1
|
Mettyas T, Barton M, Sahar MSU, Lawrence F, Sanchez-Herrero A, Shah M, St John J, Bindra R. Negative Pressure Neurogenesis: A Novel Approach to Accelerate Nerve Regeneration after Complete Peripheral Nerve Transection. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2021; 9:e3568. [PMID: 34881144 PMCID: PMC8647885 DOI: 10.1097/gox.0000000000003568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 11/30/2022]
Abstract
Various modalities to facilitate nerve regeneration have been described in the literature with limited success. We hypothesized that negative pressure applied to a sectioned peripheral nerve would enhance nerve regeneration by promoting angiogenesis and axonal lengthening. METHODS Wistar rats' sciatic nerves were cut (creating ~7 mm nerve gap) and placed into a silicone T-tube, to which negative pressure was applied. The rats were divided into 4 groups: control (no pressure), group A (low pressure: 10 mm Hg), group B (medium pressure: 20/30 mm Hg) and group C (high pressure: 50/70 mm Hg). The nerve segments were retrieved after 7 days for gross and histological analysis. RESULTS In total, 22 rats completed the study. The control group showed insignificant nerve growth, whereas the 3 negative pressure groups showed nerve growth and nerve gap reduction. The true nerve growth was highest in group A (median: 3.54 mm) compared to group B, C, and control (medians: 1.19 mm, 1.3 mm, and 0.35 mm); however, only group A was found to be significantly different to the control group (**P < 0.01). Similarly, angiogenesis was observed to be significantly greater in group A (**P < 0.01) in comparison to the control. CONCLUSIONS Negative pressure stimulated nerve lengthening and angiogenesis within an in vivo rat model. Low negative pressure (10 mm Hg) provided superior results over the higher negative pressure groups and the control, favoring axonal growth. Further studies are required with greater number of rats and longer recovery time to assess the functional outcome.
Collapse
Affiliation(s)
- Tamer Mettyas
- From the Department of Orthopaedics, Queen Elizabeth II Hospital, Brisbane, Queensland, Australia
- School of Nursing and Midwifery, Griffith University, Australia
| | - Matthew Barton
- School of Nursing and Midwifery, Griffith University, Australia
- Menzies Health Institute Queensland, Griffith University, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Australia
| | - Muhammad Sana Ullah Sahar
- School of Engineering and Built Environment, Griffith University, Australia
- Department of Mechanical Engineering, Khwaja Fareed University of Engineering and information Technology, Rahim Yar Khan, Pakistan
| | - Felicity Lawrence
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Australia
| | | | - Megha Shah
- Menzies Health Institute Queensland, Griffith University, Australia
| | - James St John
- Menzies Health Institute Queensland, Griffith University, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Australia
- Griffith Institute for Drug Discovery, Griffith University, Australia
| | - Randy Bindra
- School of Medicine, Griffith University, Australia
- Department of Orthopaedics, Gold Coast University Hospital, Australia
| |
Collapse
|
2
|
Sencar L, Güven M, Şaker D, Sapmaz T, Tuli A, Polat S. Ultrastructural effects of nerve growth factor and betamethasone on nerve regeneration after experimental nerve injury. Ultrastruct Pathol 2020; 44:436-449. [DOI: 10.1080/01913123.2020.1850965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Leman Sencar
- Department of Histology and Embryology, Çukurova University, Faculty of Medicine, Adana, Turkey
| | - Mustafa Güven
- Department of Biomedical Engineering, Çukurova University, Faculty of Engineering and Architecture, Adana, Turkey
| | - Dilek Şaker
- Department of Histology and Embryology, Çukurova University, Faculty of Medicine, Adana, Turkey
| | - Tuğçe Sapmaz
- Department of Histology and Embryology, Çukurova University, Faculty of Medicine, Adana, Turkey
| | - Abdullah Tuli
- Department of Biochemistry, Çukurova University, Faculty of Medicine, Adana, Turkey
| | - Sait Polat
- Department of Histology and Embryology, Çukurova University, Faculty of Medicine, Adana, Turkey
| |
Collapse
|
3
|
Sarker M, Naghieh S, McInnes AD, Schreyer DJ, Chen X. Regeneration of peripheral nerves by nerve guidance conduits: Influence of design, biopolymers, cells, growth factors, and physical stimuli. Prog Neurobiol 2018; 171:125-150. [DOI: 10.1016/j.pneurobio.2018.07.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 01/10/2023]
|
4
|
Grumbles RM, Wood P, Rudinsky M, Gomez AM, Thomas CK. Muscle Reinnervation with Delayed or Immediate Transplant of Embryonic Ventral Spinal Cord Cells into Adult Rat Peripheral Nerve. Cell Transplant 2017. [DOI: 10.3727/096020198390003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Muscle denervation is common in various neuromuscular diseases and after trauma. It induces skeletal muscle atrophy. Only muscle reinnervation leads to functional recovery. In previous studies, denervated adult rat muscles were rescued by transplantation of embryonic day 14–15 (E14–15) ventral spinal cord cells into a nearby peripheral nerve. In the present study, changes were made in the environment into which the cells were placed to test whether reinnervation was improved by: 1) prior nerve degeneration, induced by sciatic nerve transection 1 week before cell transplantation; 2) transplantation of 1 million versus 5 million cells; 3) addition of nerve growth factor (NGF) to the transplant. Ten weeks after cell transplantation, axons had grown from all of the transplants. The numbers of myelinated axons that regenerated into the tibial, medial (MG), and lateral gastrocnemius-soleus (LGS) nerves were similar across treatments. The mean diameters of large LGS axons (>6 μm) were significantly larger with nerve degeneration before transplantation. The mean diameters of MG and LGS axons were significantly larger with transplantation of 1 million versus 5 million cells. Silver-stained experimental and control lateral gastronemius (LG) muscles showed axons that terminated at motor end plates. Nodal and terminal sprouts were more common in reinnervated muscles (45–63% of all end plates) than in control muscles (10%). Electrical stimulation of the transplants induced weak contractions in 39 of 47 MG muscles (83%) and 33 of 46 LG muscles (72%) but at higher voltages than needed to excite control muscles. The threshold for MG contraction was lower with transplantation of 1 million cells, while LG thresholds were lower without NGF. The cross-sectional area of whole LG muscles was significantly larger with cell transplantation (immediate or delayed) than with media alone, but all of these muscle areas were reduced significantly compared with control muscle areas. These data suggest that delayed transplantation of fewer cells without NGF assists regeneration of larger diameter axons and prevents some muscle atrophy.
