1
|
Wiśnicki K, Donizy P, Remiorz A, Janczak D, Krajewska M, Banasik M. Significance of Indoleamine 2,3-Dioxygenase Expression in the Immunological Response of Kidney Graft Recipients. Diagnostics (Basel) 2022; 12:2353. [PMID: 36292041 PMCID: PMC9600090 DOI: 10.3390/diagnostics12102353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
Kidney transplantation is unquestionably the most advantageous and preferred treatment when patients with end-stage renal disease are considered. It does have a substantially positive influence on both the quality and expectancy of their lives. Thus, it is quintessential to extend the survival rate of kidney grafts. On account of T-cell-focused treatment, this is being exponentially achieved. The kynurenine pathway, as an immunosuppressive apparatus, and indoleamine 2,3-dioxygenase (IDO1), as its main regulator, are yet to be exhaustively explored. This review presents the recognised role of IDO1 and its influence on the kynurenine pathway, with emphasis on immunosuppression in kidney transplant protection.
Collapse
Affiliation(s)
- Krzysztof Wiśnicki
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Agata Remiorz
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Dariusz Janczak
- Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
2
|
Mandal H, Vijayakumar S, Yadav S, Kumar Singh S, Das P. Validation of NAD synthase inhibitors for inhibiting the cell viability of Leishmania donovani: In silico and in vitro approach. J Biomol Struct Dyn 2019; 37:4481-4493. [PMID: 30526395 DOI: 10.1080/07391102.2018.1552199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
NAD (nicotinamide adenine dinucleotide) synthase catalyses the biochemical synthesis of NAD, from nicotinic acid adenine dinucleotide (NAAD). NAD may be synthesized through the de novo pathways and/or the salvage pathways in cells. However, in Leishmania parasite, the synthesis of NAD solely depends on the salvage pathways. NAD synthetase is widely explored as a drug target in various microorganisms. In Bacillus anthracis, a group of sulphonamides 5599, 5617 and 5824 and complex amide 5833 were reported to have activity at micromolar range against NAD synthetase. Hence, in the present study, the same group of sulphonamides and complex amide were validated through in silico and in vitro studies for its efficiency towards Leishmania donovani NAD synthase. In silico study revealed the ligands 5824 and 5833 to have better docking score. Molecular dynamics simulation for a duration of 50 ns of all the ligand-protein complexes suggested that the complexes with the ligands 5824 and 5833 were stable and interacting. In vitro and ex vivo studies have shown that 5824 and 5833 inhibit the cell viability of the organism at a lower concentration than 5599 and 5617. Hence, with further in vivo validation, 5824 (or its synthetic analogues) and 5833 could be the choice that may work synergistically with other potential drugs in treating drug-resistant cases of leishmaniasis. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Haraprasad Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) , Hajipur , Bihar , India.,Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences , Patna , Bihar , India
| | - Saravanan Vijayakumar
- Bioinformatics Centre , ICMR, Bioinformatics Centre, Rajendra Memorial Research Institute of Medical Sciences , Patna , Bihar , India
| | - Shalini Yadav
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences , Patna , Bihar , India
| | - Shubhankar Kumar Singh
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences , Patna , Bihar , India
| | - Pradeep Das
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research , Patna , Bihar , India
| |
Collapse
|
3
|
Chatterjee P, Goozee K, Lim CK, James I, Shen K, Jacobs KR, Sohrabi HR, Shah T, Asih PR, Dave P, ManYan C, Taddei K, Lovejoy DB, Chung R, Guillemin GJ, Martins RN. Alterations in serum kynurenine pathway metabolites in individuals with high neocortical amyloid-β load: A pilot study. Sci Rep 2018; 8:8008. [PMID: 29789640 PMCID: PMC5964182 DOI: 10.1038/s41598-018-25968-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/24/2018] [Indexed: 01/04/2023] Open
Abstract
The kynurenine pathway (KP) is dysregulated in neuroinflammatory diseases including Alzheimer’s disease (AD), however has not been investigated in preclinical AD characterized by high neocortical amyloid-β load (NAL), prior to cognitive impairment. Serum KP metabolites were measured in the cognitively normal KARVIAH cohort. Participants, aged 65–90 y, were categorised into NAL+ (n = 35) and NAL− (n = 65) using a standard uptake value ratio cut-off = 1.35. Employing linear models adjusting for age and APOEε4, higher kynurenine and anthranilic acid (AA) in NAL+ versus NAL− participants were observed in females (kynurenine, p = 0.004; AA, p = 0.001) but not males (NALxGender, p = 0.001, 0.038, respectively). To evaluate the predictive potential of kynurenine or/and AA for NAL+ in females, logistic regressions with NAL+/− as outcome were carried out. After age and APOEε4 adjustment, kynurenine and AA were individually and jointly significant predictors (p = 0.007, 0.005, 0.0004, respectively). Areas under the receiver operating characteristic curves were 0.794 using age and APOEε4 as predictors, and 0.844, 0.866 and 0.871 when kynurenine, AA and both were added. Findings from the current study exhibit increased KP activation in NAL+ females and highlight the predictive potential of KP metabolites, AA and kynurenine, for NAL+. Additionally, the current study also provides insight into he influence of gender in AD pathogenesis.
