371/journal.pone.0019143] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 03/20/2011] [Indexed: 01/01/2023] Open
Abstract
Cardiomyocyte apoptosis is an important remodeling event contributing to heart failure and adiponectin may mediate cardioprotective effects at least in part via attenuating apoptosis. Here we used hypoxia-reoxygenation (H/R) induced apoptosis in H9c2 cells to examine the effect of adiponectin and cellular mechanisms of action. We first used TUNEL labeling in combination with laser scanning cytometry to demonstrate that adiponectin prevented H/R-induced DNA fragmentation. The anti-apoptotic effect of adiponectin was also verified via attenuation of H/R-induced phosphatidylserine exposure using annexin V binding. H/R-induced apoptosis via the mitochondrial-mediated intrinsic pathway of apoptosis as assessed by cytochrome c release into cytosol and caspase-3 activation, both of which were attenuated by adiponectin. Mechanistically, we demonstrated that adiponectin enhanced anti-oxidative potential in these cells which led to attenuation of the increase in intracellular reactive oxygen species (ROS) caused by H/R. To further address the mechanism of adiponctins anti-apoptotic effects we used siRNA to efficiently knockdown adiponectin receptor (AdipoR1) expression and found that this attenuated the protective effects of adiponectin on ROS production and caspase 3 activity. Knockdown of APPL1, an important intracellular binding partner for AdipoR, also significantly reduced the ability of adiponectin to prevent H/R-induced ROS generation and caspase 3 activity. In summary, H/R-induced ROS generation and activation of the intrinsic apoptotic pathway was prevented by adiponectin via AdipoR1/APPL1 signaling and increased anti-oxidant potential.
Collapse
Affiliation(s)
- Min Park
- Department of Biology, York University, Toronto, Canada
- Institut Pasteur Korea, Seoul, South Korea
| | - ByungSoo Youn
- AdipoGen Inc., Songdo Technopark, Incheon, South Korea
| | - Xi-long Zheng
- The Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Donghai Wu
- Guangzhou Institute of Biomedicine and Health, Guangzhou, China
| | - Aimin Xu
- Department of Pharmacology, Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Canada
- Institut Pasteur Korea, Seoul, South Korea
- * E-mail:
| |
Collapse
|
32
|
Ma H, Guo R, Yu L, Zhang Y, Ren J. Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: role of autophagy paradox and toxic aldehyde. Eur Heart J 2010; 32:1025-38. [PMID: 20705694 DOI: 10.1093/eurheartj/ehq253] [Citation(s) in RCA: 271] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIMS The present study was designed to examine the mechanism involved in mitochondrial aldehyde dehydrogenase (ALDH2)-induced cardioprotection against ischaemia/reperfusion (I/R) injury with a focus on autophagy. METHODS Wild-type (WT), ALDH2 overexpression, and knockout (KO) mice (n = 4-6 for each index measured) were subjected to I/R, and myocardial function was assessed using echocardiographic, Langendroff, and edge-detection systems. Western blotting was used to evaluate AMP-dependent protein kinase (AMPK), Akt, autophagy, and the AMPK/Akt upstream signalling LKB1 and PTEN. RESULTS ALDH2 overexpression and KO significantly attenuated and accentuated, respectively, infarct size, factional shortening, and recovery of post-ischaemic left ventricular function following I/R as well as hypoxia/reoxygenation-induced cardiomyocyte contractile dysfunction. Autophagy was induced during ischaemia and remained elevated during reperfusion. ALDH2 significantly promoted autophagy during ischaemia, which was accompanied by AMPK activation and mammalian target of rapamycin (mTOR) inhibition. On the contrary, ALDH2 overtly inhibited autophagy during reperfusion accompanied by the activation of Akt and mTOR. Inhibition and induction of autophagy mitigated ALDH2-induced protection against cell death in hypoxia and reoxygenation, respectively. In addition, levels of the endogenous toxic aldehyde 4-hydroxy-2-nonenal (4-HNE) were elevated by ischaemia and reperfusion, which was abrogated by ALDH2. Furthermore, ALDH2 ablated 4-HNE-induced cardiomyocyte dysfunction and protein damage, whereas 4-HNE directly decreased pan and phosphorylated LKB1 and PTEN expression. CONCLUSION Our data suggest a myocardial protective effect of ALDH2 against I/R injury possibly through detoxification of toxic aldehyde and a differential regulation of autophagy through AMPK- and Akt-mTOR signalling during ischaemia and reperfusion, respectively.