Collapse
Affiliation(s)
- Robert M. Grumbles
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, P.O. Box 016960, R-48, Miami, FL 33101
| | - Patrick Wood
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, P.O. Box 016960, R-48, Miami, FL 33101
- Department of Physiology and Biophysics, University of Miami School of Medicine, P.O. Box 016960, R-48, Miami, FL 33101
| | - Michelle Rudinsky
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, P.O. Box 016960, R-48, Miami, FL 33101
| | - Anna M. Gomez
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, P.O. Box 016960, R-48, Miami, FL 33101
| | - Christine K. Thomas
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, P.O. Box 016960, R-48, Miami, FL 33101
- Department of Physiology and Biophysics, University of Miami School of Medicine, P.O. Box 016960, R-48, Miami, FL 33101
| |
Collapse
|
5
|
|
6
|
Savignat M, De-Doncker L, Vodouhe C, Garza J, Lavalle P, Libersa P. Rat Nerve Regeneration with the Use of a Polymeric Membrane Loaded with NGF. J Dent Res 2016; 86:1051-6. [DOI: 10.1177/154405910708601106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Exogenous neurotrophic factors, delivered by various systems, are used to improve nerve regeneration. This study tested the effectiveness of a polymeric membrane loaded with Nerve Growth Factor (NGF) on mental nerve regeneration after a crush injury in rats. We tested NGF application, known to play a role in afferent fiber repair in dental neurobiology, to see if it could improve the regeneration. Afferent neurogram recordings and histological analyses of the trigeminal ganglion neurons were performed. One month after the crush injury, early regeneration was observed independently of exogenous NGF. However, as compared with the activity level recorded before the injury, the afferent activity was reduced by 28.5% without NGF, and the mean number of labeled neurons decreased. With NGF, activity was increased by 30.8%, with no significant histological difference compared with animals without lesions. NGF application through a polymeric membrane can influence degenerative and/or regenerative processes after a crush injury.
Collapse
Affiliation(s)
- M. Savignat
- Faculté de Chirurgie Dentaire, Université de Lille 2, Place de Verdun, 59000 Lille, France
- Unité de Neurosciences et Physiologie Adaptatives, UPRES EA 4052, Laboratoire de Plasticité Neuromusculaire, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq Cedex, France; and
- INSERM Unité 595, Faculté de Chirurgie Dentaire, Université Louis Pasteur, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - L. De-Doncker
- Faculté de Chirurgie Dentaire, Université de Lille 2, Place de Verdun, 59000 Lille, France
- Unité de Neurosciences et Physiologie Adaptatives, UPRES EA 4052, Laboratoire de Plasticité Neuromusculaire, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq Cedex, France; and
- INSERM Unité 595, Faculté de Chirurgie Dentaire, Université Louis Pasteur, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - C. Vodouhe
- Faculté de Chirurgie Dentaire, Université de Lille 2, Place de Verdun, 59000 Lille, France
- Unité de Neurosciences et Physiologie Adaptatives, UPRES EA 4052, Laboratoire de Plasticité Neuromusculaire, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq Cedex, France; and
- INSERM Unité 595, Faculté de Chirurgie Dentaire, Université Louis Pasteur, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - J.M. Garza
- Faculté de Chirurgie Dentaire, Université de Lille 2, Place de Verdun, 59000 Lille, France
- Unité de Neurosciences et Physiologie Adaptatives, UPRES EA 4052, Laboratoire de Plasticité Neuromusculaire, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq Cedex, France; and
- INSERM Unité 595, Faculté de Chirurgie Dentaire, Université Louis Pasteur, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - P. Lavalle
- Faculté de Chirurgie Dentaire, Université de Lille 2, Place de Verdun, 59000 Lille, France
- Unité de Neurosciences et Physiologie Adaptatives, UPRES EA 4052, Laboratoire de Plasticité Neuromusculaire, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq Cedex, France; and
- INSERM Unité 595, Faculté de Chirurgie Dentaire, Université Louis Pasteur, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - P. Libersa
- Faculté de Chirurgie Dentaire, Université de Lille 2, Place de Verdun, 59000 Lille, France
- Unité de Neurosciences et Physiologie Adaptatives, UPRES EA 4052, Laboratoire de Plasticité Neuromusculaire, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq Cedex, France; and
- INSERM Unité 595, Faculté de Chirurgie Dentaire, Université Louis Pasteur, 11 rue Humann, 67085 Strasbourg Cedex, France
| |
Collapse
|
7
|
Approaches to Peripheral Nerve Repair: Generations of Biomaterial Conduits Yielding to Replacing Autologous Nerve Grafts in Craniomaxillofacial Surgery. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3856262. [PMID: 27556032 PMCID: PMC4983313 DOI: 10.1155/2016/3856262] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/29/2016] [Indexed: 01/09/2023]
Abstract
Peripheral nerve injury is a common clinical entity, which may arise due to traumatic, tumorous, or even iatrogenic injury in craniomaxillofacial surgery. Despite advances in biomaterials and techniques over the past several decades, reconstruction of nerve gaps remains a challenge. Autografts are the gold standard for nerve reconstruction. Using autografts, there is donor site morbidity, subsequent sensory deficit, and potential for neuroma development and infection. Moreover, the need for a second surgical site and limited availability of donor nerves remain a challenge. Thus, increasing efforts have been directed to develop artificial nerve guidance conduits (ANCs) as new methods to replace autografts in the future. Various synthetic conduit materials have been tested in vitro and in vivo, and several first- and second-generation conduits are FDA approved and available for purchase, while third-generation conduits still remain in experimental stages. This paper reviews the current treatment options, summarizes the published literature, and assesses future prospects for the repair of peripheral nerve injury in craniomaxillofacial surgery with a particular focus on facial nerve regeneration.
Collapse
|
8
|
Tanyeri G, Celik O, Erbas O, Oltulu F, Yilmaz Dilsiz O. The effectiveness of different neuroprotective agents in facial nerve injury: An experimental study. Laryngoscope 2015; 125:E356-64. [DOI: 10.1002/lary.25554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Gokce Tanyeri
- Department of Otolaryngology-Head & Neck Surgery; Celal Bayar University Faculty of Medicine; Manisa Turkey
| | - Onur Celik
- Department of Otolaryngology-Head & Neck Surgery; Celal Bayar University Faculty of Medicine; Manisa Turkey
| | - Oytun Erbas
- Department of Physiology; Ege University Faculty of Medicine
| | - Fatih Oltulu
- Department of Histology & Embryology; Ege University Faculty of Medicine; Izmir Turkey
| | - Ozlem Yilmaz Dilsiz
- Department of Histology & Embryology; Ege University Faculty of Medicine; Izmir Turkey
| |
Collapse
|
9
|
Kahraman A, Kahveci R. Evaluating the effect of polytetrafluoroethylene and extractum cepae-heparin-allantoin gel in peripheral nerve injuries in a rat model. Plast Surg (Oakv) 2015; 23:9-14. [PMID: 25821766 DOI: 10.4172/plastic-surgery.1000902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Peripheral nerves can be injured by congenital, mechanical, thermal or chemical causes. Peripheral nerve injuries are increasing in frequency, particularly in countries that are becoming more industrialized. Nerve and extremity injuries result in work loss and high treatment costs, and can lead to separation of patients from their social environment. Failure of nerve repair causes muscle functional losses, sensory losses and painful neuropathies. OBJECTIVES To compare the effects of condensed polytetrafluoroethylene (cPTFE) and cPTFE-extractum cepae-heparin-allantoin (cPTFE-EHA) gel compound on nerve and functional recovery, and the prevention of adhesion and scar tissue formation after total peripheral nerve injury repaired by primary suture in a rat model. RESULTS cPTFE alone and cPTFE-EHA gel was found to provide better functional recovery and nerve regeneration compared with primary repair only. In the macroscopic evaluation, the cPTFE-EHA gel was found to have no negative effect on wound healing and, despite increasing extra-neural scar tissue and adhesions, it had no negative effect on nerve function; in addition, it facilitated functional recovery. CONCLUSIONS Compared with the cPTFE application alone, the application of perineural cPTFE-EHA gel during peripheral nerve surgery appeared to provide better functional recovery without causing any significant changes in epineural and extraneural scar tissue formation.
