1
|
Israr F, Masood Ul Hasan S, Hussain M, Qazi FUR, Hasan A. Investigating In Situ Expression of Neurotrophic Factors and Partner Proteins in Irreversible Pulpitis. J Endod 2023; 49:1668-1675. [PMID: 37660765 DOI: 10.1016/j.joen.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/30/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
INTRODUCTION In situ assessments of neurotrophic factors and their associated molecular partners have not been explored to date, particularly in humans. The present investigation aimed to explore the expressional dysregulation of neurotrophic factors (nerve growth factor [NGF], brain derived neurotrophic factor [BDNF], and NT4/5), their receptors (TrkA and TrkB), and their modulators (USP36 and Nedd4-2) directly in irreversibly inflamed human pulp tissues. METHODS Forty samples each of healthy and irreversibly inflamed pulp were extirpated for the study. Immunohistochemical examinations were carried out for the anatomic changes and expression of neurotrophic factors and partner proteins. Expression was digitally quantified using the IHC profiler module of ImageJ and deduced as optical density. Statistical analyses were carried out by GraphPad Prism. RESULTS Decrease in nuclear and vessel diameters was observed in irreversibly inflamed pulp tissues. NGF and BDNF were found to be significantly upregulated in symptomatic irreversible pulpitis (SIP), whereas no significant difference was observed in the expression of TrkA and TrkB. Expression of Nedd4-2, USP36, and TrkA was found positively correlated with the NGF in healthy pulp tissues. However, in SIP, positive correlation was only observed between the expression of USP36 and NGF. Among the ligands, BDNF expression was found positively correlated with NGF in healthy pulp but not with NT4/5. In the case of SIP, no correlation was observed between any neurotrophic factors. CONCLUSIONS Upregulation of NGF, BDNF, USP36 and Nedd4-2 in SIP indicates dysregulation in the molecular events underlying the disease biology and could be exploited as potential markers for the disease diagnosis.
Collapse
Affiliation(s)
- Fatima Israr
- Dr Ishrat ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Pakistan; Bioinformatics and Molecular Medicine Research Group, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow College of Biotechnology, Dow University of Health Sciences, Karachi, Pakistan
| | - Syed Masood Ul Hasan
- Dr Ishrat ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Pakistan; Bioinformatics and Molecular Medicine Research Group, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow College of Biotechnology, Dow University of Health Sciences, Karachi, Pakistan
| | - Mushtaq Hussain
- Bioinformatics and Molecular Medicine Research Group, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow College of Biotechnology, Dow University of Health Sciences, Karachi, Pakistan.
| | - Fazal Ur Rehman Qazi
- Dr Ishrat ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Arshad Hasan
- Dow Dental College, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
2
|
Lee PR, Lee JY, Kim HB, Lee JH, Oh SB. TRPM8 Mediates Hyperosmotic Stimuli-Induced Nociception in Dental Afferents. J Dent Res 2019; 99:107-114. [PMID: 31718465 DOI: 10.1177/0022034519886847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hyperosmolar sweet foods onto exposed tooth dentin evoke sudden and intense dental pain, called dentin hypersensitivity. However, it remains unclear how hyperosmolar stimuli excite dental primary afferent (DPA) neurons and thereby lead to dentin hypersensitivity. This study elucidated whether TRPM8, which is well known as a cold temperature- or menthol-activated receptor, additionally mediates nociception in response to hyperosmolar stimuli in adult mouse DPA neurons, which are identified by a fluorescent retrograde tracer: DiI. Single-cell reverse transcription polymerase chain reaction revealed that TRPM8 was expressed in subsets of DPA neurons and that TRPM8 was highly colocalized with TRPV1 and Piezo2. Immunohistochemical analysis also confirmed TRPM8 expression in DPA neurons. By using Fura-2-based calcium imaging, application of hyperosmolar sucrose solutions elicited calcium transients in subsets of the trigeminal ganglion neurons, which was significantly abolished by a selective TRPM8 antagonist: N-(3-Aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)benzamide (AMTB) hydrochloride. When we further examined changes of c-fos expression (a neuronal activation marker) in the spinal trigeminal nucleus after hyperosmolar stimulation onto exposed tooth dentin, c-fos mRNA and protein expression were increased and were also significantly reduced by AMTB, especially in the spinal trigeminal interpolaris-caudalis transition zone (Vi/Vc). Taken together, our results provide strong evidence that TRPM8 expressed in DPA neurons might mediate dental pain as a hyperosmosensor in adult mice.