Collapse
Affiliation(s)
- Heng Ma
- Department of Physiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | |
Collapse
|
33
|
Wang F, He Q, Sun Y, Dai X, Yang XP. Female adult mouse cardiomyocytes are protected against oxidative stress. Hypertension 2010; 55:1172-8. [PMID: 20212261 DOI: 10.1161/hypertensionaha.110.150839] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Premenopausal women have less cardiovascular disease and lower cardiovascular morbidity and mortality than men the same age. Our previous studies showed that female mice have lower mortality and better preserved cardiac function after myocardial infarction. However, the precise cellular and molecular mechanisms responsible for such a sex difference are not well established. Using cultured adult mouse cardiomyocytes, we tested the hypothesis that the survival advantage of females stems from activated estrogen receptors and Akt survival signaling pathways. Adult mouse cardiomyocytes were isolated from male and female C57BL/6J mice and treated with hydrogen peroxide (100 micromol/L) for 30 minutes. Cell survival was indicated by rod ratio (rod shaped cells:total cells), cell death by lactate dehydrogenase release, and positive staining of annexin-V (a marker for apoptosis) and propidium iodide (a marker for necrosis). In response to hydrogen peroxide(,) female adult mouse cardiomyocytes exhibited a higher rod ratio, lower lactate dehydrogenase release, and fewer Annexin-V-positive and propidium iodide-positive cells compared with males. Phospho-Akt was greater in females both at baseline and after hydrogen peroxide stimulation. The downstream molecule of Akt, phosphor-GSK-3beta (inactivation), was also higher, whereas caspase 3 activity was lower in females in response to hydrogen peroxide. Bcl-2 did not differ between sexes. Estrogen receptor-alpha was the dominant isoform in females, whereas estrogen receptor-beta was low but similar in both sexes. Our findings demonstrate that female adult mouse cardiomyocytes have a greater survival advantage when challenged with oxidative stress-induced cell death. This may be attributable to activation of Akt and inhibition of GSK-3beta and caspase 3 through an estrogen receptor-alpha-mediated mechanism.
Collapse
Affiliation(s)
- Fangfei Wang
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202-2689, USA
| | | | | | | | | |
Collapse
|
34
|
Clerk A, Sugden PH. Dying by the way you live: AIF vs. caspases in apoptosis of hypertrophied cardiomyocytes. Cardiovasc Res 2010; 85:3-4. [PMID: 19861307 DOI: 10.1093/cvr/cvp349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Aldehyde dehydrogenase 2 ameliorates acute cardiac toxicity of ethanol: role of protein phosphatase and forkhead transcription factor. J Am Coll Cardiol 2010; 54:2187-96. [PMID: 19942091 DOI: 10.1016/j.jacc.2009.04.100] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 03/10/2009] [Accepted: 04/02/2009] [Indexed: 01/12/2023]
Abstract
OBJECTIVES This study was designed to evaluate the role of facilitated detoxification of acetaldehyde, the main metabolic product of ethanol, through systemic overexpression of mitochondrial aldehyde dehydrogenase-2 (ALDH2) on acute ethanol exposure-induced myocardial damage. BACKGROUND Binge drinking may exert cardiac toxicity and interfere with heart function, manifested as impaired ventricular contractility, although the underlying mechanism remains poorly defined. METHODS ALDH2 transgenic mice were produced using the chicken beta-actin promoter. Wild-type FVB (friend virus B) and ALDH2 mice were challenged with ethanol (3 g/kg, intraperitoneally), and cardiac function was assessed 24 h later using the Langendroff and cardiomyocyte edge-detection systems. Western blot analysis was used to evaluate protein phosphatase 2A and 2C (PP2A and PP2C), phosphorylation of Akt, AMP-activated protein kinase (AMPK), and the transcription factors Foxo3 (Thr32 and Ser413). RESULTS ALDH2 reduced ethanol-induced elevation in cardiac acetaldehyde levels. Acute ethanol challenge deteriorated myocardial and cardiomyocyte contractile function evidenced by reduction in maximal velocity of pressure development and decline (+/-dP/dt), left ventricular developed pressure, cell shortening, and prolonged relengthening duration, the effects of which were alleviated by ALDH2. Ethanol treatment dampened phosphorylation of Akt and AMPK associated with up-regulated PP2A and PP2C, which was abrogated by ALDH2. ALDH2 significantly attenuated ethanol-induced decrease in Akt- and AMPK-stimulated phosphorylation of Foxo3 at Thr32 and Ser413, respectively. Consistently, ALDH2 rescued ethanol-induced myocardial apoptosis, protein damage, and mitochondrial membrane potential depolarization. CONCLUSIONS Our results suggest that ALDH2 is cardioprotective against acute ethanol toxicity, possibly through inhibition of protein phosphatases, leading to enhanced Akt and AMPK activation, and subsequently, inhibition of Foxo3, apoptosis, and mitochondrial dysfunction.