Collapse
Affiliation(s)
- Ahmet Kahraman
- Department of Plastic Reconstructive and Aesthetic Surgery, Mustafa Kemal University, Antakya, Turkey
| | - Ramazan Kahveci
- Department of Plastic Reconstructive and Aesthetic Surgery, Mustafa Kemal University, Antakya, Turkey
| |
Collapse
|
10
|
Kahraman A, Kahveci R. Evaluating the effect of polytetrafluoroethylene and extractum cepae-heparin-allantoin gel in peripheral nerve injuries in a rat model. Plast Surg (Oakv) 2015. [DOI: 10.1177/229255031502300103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Peripheral nerves can be injured by congenital, mechanical, thermal or chemical causes. Peripheral nerve injuries are increasing in frequency, particularly in countries that are becoming more industrialized. Nerve and extremity injuries result in work loss and high treatment costs, and can lead to separation of patients from their social environment. Failure of nerve repair causes muscle functional losses, sensory losses and painful neuropathies. Objectives To compare the effects of condensed polytetrafluoroethylene (cPTFE) and cPTFE-extractum cepae-heparin-allantoin (cPTFE-EHA) gel compound on nerve and functional recovery, and the prevention of adhesion and scar tissue formation after total peripheral nerve injury repaired by primary suture in a rat model. Results cPTFE alone and cPTFE-EHA gel was found to provide better functional recovery and nerve regeneration compared with primary repair only. In the macroscopic evaluation, the cPTFE-EHA gel was found to have no negative effect on wound healing and, despite increasing extraneural scar tissue and adhesions, it had no negative effect on nerve function; in addition, it facilitated functional recovery. Conclusions Compared with the cPTFE application alone, the application of perineural cPTFE-EHA gel during peripheral nerve surgery appeared to provide better functional recovery without causing any significant changes in epineural and extraneural scar tissue formation.
Collapse
Affiliation(s)
- Ahmet Kahraman
- Department of Plastic Reconstructive and Aesthetic Surgery, Mustafa Kemal University, Antakya, Turkey
| | - Ramazan Kahveci
- Department of Plastic Reconstructive and Aesthetic Surgery, Mustafa Kemal University, Antakya, Turkey
| |
Collapse
|
11
|
Faroni A, Mobasseri SA, Kingham PJ, Reid AJ. Peripheral nerve regeneration: experimental strategies and future perspectives. Adv Drug Deliv Rev 2015; 82-83:160-7. [PMID: 25446133 DOI: 10.1016/j.addr.2014.11.010] [Citation(s) in RCA: 382] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/01/2014] [Accepted: 11/08/2014] [Indexed: 12/15/2022]
Abstract
Peripheral nerve injuries represent a substantial clinical problem with insufficient or unsatisfactory treatment options. This review summarises all the events occurring after nerve damage at the level of the cell body, the site of injury and the target organ. Various experimental strategies to improve neuronal survival, axonal regeneration and target reinnervation are described including pharmacological approaches and cell-based therapies. Given the complexity of nerve regeneration, further studies are needed to address the biology of nerve injury, to improve the interaction with implantable scaffolds, and to implement cell-based therapies in nerve tissue engineering.
Collapse
|
12
|
Hoyng SA, De Winter F, Gnavi S, de Boer R, Boon LI, Korvers LM, Tannemaat MR, Malessy MJ, Verhaagen J. A comparative morphological, electrophysiological and functional analysis of axon regeneration through peripheral nerve autografts genetically modified to overexpress BDNF, CNTF, GDNF, NGF, NT3 or VEGF. Exp Neurol 2014; 261:578-93. [DOI: 10.1016/j.expneurol.2014.08.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 01/21/2023]
|
13
|
Hernández-Cortés P, Toledo-Romero MA, Delgado M, Sánchez-González CE, Martin F, Galindo-Moreno P, O’Valle F. Peripheral nerve reconstruction with epsilon-caprolactone conduits seeded with vasoactive intestinal peptide gene-transfected mesenchymal stem cells in a rat model. J Neural Eng 2014; 11:046024. [DOI: 10.1088/1741-2560/11/4/046024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Jesuraj NJ, Marquardt LM, Kwasa JA, Sakiyama-Elbert SE. Glial cell line-derived neurotrophic factor promotes increased phenotypic marker expression in femoral sensory and motor-derived Schwann cell cultures. Exp Neurol 2014; 257:10-8. [PMID: 24731946 PMCID: PMC4065822 DOI: 10.1016/j.expneurol.2014.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/06/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
Abstract
Schwann cells (SCs) secrete growth factors and extracellular matrix molecules that promote neuronal survival and help guide axons during regeneration. Transplantation of SCs is a promising strategy for enhancing peripheral nerve regeneration. However, we and others have shown that after long-term in vitro expansion, SCs revert to a de-differentiated state similar to the phenotype observed after injury. In vivo, glial cell-line derived neurotrophic factor (GDNF) may guide the differentiation of SCs to remyelinate regenerating axons. Therefore, we hypothesized that exogenous GDNF may guide the differentiation of SCs into their native phenotypes in vitro through stimulation of GDNF family receptor (GFR)α-1. When activated in SCs, GFRα-1 promotes phosphorylation of Fyn, a Src family tyrosine kinase responsible for mediating downstream signaling for differentiation and proliferation. In this study, SCs harvested from the sensory and motor branches of rat femoral nerve were expanded in vitro and then cultured with 50 or 100ng/mL of GDNF. The exogenous GDNF promoted differentiation of sensory and motor-derived SCs back to their native phenotypes, as demonstrated by decreased proliferation after 7days and increased expression of S100Ββ and phenotype-specific markers. Furthermore, inhibiting Fyn with Src family kinase inhibitors, PP2 and SU6656, and siRNA-mediated knockdown of Fyn reduced GDNF-stimulated differentiation of sensory and motor-derived SCs. These results demonstrate that activating Fyn is necessary for GDNF-stimulated differentiation of femoral nerve-derived SCs into their native phenotypes in vitro. Therefore GDNF could be incorporated into SC-based therapies to promote differentiation of SCs into their native phenotype to improve functional nerve regeneration.