Collapse
Affiliation(s)
- Pratishtha Chatterjee
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Kathryn Goozee
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,KaRa Institute of Neurological Disease, Sydney, Macquarie Park, NSW, Australia.,Clinical Research Department, Anglicare, Sydney, Castle Hill, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia.,The Cooperative Research Centre for Mental Health, Carlton South, Vic, Australia
| | - Chai K Lim
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Ian James
- Institute for Immunology & Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Kaikai Shen
- Australian eHealth Research Centre, CSIRO, Floreat, WA, Australia
| | - Kelly R Jacobs
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Hamid R Sohrabi
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia
| | - Tejal Shah
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia
| | - Prita R Asih
- KaRa Institute of Neurological Disease, Sydney, Macquarie Park, NSW, Australia.,School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Preeti Dave
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,Clinical Research Department, Anglicare, Sydney, Castle Hill, NSW, Australia
| | - Candice ManYan
- Clinical Research Department, Anglicare, Sydney, Castle Hill, NSW, Australia
| | - Kevin Taddei
- School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia
| | - David B Lovejoy
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Roger Chung
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Gilles J Guillemin
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Ralph N Martins
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia. .,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia. .,KaRa Institute of Neurological Disease, Sydney, Macquarie Park, NSW, Australia. .,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia. .,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia. .,The Cooperative Research Centre for Mental Health, Carlton South, Vic, Australia.
| |
Collapse
|
4
|
Schäuble S, Stavrum AK, Bockwoldt M, Puntervoll P, Heiland I. SBMLmod: a Python-based web application and web service for efficient data integration and model simulation. BMC Bioinformatics 2017. [PMID: 28646877 PMCID: PMC5483284 DOI: 10.1186/s12859-017-1722-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background Systems Biology Markup Language (SBML) is the standard model representation and description language in systems biology. Enriching and analysing systems biology models by integrating the multitude of available data, increases the predictive power of these models. This may be a daunting task, which commonly requires bioinformatic competence and scripting. Results We present SBMLmod, a Python-based web application and service, that automates integration of high throughput data into SBML models. Subsequent steady state analysis is readily accessible via the web service COPASIWS. We illustrate the utility of SBMLmod by integrating gene expression data from different healthy tissues as well as from a cancer dataset into a previously published model of mammalian tryptophan metabolism. Conclusion SBMLmod is a user-friendly platform for model modification and simulation. The web application is available at http://sbmlmod.uit.no, whereas the WSDL definition file for the web service is accessible via http://sbmlmod.uit.no/SBMLmod.wsdl. Furthermore, the entire package can be downloaded from https://github.com/MolecularBioinformatics/sbml-mod-ws. We envision that SBMLmod will make automated model modification and simulation available to a broader research community. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1722-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sascha Schäuble
- Jena University Language & Information Engineering (JULIE) Lab, Friedrich-Schiller-University Jena, Jena, Germany
| | | | - Mathias Bockwoldt
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Pål Puntervoll
- Centre for Applied Biotechnology, Uni Research Environment, Bergen, Norway
| | - Ines Heiland
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|