Collapse
|
36
|
Markou T, Dowling AA, Kelly T, Lazou A. Regulation of Bcl-2 phosphorylation in response to oxidative stress in cardiac myocytes. Free Radic Res 2009; 43:809-16. [PMID: 19568971 DOI: 10.1080/10715760903071649] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Oxidative stress promotes cardiac myocyte death and has been implicated in the pathogenesis of many cardiovascular diseases. Bcl-2 family proteins are key regulators of the apoptotic response, while their functions can be regulated by post-transcriptional modifications including phosphorylation, dimerization or proteolytic cleavage. This study used adult cardiac myocytes to test the hypothesis that activation of specific kinase signalling pathways by oxidative stress may modulate either the expression or the phosphorylation of Bcl-2, with the resulting effect of a decrease or increase in its anti-apoptotic function. Stimulation of cardiac myocytes with 0.2 mM H(2)O(2), which induces apoptosis, resulted in a marked down-regulation of Bcl-2 protein simultaneously with an increase in its phosphorylation. Inhibition of p38-MAPK resulted in attenuation of Bcl-2 phosphorylation, whereas inhibition of ERK1/2, JNKs or PI-3-K had no effect. These data suggest that activation of p38 MAPK by oxidative stress results in the phosphorylation and degradation of Bcl-2 and the inactivation of its anti-apoptotic activity.
Collapse
Affiliation(s)
- Thomais Markou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | |
Collapse
|
37
|
Ren Y, Sun C, Sun Y, Tan H, Wu Y, Cui B, Wu Z. PPAR gamma protects cardiomyocytes against oxidative stress and apoptosis via Bcl-2 upregulation. Vascul Pharmacol 2009; 51:169-74. [PMID: 19540934 DOI: 10.1016/j.vph.2009.06.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 06/03/2009] [Accepted: 06/03/2009] [Indexed: 01/12/2023]
Abstract
Cardiovascular disease (CVD) is a leading cause of death and disabilities worldwide. Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists possess potent anti-inflammatory actions and have recently emerged as potential therapeutic agents for CVD. Here we show that H2O2 induced apoptosis in cardiomyocytes with a marked down-regulation of Bcl-2 protein. The PPARgamma agonist rosiglitazone protected cardiomyocytes from oxidative stress and apoptosis. Cardiomyocytes constitutively overexpressing PPARgamma were resistant to oxidative stress-induced apoptosis and protected against impairment of mitochondrial function. On the contrary, cells expressing a dominant negative mutant of PPARgamma were highly sensitive to oxidative stress. Cells overexpressing PPARgamma exhibited an almost 3 fold increase in Bcl-2 protein content; whereas, in PPARgamma dominant negative expressing cells, Bcl-2 was barely detected. Bcl-2 knockdown by siRNA in cells overexpressing PPARgamma results in increased sensitivity to oxidative stress, suggesting that Bcl-2 up-regulation mediated the protective effects of PPARgamma. These data suggest that, in oxidative stress-induced cardiomyocyte apoptosis, PPARgamma protects cells from oxidative stress through upregulating Bcl-2 expression. These findings provide further support for the use of PPARgamma agonists in ischemic cardiac disease.