Collapse
Affiliation(s)
- Nithya J Jesuraj
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Laura M Marquardt
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Jasmine A Kwasa
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Shelly E Sakiyama-Elbert
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA; Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
15
|
Azizi A, Azizi S, Heshmatian B, Amini K. Improvement of functional recovery of transected peripheral nerve by means of chitosan grafts filled with vitamin E, pyrroloquinoline quinone and their combination. Int J Surg 2013; 12:76-82. [PMID: 24129003 DOI: 10.1016/j.ijsu.2013.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/03/2013] [Accepted: 10/06/2013] [Indexed: 11/16/2022]
Abstract
Effects of vitamin E and pyrroloquinoline quinone on peripheral nerve regeneration were studied using a rat sciatic nerve transection model. Ninety male healthy White Wistar rats were divided into three experimental groups (n = 15), randomly: Sham-operation (SHAM), transected control (TC), chitosan conduit (Chit) and three treatment groups (Vit E, PQQ and PQQ + Vit E). In SHAM group after anesthesia, left sciatic nerve was exposed through a gluteal muscle incision and after homeostasis muscle was sutured. In Chit group left sciatic nerve was exposed the same way and transected proximal to tibio-peroneal bifurcation leaving a 10-mm gap. Proximal and distal stumps were each inserted into a chitosan tube. In treatment groups the tube was implanted the same way and filled with Vit E, PQQ and PQQ + Vit E. Each group was subdivided into three subgroups of six animals each and were studied 4, 8, 12 weeks after surgery. Functional and electrophysiological studies, and gastrocnemius muscle mass measurement confirmed faster and better recovery of regenerated axons in Vit E + PQQ combination compared to Vit E or PQQ solely (P < 0.05). Morphometric indices of regenerated fibers showed number and diameter of the myelinated fibers in PQQ + Vit E was significantly higher than in other treatment groups. In immunohistochemistry, location of reactions to S-100 in PQQ + Vit E was clearly more positive than in other treatment groups. Response to PQQ + Vit E treatment demonstrates that it influences and improves functional recovery of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Asghar Azizi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Saeed Azizi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Behnam Heshmatian
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Keyvan Amini
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
16
|
Silva DNE, Silva ACMBAD, Aydos RD, Viterbo F, Pontes ERJC, Odashiro DN, Castro RJD, Augusto DG. Nerve growth factor with fibrin glue in end-to-side nerve repair in rats. Acta Cir Bras 2012; 27:325-32. [PMID: 22534808 DOI: 10.1590/s0102-86502012000400008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 02/20/2012] [Indexed: 05/26/2023] Open
Abstract
PURPOSE To determine the effects of end-to-side nerve repair performed only with fibrin glue containing nerve growth in rats. METHODS Seventy two Wistar rats were divided into six equal groups: group A was not submitted to nerve section; group B was submitted to nerve fibular section only. The others groups had the nerve fibular sectioned and then repaired in the lateral surface of an intact tibial nerve, with different procedures: group C: ETS with sutures; group D: ETS with sutures and NGF; group E: ETS with FG only; group F: ETS with FG containing NGF. The motor function was accompanied and the tibial muscle mass, the number and diameter of muscular fibers and regenerated axons were measured. RESULTS All the analyzed variables did not show any differences among the four operated groups (p>0.05), which were statistically superior to group B (p<0.05), but inferior to group A (p>0.05). CONCLUSION The end-to-side nerve repair presented the same recovery pattern, independent from the repair used, showing that the addition of nerve growth factor in fibrin glue was not enough for the results potentiating.
Collapse
|
17
|
de Boer R, Borntraeger A, Knight AM, Hébert-Blouin MN, Spinner RJ, Malessy MJA, Yaszemski MJ, Windebank AJ. Short- and long-term peripheral nerve regeneration using a poly-lactic-co-glycolic-acid scaffold containing nerve growth factor and glial cell line-derived neurotrophic factor releasing microspheres. J Biomed Mater Res A 2012; 100:2139-46. [DOI: 10.1002/jbm.a.34088] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/15/2011] [Accepted: 12/13/2011] [Indexed: 01/31/2023]
|
18
|
Pabari A, Yang SY, Mosahebi A, Seifalian AM. Recent advances in artificial nerve conduit design: Strategies for the delivery of luminal fillers. J Control Release 2011; 156:2-10. [DOI: 10.1016/j.jconrel.2011.07.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 06/29/2011] [Indexed: 12/20/2022]
|
19
|
Barmpitsioti A, Konofaos P, Ignatiadis I, Papalois A, Zoubos AB, Soucacos PN. Nerve growth factor combined with an epineural conduit for bridging a short nerve gap (10 mm). A study in rabbits. Microsurgery 2011; 31:545-50. [DOI: 10.1002/micr.20925] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/25/2011] [Accepted: 04/29/2011] [Indexed: 12/11/2022]
|
20
|
de Boer R, Knight AM, Borntraeger A, Hébert-Blouin MN, Spinner RJ, Malessy MJ, Yaszemski MJ, Windebank AJ. Rat sciatic nerve repair with a poly-lactic-co-
glycolic acid scaffold and nerve growth factor releasing microspheres. Microsurgery 2011; 31:293-302. [DOI: 10.1002/micr.20869] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 11/12/2010] [Indexed: 11/11/2022]
|
21
|
Gu X, Ding F, Yang Y, Liu J. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol 2010; 93:204-30. [PMID: 21130136 DOI: 10.1016/j.pneurobio.2010.11.002] [Citation(s) in RCA: 424] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 11/02/2010] [Accepted: 11/23/2010] [Indexed: 01/01/2023]
Abstract
Surgical repair of severe peripheral nerve injuries represents not only a pressing medical need, but also a great clinical challenge. Autologous nerve grafting remains a golden standard for bridging an extended gap in transected nerves. The formidable limitations related to this approach, however, have evoked the development of tissue engineered nerve grafts as a promising alternative to autologous nerve grafts. A tissue engineered nerve graft is typically constructed through a combination of a neural scaffold and a variety of cellular and molecular components. The initial and basic structure of the neural scaffold that serves to provide mechanical guidance and optimal environment for nerve regeneration was a single hollow nerve guidance conduit. Later there have been several improvements to the basic structure, especially introduction of physical fillers into the lumen of a hollow nerve guidance conduit. Up to now, a diverse array of biomaterials, either of natural or of synthetic origin, together with well-defined fabrication techniques, has been employed to prepare neural scaffolds with different structures and properties. Meanwhile different types of support cells and/or growth factors have been incorporated into the neural scaffold, producing unique biochemical effects on nerve regeneration and function restoration. This review attempts to summarize different nerve grafts used for peripheral nerve repair, to highlight various basic components of tissue engineered nerve grafts in terms of their structures, features, and nerve regeneration-promoting actions, and finally to discuss current clinical applications and future perspectives of tissue engineered nerve grafts.
Collapse
Affiliation(s)
- Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, JS 226001, PR China.
| | | | | | | |
Collapse
|
22
|
Kemp SWP, Walsh SK, Midha R. Growth factor and stem cell enhanced conduits in peripheral nerve regeneration and repair. Neurol Res 2009; 30:1030-8. [PMID: 19079977 DOI: 10.1179/174313208x362505] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Despite the capacity for spontaneous axonal regeneration, recovery after severe peripheral nerve injury remains variable and often very poor. In addition, autologous nerve grafts, considered to be the 'gold standard' in nerve repair technique, are plagued by restricted donor tissue availability and donor site morbidity. Our primary objective is to highlight new and emerging methods of nerve repair, which have the potential to significantly improve both the functional and behavioral outcome after clinical nerve injury. METHODS A critical analysis of nerve injury and regeneration literature concentrating on outcome measures from both immediate and chronically denervated experimental works was conducted. RESULTS Results of numerous works employing both growth factor and stem cell enhanced nerve guidance conduits have shown encouraging results. However, further research is needed to optimize guidance conduit dynamics, bioavailability and delivery of both growth factors and stem cells to enhance peripheral nerve regeneration and functional recovery. DISCUSSION This review discusses current animal and clinical growth factor and stem cell studies, specifically focusing on future bio-engineering approaches in developing a nerve guidance conduit in the future.
