1
|
Perrot-Minnot MJ, Parrot S. Contrasting alterations in brain chemistry in a crustacean intermediate host of two acanthocephalan parasites. Exp Parasitol 2024; 265:108821. [PMID: 39128576 DOI: 10.1016/j.exppara.2024.108821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
The dynamic properties of neural systems throughout life can be hijacked by so-called manipulative parasites. This study investigated changes in the brain chemistry of the amphipod Gammarus fossarum in response to infection with two trophically-transmitted helminth parasites known to induce distinct behavioral alterations: the bird acanthocephalan Polymorphus minutus and the fish acanthocephalan Pomphorhynchus tereticollis. We quantified brain antioxidant capacity as a common marker of homeostasis and neuroprotection, and brain total protein, on 72 pools of six brains. We analyzed the concentration of serotonin (5HT), dopamine (DA) and tyramine in 52 pools of six brains, by using ultrafast high performance liquid chromatography with electrochemical detection (UHPLC-ECD). Brain total protein concentration scaled hypo-allometrically to dry body weight, and was increased in infected gammarids compared to uninfected ones. The brain of gammarids infected with P. minutus had significantly lower total antioxidant capacity relative to total proteins. Infection with P. tereticollis impacted DA level compared to uninfected ones, and in opposite direction between spring and summer. Brain 5HT level was higher in summer compared to spring independently of infection status, and was decreased by infection after correcting for brain total protein concentration estimated from dry whole-body weight. The potential implication of 5HT/DA balance in parasite manipulation, as a major modulator of the reward-punishment axis, is discussed. Taken together, these findings highlight the need to consider both brain homeostatic and/or structural changes (antioxidant and total protein content) together with neurotransmission balance and flexibility, in studies investigating the impact of parasites on brain and behavior.
Collapse
Affiliation(s)
| | - Sandrine Parrot
- Centre de Recherche en Neurosciences de Lyon, Neurodialytics Facility, Université Claude Bernard Lyon 1, INSERM, U1028, CNRS, UMR 5292, Bron, France
| |
Collapse
|
2
|
Ahmad F, Ramamorthy S, Areeshi MY, Ashraf GM, Haque S. Isolated Mitochondrial Preparations and In organello Assays: A Powerful and Relevant Ex vivo Tool for Assessment of Brain (Patho)physiology. Curr Neuropharmacol 2023; 21:1433-1449. [PMID: 36872352 PMCID: PMC10324330 DOI: 10.2174/1570159x21666230303123555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/30/2022] [Accepted: 12/29/2022] [Indexed: 03/07/2023] Open
Abstract
Mitochondria regulate multiple aspects of neuronal development, physiology, plasticity, and pathology through their regulatory roles in bioenergetic, calcium, redox, and cell survival/death signalling. While several reviews have addressed these different aspects, a comprehensive discussion focussing on the relevance of isolated brain mitochondria and their utilities in neuroscience research has been lacking. This is relevant because the employment of isolated mitochondria rather than their in situ functional evaluation, offers definitive evidence of organelle-specificity, negating the interference from extra mitochondrial cellular factors/signals. This mini-review was designed primarily to explore the commonly employed in organello analytical assays for the assessment of mitochondrial physiology and its dysfunction, with a particular focus on neuroscience research. The authors briefly discuss the methodologies for biochemical isolation of mitochondria, their quality assessment, and cryopreservation. Further, the review attempts to accumulate the key biochemical protocols for in organello assessment of a multitude of mitochondrial functions critical for neurophysiology, including assays for bioenergetic activity, calcium and redox homeostasis, and mitochondrial protein translation. The purpose of this review is not to examine each and every method or study related to the functional assessment of isolated brain mitochondria, but rather to assemble the commonly used protocols of in organello mitochondrial research in a single publication. The hope is that this review will provide a suitable platform aiding neuroscientists to choose and apply the required protocols and tools to address their particular mechanistic, diagnostic, or therapeutic question dealing within the confines of the research area of mitochondrial patho-physiology in the neuronal perspective.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore, 632014, India
| | - Siva Ramamorthy
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore, 632014, India
| | - Mohammed Y. Areeshi
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
3
|
Botros SR, Matouk AI, Anter A, Khalifa MMA, Heeba GH. Protective effect of empagliflozin on gentamicin-induced acute renal injury via regulation of SIRT1/NF-κB signaling pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103907. [PMID: 35697188 DOI: 10.1016/j.etap.2022.103907] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Gentamicin is a highly effective antibiotic. However, its major complication is nephrotoxicity. This study investigated the beneficial effects of empagliflozin against gentamicin-induced nephropathy. Kidney damage was induced in male Wistar rats by administration of gentamicin (100 mg/kg/day, i.p.) for 8 days. Two doses of empagliflozin (10 and 20 mg/kg, p.o.) were concomitantly given with gentamicin for 8 days. Gentamicin administration increased serum creatinine, urea, and cystatin C concentrations. Empagliflozin in both doses ameliorated these changes via mitigation of gentamicin-induced increase in renal oxidative stress, inflammation, and apoptosis. Empagliflozin added to GM treatment led to lower measured levels of TGF-B, NF-κB and caspase 3, and only the higher dose increased PAX2 levels indicating an improvement in tubular regeneration. Additionally, empagliflozin (20 mg/kg/day) markedly prevented gentamicin-induced histopathological changes. The protective effects of empagliflozin may be mediated by decreasing gentamicin concentration in renal tissue and possibly other effects like antioxidant and antiapoptotic effects.