Collapse
Affiliation(s)
- Yusheng Ren
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Role of the Fas/Fas-L pathway-mediated apoptosis in inflammatory heart diseases and vasculature diseases. J Cardiovasc Pharmacol 2009; 53:91-3. [PMID: 19188842 DOI: 10.1097/fjc.0b013e31819aa304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
39
|
Hofmann U, Burkard N, Vogt C, Thoma A, Frantz S, Ertl G, Ritter O, Bonz A. Protective effects of sphingosine-1-phosphate receptor agonist treatment after myocardial ischaemia-reperfusion. Cardiovasc Res 2009; 83:285-93. [PMID: 19416991 DOI: 10.1093/cvr/cvp137] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Several experimental studies have demonstrated protection against cardiac ischaemia-reperfusion injury achieved by pre-treatment with exogenous sphingosine-1-phosphate (S1P). We tested the hypothesis that pharmacological S1P receptor agonists improve recovery of function when applied with reperfusion. METHODS AND RESULTS Isolated rat cardiomyocytes were stimulated with exogenous S1P, the selective S1P1 receptor agonist SEW2871, or the S1P1/3 receptor agonist FTY720. Western blot analysis was performed to analyse downstream signalling pathways. Ischaemia-reperfusion studies were conducted in rat cardiomyocytes, isolated Langendorff-perfused rat hearts, and in human myocardial muscle strip preparations to evaluate the effect of S1P receptor agonists on cell death and recovery of mechanical function. All S1P receptor agonists were able to activate Akt. This was associated with transactivation of the epidermal growth factor receptor. In isolated cardiomyocytes, selective stimulation of the S1P1 receptor by SEW2871 induced protection against cell death when administered either before or after ischaemia-reperfusion. In isolated rat hearts, treatment with FTY720 during reperfusion attenuated the rise in left ventricular end-diastolic pressure (LVEDP) and improved the recovery of left ventricular developed pressure without limiting infarct size. However, selective S1P1 receptor stimulation did not improve functional recovery but rather increased LVEDP. Additional experiments employing a human myocardial ischaemia-reperfusion model also demonstrated improved functional recovery induced by FTY720 treatment during reperfusion. CONCLUSION Pharmacological S1P receptor agonists have distinct effects on ischaemia-reperfusion injury. Their efficacy when applied during reperfusion makes them potential candidates for pharmaceutical postconditioning therapy after cardiac ischaemia.
Collapse
Affiliation(s)
- Ulrich Hofmann
- Department of Internal Medicine I, University of Würzburg, Medizinische Klinik und Poliklinik I, Josef-Schneider-Str. 2, D-97080 Würzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
MAPK signalling in skeletal muscle-derived stem cells after daunorubicin treatment. ACTA ACUST UNITED AC 2009. [DOI: 10.2478/v10054-008-0045-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Diederich RS, Mowlavi A, Meldrum G, Medling B, Bueno RA, Neumeister MW. Local cooling provides muscle flaps protection from ischemia-reperfusion injury in the event of venous occlusion during the early reperfusion period. Hand (N Y) 2009; 4:19-23. [PMID: 18814018 PMCID: PMC2654943 DOI: 10.1007/s11552-008-9131-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 08/19/2008] [Indexed: 11/30/2022]
Abstract
Clinicians often place patients in heated rooms following muscle flap transfers. We hypothesize that exposure of flaps to heated room temperatures could result in an unnecessary hyperthermic ischemic insult if the flaps were to be compromised by venous outflow obstruction, while exposure of elective flaps to local cooling during early perfusion may provide protection in the event of venous occlusion. The rat rectus femoris muscle flap was elevated and clamped for 1 h. The muscle was then exposed to various temperatures for 1 h of perfusion followed by complete venous occlusion for 3 h. Occlusion clamps were removed and flaps were allowed to reperfuse for 24 h. Flaps were assessed for muscle necrosis and edema. Venous occluded muscles demonstrated decreased muscle necrosis and edema in the locally cooled group (8.5 +/- 6.7%, 3.06 +/- 0.14; P < 0.001) compared to the room temperature group (76.2 +/- 23.0%, 3.73 +/- 0.13), and the local warming group (97.3 +/- 1.4%, 3.84 +/- 0.29) respectively. No difference was noted in muscle necrosis nor edema amongst non-ischemic muscles irrespective of temperature exposure. These results suggest a beneficial role for exposure of elective flaps to local cooling during the early perfusion period in order to provide protection from ischemia reperfusion injury in the event of a venous occlusion insult. The prophylactic exposure of flaps to local cooling is further supported by the lack of a harmful effect when flaps were not compromised by venous occlusion.
