1
|
Raskova Kafkova L, Brokesova D, Krupka M, Stehlikova Z, Dvorak J, Coufal S, Fajstova A, Srutkova D, Stepanova K, Hermanova P, Stepankova R, Uberall I, Skarda J, Novak Z, Vannucci L, Tlaskalova-Hogenova H, Jiraskova Zakostelska Z, Sinkora M, Mestecky J, Raska M. Secretory IgA N-glycans contribute to the protection against E. coli O55 infection of germ-free piglets. Mucosal Immunol 2021; 14:511-522. [PMID: 32973324 PMCID: PMC7946640 DOI: 10.1038/s41385-020-00345-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 02/04/2023]
Abstract
Mucosal surfaces are colonized by highly diverse commensal microbiota. Coating with secretory IgA (SIgA) promotes the survival of commensal bacteria while it inhibits the invasion by pathogens. Bacterial coating could be mediated by antigen-specific SIgA recognition, polyreactivity, and/or by the SIgA-associated glycans. In contrast to many in vitro studies, only a few reported the effect of SIgA glycans in vivo. Here, we used a germ-free antibody-free newborn piglets model to compare the protective effect of SIgA, SIgA with enzymatically removed N-glycans, Fab, and Fc containing the secretory component (Fc-SC) during oral necrotoxigenic E. coli O55 challenge. SIgA, Fab, and Fc-SC were protective, whereas removal of N-glycans from SIgA reduced SIgA-mediated protection as demonstrated by piglets' intestinal histology, clinical status, and survival. In vitro analyses indicated that deglycosylation of SIgA did not reduce agglutination of E. coli O55. These findings highlight the role of SIgA-associated N-glycans in protection. Further structural studies of SIgA-associated glycans would lead to the identification of those involved in the species-specific inhibition of attachment to corresponding epithelial cells.
Collapse
Affiliation(s)
- Leona Raskova Kafkova
- grid.10979.360000 0001 1245 3953Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Diana Brokesova
- grid.10979.360000 0001 1245 3953Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Michal Krupka
- grid.10979.360000 0001 1245 3953Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Zuzana Stehlikova
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Dvorak
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Stepan Coufal
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Fajstova
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dagmar Srutkova
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Katerina Stepanova
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Petra Hermanova
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Renata Stepankova
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Ivo Uberall
- grid.10979.360000 0001 1245 3953Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Jozef Skarda
- grid.10979.360000 0001 1245 3953Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Zdenek Novak
- grid.265892.20000000106344187Department of Surgery, University of Alabama at Birmingham, Birmingham, AL USA
| | - Luca Vannucci
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic ,grid.418800.50000 0004 0555 4846Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Helena Tlaskalova-Hogenova
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Jiraskova Zakostelska
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Sinkora
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Jiri Mestecky
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic ,grid.265892.20000000106344187Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Milan Raska
- grid.10979.360000 0001 1245 3953Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
3
|
Pié S, Lallès JP, Blazy F, Laffitte J, Sève B, Oswald IP. Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. J Nutr 2004; 134:641-7. [PMID: 14988461 DOI: 10.1093/jn/134.3.641] [Citation(s) in RCA: 404] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytokines play a central role in immune cell response, but they also participate in the maintenance of tissue integrity. Changes in the cytokine network of the pig gut may be expected at weaning, because abrupt changes in dietary and environmental factors lead to important morphological and functional adaptations in the gut. This study measured the gene expression of 6 inflammatory cytokines along the small intestine (SI) and the proximal colon in 28-d-old piglets (n = 45) at different time points (0, 1, 2, 5 and 8 d) postweaning, using RT-PCR. Villus-crypt architecture and enzymatic activities of lactase and sucrase in the SI were also examined. The results confirmed that weaning is associated with morphological and enzymatic changes in the SI. In addition, the data indicated that cytokine response in the gut could be divided into two periods: an early acute response (0 to 2 d postweaning) and a late long-lasting response (2 to 8 d postweaning). Between d 0 and d 2, the levels of IL-1beta, IL-6, and TNF-alpha messenger RNA (mRNA) increased. Marked upregulation of IL-1beta mRNA occurred in most parts of the intestine, whereas IL-6 and TNF-alpha mRNA markedly increased only at specific sites in the intestine. Between d 2 and d 8, the levels of IL-1beta, IL-6, and TNF-alpha mRNA rapidly returned to preweaning values, except that the level of TNF-alpha mRNA remained high in the distal SI. Levels of IL-12 subunit p40 (IL-12p40) and IL-18 mRNA also decreased, compared to those on d 0. Taken together, these results demonstrate that weaning in piglets is associated with an early and transient response in gene expression of inflammatory cytokines in the gut.
Collapse
Affiliation(s)
- S Pié
- Unité de Pharmacologie-Toxicologie, Institut National de la Recherche Agronomique, 31931 Toulouse Cedex 9, France
| | | | | | | | | | | |
Collapse
|
4
|
Sánchez-Cordón PJ, Romanini S, Salguero FJ, Ruiz-Villamor E, Carrasco L, Gómez-Villamandos JC. A histopathologic, immunohistochemical, and ultrastructural study of the intestine in pigs inoculated with classical swine fever virus. Vet Pathol 2003; 40:254-62. [PMID: 12724565 DOI: 10.1354/vp.40-3-254] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to report on the lesions occurring in the intestine during experimental classical swine fever (CSF) and to clarify the nature of infected cells and the distribution of viral antigen. Thirty-two pigs were inoculated with the virulent CSF virus (CSFV) isolate Alfort 187 and slaughtered from 2 to 15 postinoculation days; four animals of similar background served as a control group. Immunohistochemistry, electron microscopy, and the transferase-mediated deoxyuridine triphosphate nick-end labeling method were used to detect viral antigens and apoptosis. The results showed progressive lymphoid depletion and mucosal necrosis. The lymphoid depletion could have been caused by apoptosis of lymphocytes but could not be directly attributed to the effect of CSFV on these cells. Vascular changes, pathogenic bacteria, and viral infection of epithelial cells were ruled out as causes of necrotic lesions. However, large virally infected monocytes-macrophages with ultrastructural changes indicative of activation were observed in the intestine. This suggests that monocytes-macrophages play an important role in the pathogenesis of intestinal lesions. An understanding of the function of these cells will require additional study.
Collapse
Affiliation(s)
- P J Sánchez-Cordón
- Departamento de Anatomía Patológica, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio de Sanidad Animal, Spain
| | | | | | | | | | | |
Collapse
|