Collapse
Affiliation(s)
- Sandy R Botros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Asmaa I Matouk
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt.
| | - Aliaa Anter
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Mohamed M A Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Gehan H Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt.
| |
Collapse
|
4
|
Olofinnade AT, Onaolapo AY, Onaolapo OJ, Olowe OA. The potential toxicity of food-added sodium benzoate in mice is concentration-dependent. Toxicol Res (Camb) 2021; 10:561-569. [PMID: 34141170 DOI: 10.1093/toxres/tfab024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 01/03/2023] Open
Abstract
Sodium benzoate (NaB) is a versatile food preservative that has also found some applications in the treatment of medical disorders. However, till date, its possible widespread effects on the body are not well studied. We examined the likely effect of diet-added NaB on weight/food intake, haematological parameters, neurobehaviour, antioxidant status, lipid profile and anti-inflammatory/apoptotic markers in mice. Animals were assigned randomly into 4 groups of 10 mice each. Groups included normal control (fed rodent chow) and three groups fed NaB at 125 (0.0125%), 250 (0.025% and 500 (0.05%) mg/kg of feed added to diet, respectively, for eight weeks. Body weight and food intake were assessed. At the end of the experimental period animals were euthanized, blood was then taken for the assessment of haematological, biochemical and inflammatory/apoptotic markers. At the lowest concentration, NaB diet increased body weight and food intake. Decrease in haematological cell counts and total antioxidant capacity were observed, whereas serum malondialdehyde levels and superoxide dismutase activity were increased across the three concentrations. Serum tumour necrosis factor-alpha and interleukin-10 decreased, whereas caspase-3 levels showed no significant difference. Lipid profile and biochemical indices of kidney and liver function were also affected by NaB diet. In conclusion, our findings suggest that NaB may be harmful if regulations regarding its limit of consumption are mistakenly or deliberately ignored. Therefore, it is advisable that regulations on quantities to be added to food be enforced.
Collapse
Affiliation(s)
- Anthony Tope Olofinnade
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Clinical Sciences, College of Medicine, Lagos State University, P.M.B. 21266. 1-5 Oba Akinjobi Way,G.R.A Ikeja, Lagos State, Nigeria
| | - Adejoke Yetunde Onaolapo
- Department of Anatomy, Ladoke Akintola University of Technology, University Road. P.M.B, 4000, Ogbomoso, Oyo State, Nigeria
| | - Olakunle James Onaolapo
- Department of Pharmacology, Ladoke Akintola University of Technology, University Road. P.M.B, 4000, Ogbomoso, Oyo State, Nigeria
| | - Olugbenga Adekunle Olowe
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, University Road. P.M.B, 4000, Ogbomoso, Oyo State, Nigeria Nigeria
| |
Collapse
|
5
|
Vangrieken P, Al-Nasiry S, Bast A, Leermakers PA, Tulen CBM, Janssen GMJ, Kaminski I, Geomini I, Lemmens T, Schiffers PMH, van Schooten FJ, Remels AHV. Hypoxia-induced mitochondrial abnormalities in cells of the placenta. PLoS One 2021; 16:e0245155. [PMID: 33434211 PMCID: PMC7802931 DOI: 10.1371/journal.pone.0245155] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 12/22/2020] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Impaired utero-placental perfusion is a well-known feature of early preeclampsia and is associated with placental hypoxia and oxidative stress. Although aberrations at the level of the mitochondrion have been implicated in PE pathophysiology, whether or not hypoxia-induced mitochondrial abnormalities contribute to placental oxidative stress is unknown. METHODS We explored whether abnormalities in mitochondrial metabolism contribute to hypoxia-induced placental oxidative stress by using both healthy term placentae as well as a trophoblast cell line (BeWo cells) exposed to hypoxia. Furthermore, we explored the therapeutic potential of the antioxidants MitoQ and quercetin in preventing hypoxia-induced placental oxidative stress. RESULTS Both in placental explants as well as BeWo cells, hypoxia resulted in reductions in mitochondrial content, decreased abundance of key molecules involved in the electron transport chain and increased expression and activity of glycolytic enzymes. Furthermore, expression levels of