Collapse
Affiliation(s)
- P R Lee
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - J Y Lee
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - H B Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - J H Lee
- Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - S B Oh
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea.,Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Donnelly CR, Shah AA, Suh EB, Pierchala BA. Ret Signaling Is Required for Tooth Pulp Innervation during Organogenesis. J Dent Res 2019; 98:705-712. [PMID: 30958726 DOI: 10.1177/0022034519837971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During organogenesis, the timing and patterning of dental pulp innervation require both chemoattractive and chemorepellent cues for precise spatiotemporal regulation. Our understanding of the signaling mechanisms that regulate tooth innervation during development, as well as the basic biology of these sensory neurons, remains rudimentary. In this study, we analyzed the expression and function of glial cell line-derived neurotrophic factor (GDNF) and its receptor tyrosine kinase, Ret, in the regulation of innervation of the mouse tooth pulp by dental pulpal afferent (DPA) neurons of the trigeminal ganglion (TG). Using reporter mouse models, we demonstrate that Ret is highly expressed by a subpopulation of DPA neurons projecting to the tooth pulp at both postnatal day 7 (P7) and in the adult. In the adult tooth, GDNF is highly expressed by many cell types throughout the dental pulp. Using a ubiquitous tamoxifen (TMX)-inducible Cre ( UBC-Cre/ERT2) line crossed to Ret conditional knockout mice ( Retfx/fx), Ret was deleted immediately prior to tooth innervation, and the neural projections into P7 molars were analyzed. TMX treatment was efficient in ablating >95% of Ret protein. We observed that UBC-Cre/ERT2; Retfx/fx mice had a significant reduction in the total number of neurites present within the pulp at P7, with a significant accumulation of aberrant fibers in the dental follicle and periodontium. In agreement with these findings, inhibition of Ret signaling through in vivo administration of a highly specific pharmacologic inhibitor (1NM-PP1) of Ret also caused a substantial reduction in pulpal innervation. Taken together, these findings indicate that Ret signaling regulates the timing and patterning of tooth innervation by dental primary afferent neurons of the TG during organogenesis and provide a rationale to explore whether alterations in the GDNF-Ret pathway contribute to pathophysiological conditions in the adult dentition.
Collapse
Affiliation(s)
- C R Donnelly
- 1 Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, USA
| | - A A Shah
- 1 Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, USA
| | - E B Suh
- 1 Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, USA
| | - B A Pierchala
- 1 Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Mahdee A, Eastham J, Whitworth JM, Gillespie JI. Evidence for changing nerve growth factor signalling mechanisms during development, maturation and ageing in the rat molar pulp. Int Endod J 2018; 52:211-222. [DOI: 10.1111/iej.12997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 08/06/2018] [Indexed: 11/27/2022]
Affiliation(s)
- A. Mahdee
- Centre for Oral Health Research; Newcastle University; Newcastle upon Tyne UK
- Institute of Cellular Medicine; Newcastle University; Newcastle upon Tyne UK
- School of Dental Sciences; Newcastle University; Newcastle upon Tyne UK
- University of Baghdad College of Dentistry; Baghdad Iraq
| | - J. Eastham
- Institute of Cellular Medicine; Newcastle University; Newcastle upon Tyne UK
| | - J. M. Whitworth
- Centre for Oral Health Research; Newcastle University; Newcastle upon Tyne UK
- School of Dental Sciences; Newcastle University; Newcastle upon Tyne UK
| | - J. I. Gillespie
- School of Dental Sciences; Newcastle University; Newcastle upon Tyne UK
- Urology and Urological Rehabilitation; Antwerp University; Antwerp Belgium
| |
Collapse
|
5
|