Collapse
Affiliation(s)
- Stephen W P Kemp
- Department of Clinical Neuroscience, Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Alta, Canada.
| | | | | |
Collapse
|
23
|
de Ruiter GCW, Spinner RJ, Yaszemski MJ, Windebank AJ, Malessy MJA. Nerve tubes for peripheral nerve repair. Neurosurg Clin N Am 2009; 20:91-105, vii. [PMID: 19064182 DOI: 10.1016/j.nec.2008.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The concept of the nerve tube has been a major topic of research in the field of peripheral nerve regeneration for more than 25 years. The first nerve tubes are currently available for clinical use. This article gives an overview of the experimental and clinical data on nerve tubes for peripheral nerve repair and critically analyzes the data on which the step from laboratory to clinical use is based. In addition, it briefly discusses the different modifications to the common single lumen nerve tubes that may improve the results of generation.
Collapse
Affiliation(s)
- Godard C W de Ruiter
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Chang CJ. The Effect of Pulse-Released Nerve Growth Factor from Genipin-Crosslinked Gelatin in Schwann Cell–Seeded Polycaprolactone Conduits on Large-Gap Peripheral Nerve Regeneration. Tissue Eng Part A 2009; 15:547-57. [DOI: 10.1089/ten.tea.2007.0342] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Ciofani G, Raffa V, Menciassi A, Cuschieri A, Micera S. Magnetic alginate microspheres: system for the position controlled delivery of nerve growth factor. Biomed Microdevices 2008; 11:517-27. [DOI: 10.1007/s10544-008-9258-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Johnson EO, Charchanti A, Soucacos PN. Nerve repair: experimental and clinical evaluation of neurotrophic factors in peripheral nerve regeneration. Injury 2008; 39 Suppl 3:S37-42. [PMID: 18723170 DOI: 10.1016/j.injury.2008.06.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neurotrophic factors are a family of polypeptides required for survival of discrete neuronal populations. In the normal state such factors are mostly synthesised by target tissues and are used for the viability of the nerve-cell bodies. After nerve injury, neurotrophic factors (NFs) are synthesised by non-neuronal (Schwann cells and fibroblasts) in the nerve trunk, and act to support the outgrowth of axons. NFs can be classified into three major groups: (1) neurotrophins; (2) neurokines; and (3) the transforming growth factor beta (TGF)-beta superfamily.
Collapse
Affiliation(s)
- Elizabeth O Johnson
- Department of Anatomy, Histology & Embryology, University of Ioannina, School of Medicine, 45110 Ioannina, Greece.
| | | | | |
Collapse
|
27
|
Savignat M, Vodouhe C, Ackermann A, Haikel Y, Lavalle P, Libersa P. Evaluation of Early Nerve Regeneration Using a Polymeric Membrane Functionalized With Nerve Growth Factor (NGF) After a Crush Lesion of the Rat Mental Nerve. J Oral Maxillofac Surg 2008; 66:711-7. [DOI: 10.1016/j.joms.2007.06.654] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 05/11/2007] [Accepted: 06/19/2007] [Indexed: 12/31/2022]
|
28
|
Hontanilla B, Aubá C, Gorría O. NERVE REGENERATION THROUGH NERVE AUTOGRAFTS AFTER LOCAL ADMINISTRATION OF BRAIN-DERIVED NEUROTROPHIC FACTOR WITH OSMOTIC PUMPS. Neurosurgery 2007; 61:1268-1275. [DOI: 10.1227/01.neu.0000306106.70421.ed] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
29
|
Ciofani G, Raffa V, Pizzorusso T, Menciassi A, Dario P. Characterization of an alginate-based drug delivery system for neurological applications. Med Eng Phys 2007; 30:848-55. [PMID: 18042419 DOI: 10.1016/j.medengphy.2007.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 10/03/2007] [Accepted: 10/16/2007] [Indexed: 01/27/2023]
Abstract
This paper presents a drug delivery system based on alginate gels. The biocompatibility, the flexibility in size and shape, and the ability to entrap biomolecules make alginate-based systems ideal for in vivo drug delivery. Specifically, by considering the target application of neural regeneration and neuroprotection, the issue of biocompatibility as well as morphologic compatibility (e.g. shape and size of an implant) have to be addressed. The authors describe various types of alginate gels; fibers of cylindrical shape resulted the best choice in terms of simplicity of realization, insertion and release effectiveness, as shown by preliminary in vivo assays. Consequently, fibers release is tested in vitro and theoretically modelled, in order to obtain mathematical correlations between the release kinetics and key parameters affecting the realization procedure.
Collapse
Affiliation(s)
- Gianni Ciofani
- CRIM (Center for Research in Microengineering) Lab, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
| | | | | | | | | |
Collapse
|
30
|
Pfister LA, Papaloïzos M, Merkle HP, Gander B. Nerve conduits and growth factor delivery in peripheral nerve repair. J Peripher Nerv Syst 2007; 12:65-82. [PMID: 17565531 DOI: 10.1111/j.1529-8027.2007.00125.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peripheral nerves possess the capacity of self-regeneration after traumatic injury. Transected peripheral nerves can be bridged by direct surgical coaptation of the two nerve stumps or by interposing autografts or biological (veins) or synthetic nerve conduits (NC). NC are tubular structures that guide the regenerating axons to the distal nerve stump. Early synthetic NC have primarily been made of silicone because of the relative flexibility and biocompatibility of this material and because medical-grade silicone tubes were readily available in various dimensions. Nowadays, NC are preferably made of biodegradable materials such as collagen, aliphatic polyesters, or polyurethanes. Although NC assist in guiding regenerating nerves, satisfactory functional restoration of severed nerves may further require exogenous growth factors. Therefore, authors have proposed NC with integrated delivery systems for growth factors or growth factor-producing cells. This article reviews the most important designs of NC with integrated delivery systems for localized release of growth factors. The various systems discussed comprise NC with growth factors being released from various types of matrices, from transplanted cells (Schwann cells or mesenchymal stem cells), or through genetic modification of cells naturally present at the site of injured tissue. Acellular delivery systems for growth factors include the NC wall itself, biodegradable microspheres seeded onto the internal surface of the NC wall, or matrices that are filled into the lumen of the NC and immobilize the growth factors through physical-chemical interactions or specific ligand-receptor interactions. A very promising and elegant system appears to be longitudinally aligned fibers inserted in the lumen of a NC that deliver the growth factors and provide additional guidance for Schwann cells and axons. This review also attempts to appreciate the most promising approaches and emphasize the importance of growth factor delivery kinetics.
