1
|
Comas M, De Pietri Tonelli D, Berdondini L, Astiz M. Ontogeny of the circadian system: a multiscale process throughout development. Trends Neurosci 2024; 47:36-46. [PMID: 38071123 DOI: 10.1016/j.tins.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/02/2023] [Accepted: 11/12/2023] [Indexed: 01/12/2024]
Abstract
The 24 h (circadian) timing system develops in mammals during the perinatal period. It carries out the essential task of anticipating daily recurring environmental changes to identify the best time of day for each molecular, cellular, and systemic process. Although significant knowledge has been acquired about the organization and function of the adult circadian system, relatively little is known about its ontogeny. During the perinatal period, the circadian system progressively gains functionality under the influence of the early environment. This review explores current evidence on the development of the circadian clock in mammals, highlighting the multilevel complexity of the process and the importance of gaining a better understanding of its underlying biology.
Collapse
Affiliation(s)
- Maria Comas
- Circadian Physiology of Neurons and Glia Laboratory, Achucarro Basque Center for Neuroscience, 48940 Leioa, Basque Country, Spain
| | | | - Luca Berdondini
- Microtechnology for Neuroelectronics, Fondazione Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
| | - Mariana Astiz
- Circadian Physiology of Neurons and Glia Laboratory, Achucarro Basque Center for Neuroscience, 48940 Leioa, Basque Country, Spain; Ikerbasque - Basque Foundation for Science, Bilbao, Spain; Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany.
| |
Collapse
|
2
|
Lee R, McGee A, Fernandez FX. Systematic review of drugs that modify the circadian system's phase-shifting responses to light exposure. Neuropsychopharmacology 2022; 47:866-879. [PMID: 34961774 PMCID: PMC8882192 DOI: 10.1038/s41386-021-01251-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 11/09/2022]
Abstract
We searched PubMed for primary research quantifying drug modification of light-induced circadian phase-shifting in rodents. This search, conducted for work published between 1960 and 2018, yielded a total of 146 papers reporting results from 901 studies. Relevant articles were those with any extractable data on phase resetting in wildtype (non-trait selected) rodents administered a drug, alongside a vehicle/control group, near or at the time of exposure. Most circadian pharmacology experiments were done using drugs thought to act directly on either the brain's central pacemaker, the suprachiasmatic nucleus (SCN), the SCN's primary relay, the retinohypothalamic tract, secondary pathways originating from the medial/dorsal raphe nuclei and intergeniculate leaflet, or the brain's sleep-arousal centers. While the neurotransmitter systems underlying these circuits were of particular interest, including those involving glutamate, gamma-aminobutyric acid, serotonin, and acetylcholine, other signaling modalities have also been assessed, including agonists and antagonists of receptors linked to dopamine, histamine, endocannabinoids, adenosine, opioids, and second-messenger pathways downstream of glutamate receptor activation. In an effort to identify drugs that unduly influence circadian responses to light, we quantified the net effects of each drug class by ratioing the size of the phase-shift observed after administration to that observed with vehicle in a given experiment. This allowed us to organize data across the literature, compare the relative efficacy of one mechanism versus another, and clarify which drugs might best suppress or potentiate phase resetting. Aggregation of the available data in this manner suggested that several candidates might be clinically relevant as auxiliary treatments to suppress ectopic light responses during shiftwork or amplify the circadian effects of timed bright light therapy. Future empirical research will be necessary to validate these possibilities.
Collapse
Affiliation(s)
- Robert Lee
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Austin McGee
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Fabian-Xosé Fernandez
- Department of Psychology, University of Arizona, Tucson, AZ, USA.
- Department of Neurology, University of Arizona, Tucson, AZ, USA.