Liu H, Zhao L, Gu W, Liu Q, Gao Z, Zhu X, Wu Z, He H, Huang F, Fan W. Activation of satellite glial cells in trigeminal ganglion following dental injury and inflammation. J Mol Histol 2018. [PMID: 29516260 DOI: 10.1007/s10735-018-9765-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Satellite glial cells (SGCs), a peripheral neuroglial cell, surround neurons and form a complete envelope around individual sensory neurons in the trigeminal ganglia (TG), which may be involved in modulating neurons in inflammation. The purpose of this study was to determine the effect of dental injury and inflammation on SGCs in the TG. Pulp exposure (PX) was performed on the first maxillary molar of 28 rats. The neurons innervating injured tooth in TG were labeled by the retrograde transport of fluoro-gold (FG). Specimens were collected at 1, 3, 7, 14, 21 and 28 days after PX and stained immunohistochemically for glial fibrillary acid protein (GFAP), a marker of SGCs activation, in the TG. We observed that GFAP-immunoreactivity (IR) SGCs enclosed FG-labeled neurons increased in a time-dependent manner after PX. The neurons surrounded by GFAP-IR SGCs were mainly small and medium in size. The GFAP-IR SGCs encircled neurons increased significantly in the maxillary nerve region of the TG at 7-28 days following PX. The results show that dental injury and inflammation induced SGCs activation in the TG. It indicates that activation of SGCs might be implicated in the peripheral mechanisms of pain following dental injury and inflammation.
Collapse
Affiliation(s)
- Haichao Liu
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lei Zhao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Wenzhen Gu
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qin Liu
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhixiong Gao
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao Zhu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Zhi Wu
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Won J, Vang H, Lee P, Kim Y, Kim H, Kang Y, Oh S. Piezo2 Expression in Mechanosensitive Dental Primary Afferent Neurons. J Dent Res 2017; 96:931-937. [DOI: 10.1177/0022034517702342] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mechanosensitive ion channels have been suggested to be expressed in dental primary afferent (DPA) neurons to transduce the movement of dentinal fluid since the proposal of hydrodynamic theory. Piezo2, a mechanosensitive, rapidly inactivating (RI) ion channel, has been recently identified in dorsal root ganglion (DRG) neurons to mediate tactile transduction. Here, we examined the expression of Piezo2 in DPA neurons by in situ hybridization, single-cell reverse transcriptase polymerase chain reaction, and whole-cell patch-clamp recordings. DPA neurons with Piezo2 messenger RNA (mRNA) or Piezo2-like currents were further characterized based on their neurochemical and electrophysiological properties. Piezo2 mRNA was found mostly in medium- to large-sized DPA neurons, with the majority of these neurons also positive for Nav1.8, CGRP, and NF200, whereas only a minor population was positive for IB4 and peripherin. Whole-cell patch-clamp recordings revealed Piezo2-like, RI currents evoked by mechanical stimulation in a subpopulation of DPA neurons. RI currents were pharmacologically blocked by ruthenium red, a compound known to block Piezo2, and were also reduced by small interfering RNA-mediated Piezo2 knockdown. Piezo2-like currents were observed almost exclusively in IB4-negative DPA neurons, with the current amplitude larger in capsaicin-insensitive DPA neurons than the capsaicin-sensitive population. Our findings show that subpopulation of DPA neurons is indeed mechanically sensitive. Within this subpopulation of mechanosensitive DPA neurons, we have identified the Piezo2 ion channel as a potential transducer for mechanical stimuli, contributing to RI inward currents. Piezo2-positive DPA neurons were characterized as medium- to large-sized neurons with myelinated A-fibers, containing nociceptive peptidergic neurotransmitters.