Collapse
Affiliation(s)
- Lukas A Pfister
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
31
|
Lee KS, Baek JR, Lee GH, Choi GW. Comparative Study of Scar Formation at the Site of Sciatic Nerve Repair in Rats. ACTA ACUST UNITED AC 2007. [DOI: 10.4055/jkoa.2007.42.2.162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kwang Suk Lee
- Department of Orthopaedic Surgery, Medical College, Korea University, Seoul, Korea
| | - Jong Ryoon Baek
- Department of Orthopaedic Surgery, Gil Medical Center, Gachon Medical College, Incheon, Korea
| | - Gyou Hyuk Lee
- Department of Orthopaedic Surgery, Medical College, Korea University, Seoul, Korea
| | - Gi Won Choi
- Department of Orthopaedic Surgery, Medical College, Korea University, Seoul, Korea
| |
Collapse
|
32
|
Hadlock T, Sundback C. Biologically inspired approaches to drug delivery for nerve regeneration. Expert Opin Biol Ther 2006; 6:1105-11. [PMID: 17049009 DOI: 10.1517/14712598.6.11.1105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
As the biological processes governing nerve regeneration have become elucidated over the past decades, interest has developed in manipulating these processes to improve nerve regeneration. Drug delivery to the regenerating nerve has the potential for major clinical applications in neurodegenerative diseases, spinal cord injury and peripheral nerve injury or sacrifice. This article reviews the evolution of the field of drug delivery to the regenerating nerve, from simple local applications of neurotrophic agents in solution and osmotic pump delivery, to the existing approaches involving novel biomaterials and genetically manipulated cell populations. A discussion of the various known nerve growth-promoting agents, and the chemical considerations involved in their delivery, is included. A perspective on the role of tissue engineering approaches for nerve regeneration in the future is offered.
Collapse
Affiliation(s)
- Tessa Hadlock
- Massachusetts Eye and Ear Infirmary and Harvard Medical School, Division of Facial Plastic and Reconstructive Surgery, 243 Charles St, Boston, MA 02114, USA.
| | | |
Collapse
|
33
|
Piotrowicz A, Shoichet MS. Nerve guidance channels as drug delivery vehicles. Biomaterials 2006; 27:2018-27. [PMID: 16239029 DOI: 10.1016/j.biomaterials.2005.09.042] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 09/26/2005] [Indexed: 11/18/2022]
Abstract
Nerve guidance channels (NGCs) have been shown to facilitate regeneration after transection injury to the peripheral nerve or spinal cord. Various therapeutic molecules, including neurotrophic factors, have improved regeneration and functional recovery after injury when combined with NGCs; however, their impact has not been maximized partly due to the lack of an appropriate drug delivery system. To address this limitation, nerve growth factor (NGF) was incorporated into NGCs of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate), P(HEMA-co-MMA). The NGCs were synthesized by a liquid-liquid centrifugal casting process and three different methods of protein incorporation were compared in terms of protein distribution and NGF release profile: (1) NGF was encapsulated (with BSA) in biodegradable poly(d,l-lactide-co-glycolide) 85/15 microspheres, which were combined with a PHEMA polymerization formulation and coated on the inside of pre-formed NGCs by a second liquid-liquid centrifugal casting technique; (2) pre-formed NGCs were imbibed with a solution of NGF/BSA and (3) NGF/BSA alone was combined with a PHEMA formulation and coated on the inside of pre-formed NGCs by a second liquid-liquid centrifugal casting technique. Using a fluorescently labelled model protein, the distribution of proteins in NGCs prepared with a coating of either protein-loaded microspheres or protein alone was found to be confined to the inner PHEMA layer. Sustained release of NGF was achieved from NGCs with either NGF-loaded microspheres or NGF alone incorporated into the inner layer, but not from channels imbibed with NGF. By day 28, NGCs with microspheres released a total of 220 pg NGF/cm of channel whereas those NGCs imbibed with NGF released 1040 pg/cm and those NGCs with NGF incorporated directly in a PHEMA layer released 8624 pg/cm. The release of NGF from NGCs with microspheres was limited by a slow-degrading microsphere formulation and by the maximum amount of microspheres that could be incorporated into the NGCs structure. Notwithstanding, the liquid-liquid centrifugal casting process is promising for localized and controlled release of multiple factors that are key to tissue regeneration.
Collapse
Affiliation(s)
- Alexandra Piotrowicz
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, Ont., Canada
| | | |
Collapse
|
34
|
Liu S, Li H, Ou Yang J, Peng H, Wu K, Liu Y, Yang J. Enhanced rat sciatic nerve regeneration through silicon tubes filled with pyrroloquinoline quinone. Microsurgery 2005; 25:329-37. [PMID: 15915445 DOI: 10.1002/micr.20126] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pyrroloquinoline quinone (PQQ) is an antioxidant that also stimulates nerve growth factor (NGF) synthesis and secretion. In an earlier pilot study in our laboratory, Schwann cell growth was accelerated, and NGF mRNA expression and NGF secretion were promoted. The present study was designed to explore the possible nerve-inducing effect of PQQ on a nerve tube model over a 1-cm segmental deficit. An 8-mm sciatic nerve deficit was created in a rat model and bridged by a 1-cm silicone tube. Then,10 mul of 0.03 mmol/l PQQ were perfused into the silicone chamber in the PQQ group. The same volume of normal saline was delivered in the control group. Each animal underwent functional observation (SFI) at 2-week intervals and electrophysiological studies at 4-week intervals for 12 weeks. Histological and morphometrical analyses were performed at the end of the experiment, 12 weeks after tube implantation. Using a digital image-analysis system, thickness of the myelin sheath was measured, and total numbers of regenerated axons were counted. There was a significant difference in SFI, electrophysiological index (motor-nerve conduct velocity and amplitude of activity potential), and morphometrical results (regenerated axon number and thickness of myelin sheath) in nerve regeneration between the PQQ group and controls (P < 0.05). More mature, high-density, newly regenerated nerve was observed in the PQQ group. We conclude that PQQ is a potent enhancer for the regeneration of peripheral nerves.
Collapse
Affiliation(s)
- Shiqing Liu
- Department of Orthopedics, Ren Min Hospital, Wuhan University, Wuhan City, Hu Bei Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
35
|
Smith KG, Yates JM, Robinson PP. The effect of nerve growth factor on functional recovery after injury to the chorda tympani and lingual nerves. Brain Res 2004; 1020:62-72. [PMID: 15312788 DOI: 10.1016/j.brainres.2004.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2004] [Indexed: 01/01/2023]
Abstract
Nerve growth factor (NGF) is known to ameliorate central changes and enhance the regeneration of damaged axons in the early stages after peripheral nerve injury. We have assessed the long-term outcome of placing NGF at a nerve repair site by determining the functional characteristics of several groups of sensory afferent and autonomic efferent fibres in the cat lingual nerve. Six months after entubulation repair, with or without the incorporation of NGF, the recovery of secretomotor and vasomotor efferents was determined by recording salivary flow from the submandibular gland and temperature changes on the tongue surface, each evoked by stimulation of the repaired nerve. Electrophysiological recordings from the lingual and chorda tympani nerves proximal to the repair allowed characterisation of mechanosensitive, thermosensitive and gustatory afferents. When compared with data from uninjured control animals, both repair groups showed changes in spontaneous discharge and persistent reductions in conduction velocity, receptor sensitivity, proportion of gustatory units, and rate of salivary secretion. Comparisons between the outcome of repair with or without NGF revealed few differences. In the NGF group the conduction velocity of afferents in the lingual nerve was lower, and the level of spontaneous activity was higher. However, NGF appeared to preferentially enhance the regeneration of thermosensitive afferents, suggesting that it may play a role in determining the phenotypic profile of the regenerating axonal population. This suggests that future therapeutic enhancement of regeneration after peripheral nerve injury may require a combination of factors to encourage regeneration of specific fibre groups.