key regulators of mitochondrial biogenesis were decreased while the abundance of constituents of the mitophagy, autophagy and mitochondrial fission machinery was increased in response to hypoxia. In addition, placental hypoxia was associated with increased oxidative stress, inflammation, and apoptosis. Moreover, experiments with MitoQ revealed that hypoxia-induced reactive oxygen species originated from the mitochondria in the trophoblasts. DISCUSSION This study is the first to demonstrate that placental hypoxia is associated with mitochondrial-generated reactive oxygen species and significant alterations in the molecular pathways controlling mitochondrial content and function. Furthermore, our data indicate that targeting mitochondrial oxidative stress may have therapeutic benefit in the management of pathologies related to placental hypoxia.
Collapse
Affiliation(s)
- Philippe Vangrieken
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Internal Medicine, School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Salwan Al-Nasiry
- Department of Obstetrics and Gynaecology, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Aalt Bast
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Pieter A. Leermakers
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Christy B. M. Tulen
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ger. M. J. Janssen
- Department of Pharmacology and Toxicology, School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Iris Kaminski
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Iris Geomini
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Titus Lemmens
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Paul M. H. Schiffers
- Department of Pharmacology and Toxicology, School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Frederik J. van Schooten
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Alex H. V. Remels
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
6
|
Gökçe Apaydın F, Pandır D, Kalender S, Baş H, Kalender Y. Hematoprotective effect of vitamins C and E against subchronic toxicity of bendiocarb: Biochemical evidences. J Food Biochem 2018. [DOI: 10.1111/jfbc.12659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Dilek Pandır
- Faculty of Arts and Science, Department of Biology Bozok University Yozgat Turkey
| | - Suna Kalender
- Faculty of Gazi Education, Department of Science Gazi University Ankara Turkey
| | - Hatice Baş
- Faculty of Arts and Science, Department of Biology Bozok University Yozgat Turkey
| | - Yusuf Kalender
- Faculty of Science, Department of Biology Gazi University Ankara Turkey
| |
Collapse
|
7
|
Sozarukova MM, Polimova AM, Proskurnina EV, Vladimirov YA. Changes in the kinetics of plasma chemiluminescence as a measure of systemic oxidative stress in humans. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916020202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Sun M, Johnson MA. Measurement of Total Antioxidant Capacity in Sub-μL Blood Samples Using Craft Paper-based Analytical Devices. RSC Adv 2015; 5:55633-55639. [PMID: 27642513 PMCID: PMC5026239 DOI: 10.1039/c5ra06479a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Antioxidants play a role in counteracting free radicals and reactive oxygen species and are thought to help prevent or slow the progression of many chronic diseases, such as cancer, diabetes mellitus, cardiovascular disease, and neurodegenerative diseases. Herein we report a simple way to make a colorimetric assay for measuring total antioxidant capacity (TAC) on craft paper-based analytical devices (cPADs) suitable for sub-μL volume blood samples. We incorporated a microfluidic separation mechanism for isolation of plasma from interfering blood cells. The whole diagnostic process, including cPAD construction, plasma sample preparation, assay, and image thresholding analysis, can be completed in fifteen minutes. We applied our approach toward the measurement of TAC in mice that model Huntington's disease (HD), a fatal, neurodegenerative movement disorder. Results revealed that TAC was significantly elevated in R6/2 HD model mice compared to their age-matched wild-type (WT) controls. We expect that this method, carrying a simple, fast, and sensitive assay on low-cost and disposable paper, will meet the potential needs for point-of-care (POC) testing of TAC, as well as other disease biomarkers in blood and other types of bodily fluids where limited volumes of samples are obtainable.