Collapse
Affiliation(s)
- J. Won
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - H. Vang
- Dental Research Institute and Department of Neurobiology & Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - P.R. Lee
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Y.H. Kim
- Dental Research Institute and Department of Neurobiology & Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Department of Physiology, College of Medicine, Gachon University, Incheon, Republic of Korea (present address)
| | - H.W. Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Y. Kang
- Dental Research Institute and Department of Neurobiology & Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S.B. Oh
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
- Dental Research Institute and Department of Neurobiology & Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Abstract
The TRPV1 receptor acts as a sensor for environmental changes in pH and temperature. Since many nociceptors express TRPV1, it is possible that local tissue-cooling may inhibit nociceptor activity via reduction of TRPV1 activation. The present study used isolated superfused rat dental pulp to test the hypothesis that capsaicin receptors are activated in inflamed tissue, as measured by alterations in neuropeptide release. We tested the hypothesis that alterations in the tissue temperature and pH of isolated superfused rat dental pulp regulate capsaicin-induced release of calcitonin gene-related peptide (CGRP). Application of capsaicin with increased proton concentration ( i.e., lowered pH) produced a nearly two-fold increase in peak immunoreactive CGRP release, as compared with capsaicin applied at a pH of 7.4. Reduction in tissue temperature from 37°C to 26°C completely blocked the capsaicin effect. The study indicates that environmental stimuli regulate the activity of capsaicin-sensitive neurons innervating dental pulp, and these factors may be significant clinically in the development and amelioration of dental pain.
Collapse
Affiliation(s)
- H E Goodis
- Division of Endodontics, Department of Preventive and Restorative Sciences, UCSF, 707 Parnasssus Ave., San Francisco, CA 94143, USA.
| | | | | |
Collapse
|
8
|
Liu Q, Gao Z, Zhu X, Wu Z, Li D, He H, Huang F, Fan W. Changes in nitric oxide synthase isoforms in the trigeminal ganglion of rat following chronic tooth pulp inflammation. Neurosci Lett 2016; 633:240-245. [PMID: 27687716 DOI: 10.1016/j.neulet.2016.09.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 11/24/2022]
Abstract
Nitric oxide (NO) possibly plays an important role in the events resulting in hyperalgesia. NO synthase (NOS) is a key enzyme in the production of NO. Changes in NOS expression in primary sensory neurons may be involved in the persistent sensory abnormalities that can be induced by inflammation. To assess the possible roles of NOS in trigeminal sensory system, we studied changes in the expression of NOS isoforms in the trigeminal ganglion (TG) following chronic inflammation after pulp exposure (PX) in rats. The neurons innervating injured tooth in the TG were labeled by fluoro-gold (FG). Immunohistochemical staining was used to reveal the presence of NOS. The results showed that within the FG-labeled population, neuron counts revealed a significant increase in the proportion of NOS neurons following PX, in which the frequency of iNOS and nNOS-positive neurons started to increase at 3 and 7day, respectively, and peaked at 28day. There was no eNOS expression observed in the control group and PX-treated groups. The results demonstrate that PX-induced chronic pulpal inflammation results in significant increase of nNOS and iNOS in the TG. It suggests that nNOS and iNOS could be involved in mediation of peripheral processing of nociceptive information following chronic tooth pulp inflammation.
Collapse
Affiliation(s)
- Qin Liu
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhixiong Gao
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiao Zhu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China
| | - Zhi Wu
- Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Dongpei Li
- Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA 30912, USA
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Kim YS, Kim TH, McKemy DD, Bae YC. Expression of vesicular glutamate transporters in transient receptor potential melastatin 8 (TRPM8)-positive dental afferents in the mouse. Neuroscience 2015; 303:378-88. [PMID: 26166724 DOI: 10.1016/j.neuroscience.2015.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 01/31/2023]
Abstract
Transient receptor potential melastatin 8 (TRPM8) is activated by innocuous cool and noxious cold and plays a crucial role in cold-induced acute pain and pain hypersensitivity. To help understand the mechanism of TRPM8-mediated cold perception under normal and pathologic conditions, we used light microscopic immunohistochemistry and Western blot analysis in mice expressing a genetically encoded axonal tracer in TRPM8-positive (+) neurons. We investigated the coexpression of TRPM8 and vesicular glutamate transporter 1 (VGLUT1) and VGLUT2 in the trigeminal ganglion (TG) and the dental pulp before and after inducing pulpal inflammation. Many TRPM8+ neurons in the TG and axons in the dental pulp expressed VGLUT2, while none expressed VGLUT1. TRPM8+ axons were dense in the pulp horn and peripheral pulp and also frequently observed in the dentinal tubules. Following pulpal inflammation, the proportion of VGLUT2+ and of VGLUT2+/TRPM8+ neurons increased significantly, whereas that of TRPM8+ neurons remained unchanged. Our findings suggest the existence of VGLUT2 (but not VGLUT1)-mediated glutamate signaling in TRPM8+ neurons possibly underlying the cold-induced acute pain and hypersensitivity to cold following pulpal inflammation.