Collapse
Affiliation(s)
- Keith G Smith
- Department of Oral and Maxillofacial Surgery, School of Clinical Dentistry, Claremont Crescent, Sheffield S10 2TA, UK
| | | | | |
Collapse
|
36
|
|
37
|
Tsai CC, Lu MC, Chen YS, Wu CH, Lin CC. Locally administered nerve growth factor suppresses ginsenoside Rb1-enhanced peripheral nerve regeneration. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2004; 31:665-73. [PMID: 14696670 DOI: 10.1142/s0192415x03001387] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A high-dose of nerve growth factor (NGF) mixed with ginsenoside Rb1 (GRb1) was encapsulated by collagen and placed in silicone rubber chambers, which were used to repair dissected Sprague-Dawley rat sciatic nerves with 15 mm gaps. Six weeks after surgery, no axons or Schwann cells were seen in these chambers. By comparison, nerves treated with collagen-GRb1 alone had regenerated axons and Schwann cells in their endoneurial areas. We suggest that excessive NGF may not promote but, rather, suppress developing nerves.
Collapse
Affiliation(s)
- Chin-Chuan Tsai
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan.
| | | | | | | | | |
Collapse
|
38
|
Timmer M, Robben S, Müller-Ostermeyer F, Nikkhah G, Grothe C. Axonal regeneration across long gaps in silicone chambers filled with Schwann cells overexpressing high molecular weight FGF-2. Cell Transplant 2004; 12:265-77. [PMID: 12797381 DOI: 10.3727/000000003108746821] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Basic fibroblast growth factor (FGF-2) has been shown to enhance the survival and neurite extension of various types of neurons including spinal ganglion neurons. In addition, endogenous FGF-2 and FGF receptors are upregulated following peripheral nerve lesion in ganglia and at the lesion site. FGF-2 protein is expressed in different isoforms (18 kDa, 21 kDa, 23 kDa) and differentially regulated after nerve injury. In the rat we analyzed the regenerative capacity of the high molecular weight (HMW) FGF-2 isoforms (21/23 kDa) to support the regeneration of the axotomized adult sciatic nerve across long gaps. The nerve stumps were inserted into the opposite ends of a silicone chamber resulting in an interstump gap of 15 mm. Silicone tubes were filled with Matrigel or a mixture of Schwann cells (SC) and Matrigel. SC were prepared from newborn rats and transfected to overexpress HMW FGF-2. Four weeks after the operation procedure, channels were analyzed with regard to tissue cables bridging both nerve stumps and myelinated axons distal to the original proximal nerve stump. Peripheral nerves interposed with HMW Schwann cells displayed significantly enhanced nerve regeneration, with the greatest number of tissue cables containing myelinated axons and the highest number of myelinated axons. These results suggest that a cellular substrate together with a source of a trophic factor could be a promising tool to promote nerve regeneration and, therefore, become useful also for a clinical approach to repair long gaps.
Collapse
Affiliation(s)
- M Timmer
- Department of Neuroanatomy, Center of Anatomy, OE 4140, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30623 Hannover, Germany
| | | | | | | | | |
Collapse
|
39
|
Abstract
Nerve regeneration is a complex biological phenomenon. In the peripheral nervous system, nerves can regenerate on their own if injuries are small. Larger injuries must be surgically treated, typically with nerve grafts harvested from elsewhere in the body. Spinal cord injury is more complicated, as there are factors in the body that inhibit repair. Unfortunately, a solution to completely repair spinal cord injury has not been found. Thus, bioengineering strategies for the peripheral nervous system are focused on alternatives to the nerve graft, whereas efforts for spinal cord injury are focused on creating a permissive environment for regeneration. Fortunately, recent advances in neuroscience, cell culture, genetic techniques, and biomaterials provide optimism for new treatments for nerve injuries. This article reviews the nervous system physiology, the factors that are critical for nerve repair, and the current approaches that are being explored to aid peripheral nerve regeneration and spinal cord repair.
Collapse
Affiliation(s)
- Christine E Schmidt
- Department of Biomedical Engineering The University of Texas at Austin, Austin, Texas 78712, USA.
| | | |
Collapse
|
40
|
Jubran M, Widenfalk J. Repair of peripheral nerve transections with fibrin sealant containing neurotrophic factors. Exp Neurol 2003; 181:204-12. [PMID: 12781993 DOI: 10.1016/s0014-4886(03)00041-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Peripheral nerve injury is often followed by incomplete recovery of function and sometimes associated with neuropathic pain. There is, therefore, need for therapies which improve the speed of recovery and the final functional outcome after peripheral nerve injuries. In addition, neuropathic pain is not easily dealt with clinically and should preferably be eliminated. Neurotrophic factors have well-documented abilities to support neuron survival and stimulate neurite outgrowth, making them excellent candidates for use in repairing injured nerves. We investigated the possible beneficial effects of repairing the transected rat sciatic nerve by local application of a fibrin sealant containing nerve growth factor (NGF), glial cell line-derived neurotrophic factor (GDNF), or acidic fibroblast growth factor (aFGF). Fibrin sealant was used in conjunction with sutures. Evaluation of motor and sensory function, autotomy, and histological parameters was carried out from 1 to 12 weeks after injury. We demonstrate that NGF cotreatment decreased the occurance of autotomy, suggesting a reduction of neuropathic pain, and improved the performance in motor and sensory tests. In addition, the number of regenerating motoneurons was significantly increased after NGF administration. GDNF increased the speed of sensory recovery, but also markedly increased autotomy, indicating an increased degree of neuropathic pain. aFGF did not alter the outcome of the motor or sensory tests. Fibrin sealant could easily be used in conjunction with sutures to deliver neurotrophic substances locally to the damaged nerve and to enhance recovery of nerve function.
Collapse
Affiliation(s)
- Marie Jubran
- Department of Neuroscience, Karolinska Institute, S-171 77 Stockholm, Sweden
| | | |
Collapse
|
41
|
McDonald DS, Zochodne DW. An injectable nerve regeneration chamber for studies of unstable soluble growth factors. J Neurosci Methods 2003; 122:171-8. [PMID: 12573476 DOI: 10.1016/s0165-0270(02)00319-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Modern surgical techniques cannot guarantee functional recovery following peripheral nerve injuries. Research into factors that may influence nerve regeneration has therefore assumed a prominent potential therapeutic role. We report here on the development of an approach to allow for direct manipulation of the microenvironment of regenerating peripheral nerve axons. We show that solutions can be delivered directly to this local milieu in vivo and that such a delivery can be performed multiple times over an extended period, potentially facilitating studies of multiple molecular players that act locally. We also demonstrate that the bundle of regenerated axons are amenable to morphological analysis by 21 days and that the injection system remains patent for at least 21 days.