Collapse
Affiliation(s)
- Meng Sun
- Department of Chemistry and R. N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Michael A. Johnson
- Department of Chemistry and R. N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
9
|
Bhargava S, Ali A, Kankra M, Das S, Manocha A, Gupta F, Srivastava LM. Differential expression of lipid peroxidation and total antioxidant status in Indian patients with cardiovascular and cerebrovascular disease. Can J Physiol Pharmacol 2014; 92:592-7. [PMID: 24873992 DOI: 10.1139/cjpp-2013-0481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Data from studies examining lipid peroxidation as a mechanism involved with hyperhomocysteinemia (HHcy)-induced vascular remodeling in patients with occlusive vascular disease have been contradictory. It has not yet been studied in Indians within the context of atherogenesis. Therefore, we measured the levels of homocysteine (Hcy), malondialdehyde (MDA) as a measure of lipid peroxides (LPOs), and total antioxidant status (TAS) in the serum of 167 patients with occlusive vascular disease [coronary artery disease (CAD) = 43; cerebrovascular disease (CVD) = 82; peripheral vascular disease (PVD) = 42]. Each of these groups was further divided into groups of individuals with or without HHcy. In the case of CAD and CVD, patients with HHcy had significantly higher LPOs than those without HHcy (p = 0.009, 0.001, respectively). TAS was significantly lower in CVD patients with HHcy than in those without (p = 0.014). In patients with CAD or CVD, Hcy directly correlated with LPOs (p = 0.002, 0.001, respectively). Lipid peroxidation is a significant mechanism in HHcy-induced vascular remodeling in CAD and CVD, but not in PVD, probably because it is not relevant in thrombosis (38 of 42 patients of PVD had deep-vein thrombosis). To explain the significantly lower TAS in CVD, we hypothesized that CVD patients present very early with grave symptoms, whereas CAD and PVD occur over a longer period of time. Therefore, when CVD presents, TAS is still overwhelmed by HHcy-induced oxidative stress. Hence, adjuvant therapy with antioxidants would benefit patients with CVD.
Collapse
Affiliation(s)
- Seema Bhargava
- a Department of Biochemistry, Sir Ganga Ram Hospital, New Delhi 110060, India
| | | | | | | | | | | | | |
Collapse
|
10
|
Mills JP, Simon PW, Tanumihardjo SA. Biofortified carrot intake enhances liver antioxidant capacity and vitamin a status in mongolian gerbils. J Nutr 2008; 138:1692-8. [PMID: 18716171 DOI: 10.1093/jn/138.9.1692] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biofortification efforts have increased concentrations of bioactive compounds in carrots. We measured the antioxidant potential and vitamin A bioefficacy of 4 biofortified carrot varieties [purple/orange, purple/orange/red, orange/red, and orange] in Mongolian gerbils (n = 73). Following a 4-wk vitamin A depletion period and baseline kill (n = 7), freeze-dried carrot powders were mixed into purified feeds and fed to 6 groups (n = 11/group) for 4 wk. White carrot-fed control and vitamin A-supplemented groups were used to calculate carrot provitamin A bioefficacy. Antioxidant capacities of carrot powders, sera, and livers were determined using the 2, 2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation decolorization assay and carotenoid and retinol concentrations were determined by HPLC. Antioxidant capacity of liver extracts from the 4 colored carrot-fed groups [10.1 +/- 1.2 mumol Trolox equivalent antioxidant capacity (TEAC)/g] was significantly higher than the white carrot-fed control group (9.3 +/- 0.9 mumol TEAC/g) and vitamin A-supplemented group (8.8 +/- 1.4 mumol TEAC/g) (P < 0.05). Liver retinol stores in the colored carrot-fed groups (0.62 +/- 0.13 to 0.67 +/- 0.08 mumol retinol/liver) did not differ and were higher than the white carrot-fed control group (0.32 +/- 0.08 mumol retinol/g) (P < 0.0001). Serum antioxidant capacity and retinol did not differ among treatment groups. Liver antioxidant capacity and vitamin A stores were higher in gerbils fed colored carrots than in those fed white carrots. Antioxidant activity is one of several proposed mechanisms by which plant foods, like biofortified carrots, may provide additional health benefits beyond maintenance of vitamin A status.