Collapse
Affiliation(s)
- Y S Kim
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, South Korea
| | - T H Kim
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, South Korea
| | - D D McKemy
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Y C Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, South Korea.
| |
Collapse
|
10
|
Chung MK, Jue SS, Dong X. Projection of non-peptidergic afferents to mouse tooth pulp. J Dent Res 2012; 91:777-82. [PMID: 22668597 DOI: 10.1177/0022034512450298] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A large proportion of pulpal nociceptors are known to contain neuropeptides such as CGRP. However, the projection of non-peptidergic nociceptors to tooth pulp is controversial. Recently, the non- peptidergic subset of nociceptors has been implicated in mechanical pain in the skin. Since mechanical irritation of pulpal nociceptors is critical for evoking tooth pain under pathophysiological conditions, we investigated whether the non-peptidergic afferents project to tooth pulp as potential mechanotransducing afferents. For clear visualization of the non-peptidergic afferents, we took advantage of a recently generated knock-in mouse model in which an axonal tracer, farnesylated green fluorescence protein (GFP), is expressed from the locus of a sensory neuron-specific gene, Mrgprd. In the trigeminal ganglia (TG), we demonstrated that GFP is exclusively expressed in afferents binding to isolectin B4 (IB4), a neurochemical marker of non-peptidergic nociceptors, but is rarely co-localized with CGRP. Retrograde labeling of pulpal afferents demonstrated that a low proportion of pulpal afferents was co-localized with GFP. Immunohistochemical detection of the axonal tracer revealed that GFP-positive afferent terminals were densely projected into the tooth pulp. These results provide convincing evidence that non-peptidergic nociceptors are projected into the tooth pulp and suggest a potential role for these afferents in tooth pain.
Collapse
Affiliation(s)
- M-K Chung
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
11
|
Gibbs JL, Melnyk JL, Basbaum AI. Differential TRPV1 and TRPV2 channel expression in dental pulp. J Dent Res 2011; 90:765-70. [PMID: 21406609 DOI: 10.1177/0022034511402206] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hypersensitivity to thermal and mechanical stimuli can occur in painful pulpitis. To explore the neuro-anatomical basis of heat and mechanical sensitivity, we evaluated expression of TRPV1 (heat) and TRPV2 (heat/mechanical) channels in the cell bodies and terminal arborizations of neurons that innervate the dental pulp (DP) and periodontal tissues (PDL). We report that ~50% of trigeminal ganglion (TG) neurons retrogradely labeled from the DP express TRPV2, and this was significantly greater than the general expression of this channel in the TG (15%) and slightly more than what is expressed in the PDL by retrograde labeling (40%). The TRPV1 receptor, however, was less prevalent in neurons innervating the DP than their general expression in the TG (17% vs. 26%) and was more extensively expressed in neurons innervating the PDL (26%). Co-labeling studies showed that 70% of neurons that innervate the DP are myelinated. Approximately 1/3 of the retrogradely labeled neurons from the DP were calcitonin-gene-related-peptide-positive (peptide-expressing), but very few expressed the IB4 marker of non-peptidergic unmyelinated afferents. These findings suggest that the DP has a unique neurochemical innervation with regard to TRP receptor expression, which has significant implications for the mechanisms contributing to odontogenic pain and management strategies.
Collapse
Affiliation(s)
- J L Gibbs
- Department of Preventive and Restorative Dental Sciences, University of California San Francisco, CA 94158, USA.
| | | | | |
Collapse
|
12
|
Abstract
Pain is one of the most common reasons for which patients seek dental and medical care. Orofacial pain conditions consist of a wide range of disorders including odontalgia (toothache), temporomandibular disorders, trigeminal neuralgia and others. Most of these conditions are either inflammatory or neuropathic in nature. This chapter provides an overview of the commonly used models to study inflammatory and neuropathic orofacial pain.