Collapse
Affiliation(s)
- Ryan S. Diederich
- Southern Illinois University School of Medicine, Plastic Surgery Institute, Springfield, IL 62702 USA
| | - Arian Mowlavi
- Southern Illinois University School of Medicine, Plastic Surgery Institute, Springfield, IL 62702 USA
| | - Garth Meldrum
- Southern Illinois University School of Medicine, Plastic Surgery Institute, Springfield, IL 62702 USA
| | - Brad Medling
- Southern Illinois University School of Medicine, Plastic Surgery Institute, Springfield, IL 62702 USA
| | - Reuben A. Bueno
- Southern Illinois University School of Medicine, Plastic Surgery Institute, Springfield, IL 62702 USA
| | - Michael W. Neumeister
- Southern Illinois University School of Medicine, Plastic Surgery Institute, Springfield, IL 62702 USA
| |
Collapse
|
42
|
Mladĕnka P, Kalinowski DS, Hašková P, Bobrovová Z, Hrdina R, Šimůnek T, Nachtigal P, Semecký V, Vávrová J, Holečková M, Palicka V, Mazurová Y, Jansson PJ, Richardson DR. The Novel Iron Chelator, 2-Pyridylcarboxaldehyde 2-Thiophenecarboxyl Hydrazone, Reduces Catecholamine-Mediated Myocardial Toxicity. Chem Res Toxicol 2008; 22:208-17. [DOI: 10.1021/tx800331j] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Pr̆emysl Mladĕnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Department of Biological and Medical Science, Faculty of Pharmacy in Hradec Králové, Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Králové, Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Czech Republic, and Iron Metabolism and Chelation Program, Bosch
| | - Danuta S. Kalinowski
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Department of Biological and Medical Science, Faculty of Pharmacy in Hradec Králové, Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Králové, Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Czech Republic, and Iron Metabolism and Chelation Program, Bosch
| | - Pavlína Hašková
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Department of Biological and Medical Science, Faculty of Pharmacy in Hradec Králové, Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Králové, Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Czech Republic, and Iron Metabolism and Chelation Program, Bosch
| | - Zuzana Bobrovová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Department of Biological and Medical Science, Faculty of Pharmacy in Hradec Králové, Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Králové, Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Czech Republic, and Iron Metabolism and Chelation Program, Bosch
| | - Radomír Hrdina
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Department of Biological and Medical Science, Faculty of Pharmacy in Hradec Králové, Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Králové, Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Czech Republic, and Iron Metabolism and Chelation Program, Bosch
| | - Tomáš Šimůnek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Department of Biological and Medical Science, Faculty of Pharmacy in Hradec Králové, Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Králové, Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Czech Republic, and Iron Metabolism and Chelation Program, Bosch
| | - Petr Nachtigal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Department of Biological and Medical Science, Faculty of Pharmacy in Hradec Králové, Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Králové, Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Czech Republic, and Iron Metabolism and Chelation Program, Bosch
| | - Vladimír Semecký
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Department of Biological and Medical Science, Faculty of Pharmacy in Hradec Králové, Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Králové, Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Czech Republic, and Iron Metabolism and Chelation Program, Bosch
| | - Jaroslava Vávrová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Department of Biological and Medical Science, Faculty of Pharmacy in Hradec Králové, Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Králové, Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Czech Republic, and Iron Metabolism and Chelation Program, Bosch
| | - Magdaléna Holečková
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Department of Biological and Medical Science, Faculty of Pharmacy in Hradec Králové, Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Králové, Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Czech Republic, and Iron Metabolism and Chelation Program, Bosch