Collapse
Affiliation(s)
- Jordan P Mills
- Interdepartmental Graduate Program in Nutritional Sciences, Vegetable Crops Research Unit, Department of Horticulture, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
11
|
Castro IA, Rogero MM, Junqueira RM, Carrapeiro MM. Free radical scavenger and antioxidant capacity correlation of alpha-tocopherol and Trolox measured by three in vitro methodologies. Int J Food Sci Nutr 2007; 57:75-82. [PMID: 16849116 DOI: 10.1080/09637480600656199] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The objective of this study was to correlate the free radical scavenging and antioxidant activity of two known substances (Trolox and alpha-tocopherol), using three in vitro methods (linoleic acid emulsion, brain homogenate and 2,2-diphenyl-1-picryl-hydrazyl [DPPH]). At steady state, alpha-tocopherol showed a greater inhibition of spontaneous oxidation of brain homogenate (59.42%+/-1.91) than Trolox (38.50%+/-2.38), while the latter showed a better antioxidant activity performance regarding inhibition of linoleic acid peroxidation (100% versus 84.02%+/-1.98) and free radical scavenging activity (93.56%+/-5.71 versus 66.72%+/-6.28). When the IC50 value was used as a parameter, alpha-tocopherol presented greater antioxidant activity than Trolox evaluated in brain homogenate and DPPH, without a significant difference when using linoleic acid emulsion. Both compounds showed the same antioxidant efficiency measured by DPPH kinetics (0.37 mM). Antioxidant activity significantly changed according to the substrate, the parameter adopted to compare the substances in the same method and the form used to express antioxidant concentration.
Collapse
Affiliation(s)
- Inar A Castro
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, 05508-900, São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
12
|
Dawn-Linsley M, Ekinci FJ, Ortiz D, Rogers E, Shea TB. Monitoring thiobarbituric acid-reactive substances (TBARs) as an assay for oxidative damage in neuronal cultures and central nervous system. J Neurosci Methods 2005; 141:219-22. [PMID: 15661303 DOI: 10.1016/j.jneumeth.2004.06.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 06/28/2004] [Indexed: 11/23/2022]
Abstract
Oxidative stress is a pivotal factor in neuronal degeneration. A simple method to quantify oxidative damage in culture and in situ is therefore important for studies of neurodegeneration. We present herein modifications of the standard assay for thiobarbituric acid-reactive substances (TBARs) for analyses of both cell cultures and brain tissue homogenates. Since the TBAR assay measures end-point oxidative damage, it is useful to assess the overall impact of oxidative stress-inducing and neuroprotective agents; interpretation is not potentially confounded by the presence or absence of transient products of oxidative damage.
Collapse
Affiliation(s)
- Maria Dawn-Linsley
- Department of Biological Sciences, Center for Cellular Neurobiology and Neurodegeneration Research, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | | | | | | | | |
Collapse
|
13
|
Katalinic V, Modun D, Music I, Boban M. Gender differences in antioxidant capacity of rat tissues determined by 2,2'-azinobis (3-ethylbenzothiazoline 6-sulfonate; ABTS) and ferric reducing antioxidant power (FRAP) assays. Comp Biochem Physiol C Toxicol Pharmacol 2005; 140:47-52. [PMID: 15792622 DOI: 10.1016/j.cca.2005.01.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 12/22/2004] [Accepted: 01/01/2005] [Indexed: 10/25/2022]
Abstract
Differences in susceptibility to oxidative stress between males and females have been postulated. Several methods have been developed to assess the total antioxidant capacity of human serum or plasma, but just recently some of them were employed for measurement of antioxidant capacity of tissues. In this study, we measured and compared antioxidant capacity of heart, kidney, liver and brain tissues of male and female rats. Antioxidant capacity was determined using 2,2'-azinobis (3-ethylbenzothiazoline 6-sulfonate; ABTS) and ferric reducing antioxidant power (FRAP) assays. In the same samples, lipid peroxidation products of these tissues were analysed using thiobarbituric acid reactive substances (TBARS) assays. Antioxidant capacity of heart, kidney and liver tissues was higher in female than male rats for both FRAP and ABTS assays. We found positive correlation between FRAP and ABTS values for all tested tissues. FRAP and ABTS proved to be comparable, simple and quick methods for antioxidant capacity scanning in tissues. TBARS levels differed only for brain tissue, being higher in males. These results indicate stronger defense against oxidative damage in females for all observed tissues. These finding may account for the longer lifespan of females.
Collapse
Affiliation(s)
- V Katalinic
- Faculty of Chemical Technology, Teslina 10, Split, Croatia
| | | | | | | |
Collapse
|