Collapse
Affiliation(s)
- Asma Khan
- Department of Endodontics, University of North Carolina, Chapel Hill, NC, USA
| | | |
Collapse
|
13
|
Fan W, Huang F, Li C, Qu H, Gao Z, Leng S, Li D, He H. Involvement of NOS/NO in the development of chronic dental inflammatory pain in rats. ACTA ACUST UNITED AC 2008; 59:324-32. [PMID: 19013482 DOI: 10.1016/j.brainresrev.2008.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/09/2008] [Accepted: 10/11/2008] [Indexed: 12/29/2022]
Abstract
Nitric oxide (NO) is believed to be an important messenger molecule in nociceptive transmission. To assess the possible roles of NO in trigeminal sensory system, we examined the distribution and density of histochemical staining for nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d), a marker for nitric oxide synthase (NOS), and immunohistochemical staining for c-Fos, a neuronal activity marker, in the trigeminal ganglion (TG) and trigeminal nucleus caudalis (Vc) following pulp exposure (PX) injured rats. The neurons innervating injured tooth in TG were labeled by the retrograde transport of fluoro-gold (FG). Teeth were processed for H&E staining. We found that NADPH-d activity increased significantly in the TG and Vc following PX pretreatment (7-28 days, especially in 21-28 days). Such changes were closely corresponding to the pattern of c-Fos detected by immunocytochemistry. The results demonstrate that PX-induced chronic pulpal inflammation results in significant alterations in the TG cells and in the Vc, and such changes may underlie the observed NADPH-d activity. It suggests that NOS/NO may play an active role in both peripheral and central processing of nociceptive information following chronic tooth inflammation.
Collapse
Affiliation(s)
- Wenguo Fan
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Hermanstyne TO, Markowitz K, Fan L, Gold MS. Mechanotransducers in rat pulpal afferents. J Dent Res 2008; 87:834-8. [PMID: 18719209 DOI: 10.1177/154405910808700910] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The hydrodynamic theory suggests that pain associated with stimulation of a sensitive tooth ultimately involves mechanotransduction as a consequence of fluid movement within exposed dentinal tubules. To determine whether putative mechanotransducers could underlie mechanotransduction in pulpal afferents, we used a single-cell PCR approach to screen retrogradely labeled pulpal afferents. The presence of mRNA encoding BNC-1, ASIC3, TRPV4, TRPA1, the alpha, beta, and gamma subunits of ENaC, and the two pore K+ channels (TREK1, TREK2) and TRAAK were screened in pulpal neurons from rats with and without pulpal inflammation. ASIC3, TRPA1, TREK1, and TREK2 were present in approximately 67%, 64%, 14%, and 10% of pulpal neurons, respectively. There was no detectable influence of inflammation on the proportion of neurons expressing these mechanotransducers. Given that the majority of pulpal afferents express ASIC3 and TRPA1, our results raise the possibility that these channels may be novel targets for the treatment of dentin sensitivity.
Collapse
Affiliation(s)
- T O Hermanstyne
- Program in Neuroscience, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
15
|
Yang H, Bernanke JM, Naftel JP. Immunocytochemical evidence that most sensory neurons of the rat molar pulp express receptors for both glial cell line-derived neurotrophic factor and nerve growth factor. Arch Oral Biol 2006; 51:69-78. [PMID: 16444814 DOI: 10.1016/j.archoralbio.2005.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Most pulpal afferent neurons have cytochemical features in common with the class of nociceptors that express neuropeptides and respond to NGF, while very few bind the plant lectin IB4, a widely used marker for the class of nociceptors that respond to the GDNF family of neurotrophic factors. The present study was undertaken to determine whether the GDNF receptor, GFRalpha-1, is expressed by pulpal afferents, and, further, to determine whether tooth injury evokes changes in expression of the GDNF and NGF receptors among pulpal afferents. The tracer, fluoro-gold (FG), was applied to shallow cavities in dentin of first and second maxillary molars. After 4 weeks, the molars of one side received a test injury consisting of a deeper cavity that exposed pulp horns. Animals were perfusion fixed 2 days later, and sections of the trigeminal ganglia were double immunostained with combinations of antibodies against GFRalpha-1, and TrkA. Under control conditions, GFRalpha-1 immunostaining was observed in 72% of neurons that projected to the molar pulp, TrkA in 78%, and immunostaining for both receptors was observed in 65% of pulpal afferents. Tooth injury evoked up-regulation of GFRalpha-1 expression (to 93%) and a slight down-regulation of TrkA expression (67%) among tooth afferents, while there was no discernable change in the proportion of pulpal afferents that expressed both TrkA and GFRalpha-1 (to 61%).