| | - Vladimir Palicka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Department of Biological and Medical Science, Faculty of Pharmacy in Hradec Králové, Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Králové, Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Czech Republic, and Iron Metabolism and Chelation Program, Bosch
| | - Yvona Mazurová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Department of Biological and Medical Science, Faculty of Pharmacy in Hradec Králové, Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Králové, Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Czech Republic, and Iron Metabolism and Chelation Program, Bosch
| | - Patric J. Jansson
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Department of Biological and Medical Science, Faculty of Pharmacy in Hradec Králové, Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Králové, Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Czech Republic, and Iron Metabolism and Chelation Program, Bosch
| | - Des R. Richardson
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Department of Biological and Medical Science, Faculty of Pharmacy in Hradec Králové, Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Králové, Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Czech Republic, and Iron Metabolism and Chelation Program, Bosch
| |
Collapse
|
43
|
Kaur K, Kaur K, Singh M, Singh N, Jaggi AS. Possible mechanism of rottlerin induced modulation of ischemia reperfusion injury in isolated rat hearts. Biol Pharm Bull 2008; 31:1745-8. [PMID: 18758070 DOI: 10.1248/bpb.31.1745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was designed to investigate the modulatory effects of rottlerin on ischemia reperfusion induced myocardial injury. Isolated rat hearts were exposed to 30 min of global ischemia followed by 120 min of reperfusion using Langendorff apparatus. Myocardial injury was assessed in the terms of infarct size, release of lactate dehydrogenase (LDH), creatine kinase (CK) enzymes. Rottlerin, a selective PKCdelta inhibitor, did not modulate ischemia-reperfusion (I/R) induced myocardial injury at low dose (3 microM). However, at moderate dose (6 microM) it significantly produced cardioprotective effects. On the contrary, rottlerin at high dose (12 microM) significantly enhanced I/R induced myocardial injury. However, administration of FR-167653 (1.1 microM, 2.2 microM), a selective p-38 mitogen activated protein kinase (p-38 MAPK) inhibitor, attenuated rottlerin (12 microM) mediated enhancement in I/R induced myocardial injury in a dose dependent manner. Per se administration of FR-167653 (1.1 microM, 2.2 microM) also attenuated I/R induced myocardial injury in a dose dependent manner. Pretreatment with rottlerin (6 microM) did not enhance the cardioprotective effects of FR-167653 (2.2 microM). It may be concluded that rottlerin mediated cardioprotective effects at moderate dose, possible due to inhibition of PKCdelta; while at high dose it enhanced I/R induced myocardial injury which may be attributed to activation of p-38 MAPK.
Collapse
Affiliation(s)
- Kamaldeep Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | | | | | | | | |
Collapse
|
44
|
SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol 2008; 28:6384-401. [PMID: 18710944 DOI: 10.1128/mcb.00426-08] [Citation(s) in RCA: 428] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
There are seven SIRT isoforms in mammals, with diverse biological functions including gene regulation, metabolism, and apoptosis. Among them, SIRT3 is the only sirtuin whose increased expression has been shown to correlate with an extended life span in humans. In this study, we examined the role of SIRT3 in murine cardiomyocytes. We found that SIRT3 is a stress-responsive deacetylase and that its increased expression protects myocytes from genotoxic and oxidative stress-mediated cell death. We show that, like human SIRT3, mouse SIRT3 is expressed in two forms, a approximately 44-kDa long form and a approximately 28-kDa short form. Whereas the long form is localized in the mitochondria, nucleus, and cytoplasm, the short form is localized exclusively in the mitochondria of cardiomyocytes. During stress, SIRT3 levels are increased not only in mitochondria but also in the nuclei of cardiomyocytes. We also identified Ku70 as a new target of SIRT3. SIRT3 physically binds to Ku70 and deacetylates it, and this promotes interaction of Ku70 with the proapoptotic protein Bax. Thus, under stress conditions, increased expression of SIRT3 protects cardiomyocytes, in part by hindering the translocation of Bax to mitochondria. These studies underscore an essential role of SIRT3 in the survival of cardiomyocytes in stress situations.