Collapse
Affiliation(s)
- D S McDonald
- Department of Clinical Neurosciences, University of Calgary, Room 182A, 3330 Hospital Drive, Alta, Calgary, Canada T2N 4N1
| | | |
Collapse
|
42
|
Fine EG, Decosterd I, Papaloïzos M, Zurn AD, Aebischer P. GDNF and NGF released by synthetic guidance channels support sciatic nerve regeneration across a long gap. Eur J Neurosci 2002; 15:589-601. [PMID: 11886440 DOI: 10.1046/j.1460-9568.2002.01892.x] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The present work was performed to determine the ability of neurotrophic factors to allow axonal regeneration across a 15-mm-long gap in the rat sciatic nerve. Synthetic nerve guidance channels slowly releasing NGF and GDNF were fabricated and sutured to the cut ends of the nerve to bridge the gap. After 7 weeks, nerve cables had formed in nine out of ten channels in both the NGF and GDNF groups, while no neuronal cables were present in the control group. The average number of myelinated axons at the midpoint of the regenerated nerves was significantly greater in the presence of GDNF than NGF (4942 +/-1627 vs. 1199 +/-431, P < or = 0.04). A significantly greater number of neuronal cells in the GDNF group, when compared to the NGF group, retrogradely transported FluoroGold injected distal to the injury site before explantation. The total number of labelled motoneurons observed in the ventral horn of the spinal cord was 98.1 +/-23.4 vs. 20.0 +/-8.5 (P < or = 0.001) in the presence of GDNF and NGF, respectively. In the dorsal root ganglia, 22.7% +/- 4.9% vs. 3.2% +/-1.9% (P +/-0.005) of sensory neurons were labelled retrogradely in the GDNF and NGF treatment groups, respectively. The present study demonstrates that, sustained delivery of GDNF and NGF to the injury site, by synthetic nerve guidance channels, allows regeneration of both sensory and motor axons over long gaps; GDNF leads to better overall regeneration in the sciatic nerve.
Collapse
MESH Headings
- Animals
- Axons/drug effects
- Axons/metabolism
- Axons/ultrastructure
- Chick Embryo
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/growth & development
- Glial Cell Line-Derived Neurotrophic Factor
- Male
- Motor Neurons/drug effects
- Motor Neurons/metabolism
- Motor Neurons/ultrastructure
- Nerve Fibers/drug effects
- Nerve Fibers/metabolism
- Nerve Fibers/ultrastructure
- Nerve Fibers, Myelinated/drug effects
- Nerve Fibers, Myelinated/metabolism
- Nerve Fibers, Myelinated/ultrastructure
- Nerve Growth Factor/metabolism
- Nerve Growth Factor/pharmacology
- Nerve Growth Factors
- Nerve Regeneration/drug effects
- Nerve Regeneration/physiology
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/pharmacology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Neurons, Afferent/ultrastructure
- Prostheses and Implants
- Rats
- Rats, Wistar
- Sciatic Nerve/drug effects
- Sciatic Nerve/injuries
- Sciatic Nerve/surgery
Collapse
Affiliation(s)
- Eric G Fine
- Division of Surgical Research and Gene Therapy Centre, CHUV, Lausanne University Medical School, Switzerland
| | | | | | | | | |
Collapse
|
43
|
Bloch J, Fine EG, Bouche N, Zurn AD, Aebischer P. Nerve growth factor- and neurotrophin-3-releasing guidance channels promote regeneration of the transected rat dorsal root. Exp Neurol 2001; 172:425-32. [PMID: 11716566 DOI: 10.1006/exnr.2001.7778] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dorsal roots have a limited regeneration capacity after transection. To improve nerve regeneration, the growth-promoting effects of the neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) were evaluated. The proteins were continuously released by synthetic nerve guidance channels bridging a 4-mm gap in the transected dorsal root. Four weeks after lesion, the regenerated nerve cables were analyzed for the presence of myelinated and unmyelinated axons. While BDNF showed a limited effect on axonal regeneration (863 +/- 39 axons/regenerated nerve, n = 6), NGF (1843 +/- 482) and NT-3 (1495 +/- 449) powerfully promoted regeneration of myelinated axons compared to channels releasing the control protein bovine serum albumin (293 +/- 39). In addition, NGF, but not BDNF nor NT-3, had a potent effect on the regeneration of unmyelinated axons (NGF, 55 +/- 1.4; BDNF, 4 +/- 0.3; NT-3, 4.7 +/- 0.3 axons/100 microm(2); n = 6). The present study suggests that synthetic nerve guidance channels slowly and continuously releasing the neurotrophins NGF and NT-3 can overcome the limited regeneration of transected dorsal root.
Collapse
Affiliation(s)
- J Bloch
- Division of Surgical Research and Gene Therapy Center, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, CH-1011, Switzerland
| | | | | | | | | |
Collapse
|
44
|
Chen YS, Hsieh CL, Tsai CC, Chen TH, Cheng WC, Hu CL, Yao CH. Peripheral nerve regeneration using silicone rubber chambers filled with collagen, laminin and fibronectin. Biomaterials 2000; 21:1541-7. [PMID: 10885726 DOI: 10.1016/s0142-9612(00)00028-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A 10 mm gap of rat sciatic nerve was created between the proximal and distal nerve stumps, which were sutured into silicone rubber tubes filled with an extracellular gel containing collagen, laminin and fibronectin. Empty silicone rubber tubes were used as controls. Six weeks after implantation, all extracellular elements were completely degraded and absorbed, and 90% of the animals from the extracellular gel group exhibited regeneration across the nerve gaps, whereas only 60% in the control group. Both qualitative and quantitative histology of the regenerated nerves revealed a more mature ultrastructural organization with 28% larger cross-sectional area and 28% higher number of myelinated axons in the extracellular gel group than the controls. These results showed that the gel mixture of collagen, laminin and fibronectin could offer a suitable growth medium for the regeneration of axons.
Collapse
Affiliation(s)
- Y S Chen
- Institute of Chinese Medical Science, China Medical College, Taichung, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
45
|
Lundborg G. A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance. J Hand Surg Am 2000; 25:391-414. [PMID: 10811744 DOI: 10.1053/jhsu.2000.4165] [Citation(s) in RCA: 428] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In spite of an enormous amount of new experimental laboratory data based on evolving neuroscientific concepts during the last 25 years peripheral nerve injuries still belong to the most challenging and difficult surgical reconstructive problems. Our understanding of biological mechanisms regulating posttraumatic nerve regeneration has increased substantially with respect to the role of neurotrophic and neurite-outgrowth promoting substances, but new molecular biological knowledge has so far gained very limited clinical applications. Techniques for clinical approximation of severed nerve ends have reached an optimal technical refinement and new concepts are needed to further increase the results from nerve repair. For bridging gaps in nerve continuity little has changed during the last 25 years. However, evolving principles for immunosuppression may open new perspectives regarding the use of nerve allografts, and various types of tissue engineering combined by bioartificial conduits may also be important. Posttraumatic functional reorganizations occurring in brain cortex are key phenomena explaining much of the inferior functional outcome following nerve repair, and increased knowledge regarding factors involved in brain plasticity may help to further improve the results. Implantation of microchips in the nervous system may provide a new interface between biology and technology and developing gene technology may introduce new possibilities in the manipulation of nerve degeneration and regeneration.
Collapse
Affiliation(s)
- G Lundborg
- Department of Hand Surgery, Malmö University Hospital, Sweden
| |
Collapse
|