Collapse
Affiliation(s)
- Hong Yang
- Department of Anatomy, University of Mississippi Medical Center, Jackson, 39216, USA
| | | | | |
Collapse
|
16
|
Ambalavanar R, Moritani M, Moutanni A, Gangula P, Yallampalli C, Dessem D. Deep tissue inflammation upregulates neuropeptides and evokes nociceptive behaviors which are modulated by a neuropeptide antagonist. Pain 2005; 120:53-68. [PMID: 16359792 DOI: 10.1016/j.pain.2005.10.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 09/30/2005] [Accepted: 10/10/2005] [Indexed: 11/17/2022]
Abstract
Promising recent developments in the therapeutic value of neuropeptide antagonists have generated renewed importance in understanding the functional role of neuropeptides in nociception and inflammation. To explore this relationship we examined behavioral changes and primary afferent neuronal plasticity following deep tissue inflammation. One hour following craniofacial muscle inflammation ipsilateral as well as contralateral head withdrawal thresholds and ipsi- and contralateral hindpaw withdrawal thresholds were lowered and remained reduced for 28 days. Elevated levels of calcitonin gene-related peptide (CGRP) within the trigeminal ganglion temporally correlated with this mechanical allodynia. Inflammation also induced an increase in the number of CGRP and substance P (SP)-immunopositive trigeminal ganglion neurons innervating inflamed muscle but did not evoke a shift in the size distribution of peptidergic muscle afferent neurons. Trigeminal proprioceptive muscle afferent neurons situated within the brainstem in the mesencephalic trigeminal nucleus did not express CGRP or SP prior to or following inflammation. Intravenous administration of CGRP receptor antagonist (8-37) two minutes prior to adjuvant injection blocked plasma extravasation and abolished both head and hindlimb mechanical allodynia. Local injection of CGRP antagonist directly into the masseter muscle prior to CFA produced similar, but less pronounced, effects. These findings indicate that unilateral craniofacial muscle inflammation produces mechanical allodynia at distant sites and upregulates CGRP and SP in primary afferent neurons innervating deep tissues. These data further implicate CGRP and SP in deep tissue nociceptive mechanisms and suggest that peptide antagonists may have therapeutic potential for musculoskeletal pain.
Collapse
Affiliation(s)
- Ranjinidevi Ambalavanar
- Department of Biomedical Sciences, University of Maryland, Baltimore, 666 West Baltimore Street, MD 21201, USA Department of Oral Anatomy and Neurobiology, Osaka University, Osaka 565-0871, Japan Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Texas, Galveston, TX 77555, USA Department of Obstetrics and Gynecology, University of Texas, Galveston, TX 77555, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Early changes in spontaneous behaviour (exploration, grooming, freezing, rearing, jaw motion, yawning) and body weight were measured at two and three days after pulp exposure injury and implantation of Fluorogold (FG) into molar teeth of rats. Rats with FG and injuries to three teeth gained weight less rapidly, explored less frequently and froze more often than sham-operated rats. Yawning was not observed in any rats prior to surgery and it was seen more frequently in tooth-injured rats than in sham-operated rats. These results suggest that careful observation of spontaneous behaviour after tooth injuries can be used to assess dental pain in rats and may provide behavioural markers to correlate with anatomical changes after injury. The dental nerve cell bodies that had accumulated transported FG were medium to large, and they only co-localized calcitonin gene-related peptide (CGRP) in a subset of the medium neurons. Chromatolytic or moribund FG-labelled neurons were also found.
Collapse
Affiliation(s)
- Eric H Chudler
- Department of Anesthesiology, University of Washington, Box 356540, Seattle, WA 98195-6540, USA.
| | | |
Collapse
|