Collapse
|
45
|
Eguchi M, Liu Y, Shin EJ, Sweeney G. Leptin protects H9c2 rat cardiomyocytes from H2O2-induced apoptosis. FEBS J 2008; 275:3136-44. [DOI: 10.1111/j.1742-4658.2008.06465.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Xiang P, Deng HY, Li K, Huang GY, Chen Y, Tu L, Ng PC, Pong NH, Zhao H, Zhang L, Sung RYT. Dexrazoxane protects against doxorubicin-induced cardiomyopathy: upregulation of Akt and Erk phosphorylation in a rat model. Cancer Chemother Pharmacol 2008; 63:343-9. [DOI: 10.1007/s00280-008-0744-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 03/17/2008] [Indexed: 10/22/2022]
|
47
|
Cullingford TE, Butler MJ, Marshall AK, Tham EL, Sugden PH, Clerk A. Differential regulation of Krüppel-like factor family transcription factor expression in neonatal rat cardiac myocytes: effects of endothelin-1, oxidative stress and cytokines. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1229-36. [PMID: 18406357 PMCID: PMC2396231 DOI: 10.1016/j.bbamcr.2008.03.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 02/03/2023]
Abstract
Krüppel-like transcription factors (Klfs) modulate fundamental cell processes. Cardiac myocytes are terminally-differentiated, but hypertrophy in response to stimuli such as endothelin-1. H2O2 or cytokines promote myocyte apoptosis. Microarray studies of neonatal rat myocytes identified several Klfs as endothelin-1-responsive genes. We used quantitative PCR for further analysis of Klf expression in neonatal rat myocytes. In response to endothelin-1, Klf2 mRNA expression was rapidly increased (∼ 9-fold; 15–30 min) with later increases in expression of Klf4 and Klf6 (∼ 5-fold; 30–60 min). All were regulated as immediate early genes (cycloheximide did not inhibit the increases in expression). Klf5 expression was increased at 1–2 h (∼ 13-fold) as a second phase response (cycloheximide inhibited the increase). These increases were transient and attenuated by U0126. H2O2 increased expression of Klf2, Klf4 and Klf6, but interleukin-1β or tumor necrosis factor α downregulated Klf2 expression with no effect on Klf4 or Klf6. Of the Klfs which repress transcription, endothelin-1 rapidly downregulated expression of Klf3, Klf11 and Klf15. The dynamic regulation of expression of multiple Klf family members in cardiac myocytes suggests that, as a family, they are actively involved in regulating phenotypic responses (hypertrophy and apoptosis) to extracellular stimuli.
Collapse
Affiliation(s)
- Timothy E Cullingford
- National Heart and Lung Institute (NHLI) Division, Faculty of Medicine, Imperial College London, Flowers Building (4th Floor), Armstrong Road, London SW7 2AZ, UK
| | | | | | | | | | | |
Collapse
|
48
|
Zhao X, Feng T, Chen H, Shan H, Zhang Y, Lu Y, Yang B. Arsenic trioxide-induced apoptosis in H9c2 cardiomyocytes: implications in cardiotoxicity. Basic Clin Pharmacol Toxicol 2008; 102:419-25. [PMID: 18346055 DOI: 10.1111/j.1742-7843.2007.00150.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arsenic trioxide (As(2)O(3)) achieved dramatic remissions in patients with acute promyelocytic leukaemia. Clinical reports have shown that treatment was associated with cardiotoxicity. We investigated the toxic mechanisms of As(2)O(3) in H9c2 cardiomyocytes. Clinically relevant concentrations of As(2)O(3) (2-10 microM) reduced the viability of H9c2 cells in a concentration-dependent manner. The decreased cell viability was because As(2)O(3) induced cell apoptosis (cell shrinkage, nuclear alterations and caspase-3 activation), or even necrosis at higher concentrations. Inhibition of caspase-3 with a specific inhibitor, Ac-DEVD-CHO, suppressed apoptosis induced by As(2)O(3). In addition, reactive oxygen species formation and cellular Ca(2+) overload were observed in H9c2 cells exposed to As(2)O(3), which was partly inhibited by vitamin E and verapamil. These results suggest that As(2)O(3)-induced cardiotoxicity is mediated, at least in part, by activation of caspase-3 pathway, which may be triggered by reactive oxygen species formation and intracellular Ca(2+) overload.
Collapse
Affiliation(s)
- Xiaoyan Zhao
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Choudhary R, Baker KM, Pan J. All-trans retinoic acid prevents angiotensin II- and mechanical stretch-induced reactive oxygen species generation and cardiomyocyte apoptosis. J Cell Physiol 2008; 215:172-81. [PMID: 17941088 DOI: 10.1002/jcp.21297] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cardiomyocyte apoptosis has an important role in the transition from compensatory cardiac remodeling to heart failure. All-trans retinoic acid (RA), a bioactive vitamin A derivative, prevents stretch- and angiotensin II (Ang II)-induced cardiac hypertrophy. However, the anti-apoptotic potential of RA in the heart remains unexplored. Here, we demonstrate that stretch- and Ang II-induced apoptosis is prevented by RA in neonatal cardiomyocytes. RA improved mitochondrial function by inhibiting the stretch- and Ang II-induced reduction in mitochondrial membrane potential, cytochrome c release and by increasing the Bcl2/Bax ratio. RA inhibited stretch- and Ang II-induced intracellular reactive oxygen species (ROS) generation and upregulated the SOD2 level. Hydrogen peroxide-induced increases in the number of TUNEL-positive cells and percentage of Annexin V positive cells, were dose-dependently inhibited by RA. The thiol antioxidant, N-acetyl cysteine (NAC), completely inhibited stretch- and Ang II-induced apoptosis. Using diazoxide (mitochondrial ATP-sensitive K(+) channel opener) and SDS (NADPH oxidase activator), we confirmed that RA suppressed both mitochondrial- and NADPH oxidase-derived ROS. We also observed that both RAR and RXR were involved in preventing Ang II- and stretch-induced ROS production and apoptosis, by using selective retinoid receptor agonists and antagonists. Our data provide the first evidence that RA prevents Ang II and stretch induced apoptosis, by inhibiting ROS generation and increasing the anti-oxidant defense system, suggesting that RA-mediated signaling may provide a new therapeutic target for the prevention of the cardiac remodeling process.
Collapse
Affiliation(s)
- Rashmi Choudhary
- Cardiovascular Research Institute, Texas A&M University System Health Science Center, College of Medicine, Temple, Texas 76504, USA
| | | | | |
Collapse
|
50
|
Gladysheva IP, Robinson BR, Houng AK, Kováts T, King SM. Corin is co-expressed with pro-ANP and localized on the cardiomyocyte surface in both zymogen and catalytically active forms. J Mol Cell Cardiol 2007; 44:131-42. [PMID: 17996891 DOI: 10.1016/j.yjmcc.2007.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Revised: 08/30/2007] [Accepted: 10/01/2007] [Indexed: 11/29/2022]
Abstract
The multi-domain transmembrane serine protease corin cleaves pro-atrial natriuretic peptide (pro-ANP) in vitro to generate an active hormone, ANP. Corin may also contribute to the regulation of the natriuretic peptide system in vivo, and might be an attractive target for treatment of cardiovascular diseases. In order for corin to cleave its substrate pro-ANP, it should be catalytically active and located proximally. However, because knowledge of native corin is limited, we examined the expression, cardiac localization and molecular forms of the native corin protein. Immunofluorescence studies using a series of anti-corin antibodies directed against the stem and protease domains reveal that corin is present on the cell-surface of rat neonatal cardiomyocytes and murine HL-1 cardiomyocyte-like cells. Furthermore, we immunolocalized native corin in pro-ANP expressing cardiomyocytes. Immunoprecipitation of the membrane fraction of mouse heart extract showed that native corin had a relative mass of 205-210 kDa. Under reducing conditions native corin migrates as several different molecular weight forms corresponding to zymogen (uncleaved) and active (cleaved) forms. Studies using a FITC-tagged chloromethyl ketone that mimics the corin cleavage sequence in pro-ANP, suggest that an enzymatically active form of corin is localized to the cell surface of myocardial cells in vivo. Additionally, we showed that the 205-210 kDa form of corin is a glycosylated protein. Treatment of HL-1 cells with tunicamycin reduced the relative mass of expressed corin. We conclude that native corin is a glycosylated protease that is localized on the cell surface of pro-ANP-expressing cardiomyocytes in both zymogen and catalytically active forms.
Collapse
Affiliation(s)
- Inna P Gladysheva
- Cardiovascular Research Center, Division of Cardiology, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | | | | | |
Collapse
|