- BIO5 and McKnight Brain Research Institutes, Tucson, AZ, USA.
| |
Collapse
|
3
|
Serotonin-2C receptor involved serotonin-induced Ca²⁺ mobilisations in neuronal progenitors and neurons in rat suprachiasmatic nucleus. Sci Rep 2014; 4:4106. [PMID: 24531181 PMCID: PMC3925950 DOI: 10.1038/srep04106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 01/30/2014] [Indexed: 02/03/2023] Open
Abstract
The hypothalamic suprachiasmatic nucleus (SCN), the central circadian pacemaker in mammals, undergoes serotonergic regulation, but the underlying mechanisms remain obscure. Here, we generated a subclone of an SCN progenitor cell line expressing Ca(2+) sensors (SCN2.2YC) and compared its 5-HT receptor signalling with that of rat SCN neurons in brain slices. SCN2.2YC cells expressed 5-HT1A/2A/2B/2C, but not 5A/7, while all six subtypes were expressed in SCN tissues. High K(+) or 5-HT increased cytosolic Ca(2+) in SCN2.2YC cells. The 5-HT responses were inhibited by ritanserin and SB-221284, but resistant to WAY-100635 and RS-127445, suggesting predominant involvement of 5-HT2C for Ca(2+) mobilisations. Consistently, Ca(2+) imaging and voltage-clamp electrophysiology using rat SCN slices demonstrated post-synaptic 5-HT2C expression. Because 5-HT2C expression was postnatally increased in the SCN and 5-HT-induced Ca(2+) mobilisations were amplified in differentiated SCN2.2YC cells and developed SCN neurons, we suggest that this signalling development occurs in accordance with central clock maturations.
Collapse
|
4
|
Boden MJ, Varcoe TJ, Kennaway DJ. Circadian regulation of reproduction: from gamete to offspring. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 113:387-97. [PMID: 23380455 DOI: 10.1016/j.pbiomolbio.2013.01.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/10/2012] [Accepted: 01/22/2013] [Indexed: 01/19/2023]
Abstract
Few challenges are more critical to the survival of a species than reproduction. To ensure reproductive success, myriad aspects of physiology and behaviour need to be tightly orchestrated within the animal, as well as timed appropriately with the external environment. This is accomplished through an endogenous circadian timing system generated at the cellular level through a series of interlocked transcription/translation feedback loops, leading to the overt expression of circadian rhythms. These expression patterns are found throughout the body, and are intimately interwoven with both the timing and function of the reproductive process. In this review we highlight the many aspects of reproductive physiology in which circadian rhythms are known to play a role, including regulation of the estrus cycle, the LH surge and ovulation, the production and maturation of sperm and the timing of insemination and fertilisation. We will also describe roles for circadian rhythms in support of the preimplantation embryo in the oviduct, implantation/placentation, as well as the control of parturition and early postnatal life. There are several key differences in physiology between humans and the model systems used for the study of circadian disruption, and these challenges to interpretation will be discussed as part of this review.
Collapse
Affiliation(s)
- M J Boden
- Robinson Institute, Research Centre for Reproductive Health, Department of Obstetrics and Gynaecology, University of Adelaide, Medical School, Adelaide, SA 5005, Australia.
| | | | | |
Collapse
|
5
|
Schneider H, Fritzky L, Williams J, Heumann C, Yochum M, Pattar K, Noppert G, Mock V, Hawley E. Cloning and expression of a zebrafish 5-HT(2C) receptor gene. Gene 2012; 502:108-17. [PMID: 22521866 DOI: 10.1016/j.gene.2012.03.070] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 03/23/2012] [Accepted: 03/28/2012] [Indexed: 11/18/2022]
Abstract
The 5-HT(2C) receptor is one of 14 different serotonin (5-HT) receptors that control neural function and behavior. Here, we present the entire sequence of a zebrafish 5-HT(2C) receptor cDNA including the 3' untranslated region and the previously unknown 5' untranslated region. The cloned 5-HT(2C) receptor gene is located on chromosome 7, is approximately 202 kbp long, and contains six exons. The coding region of the gene is 1557 bp long and flanked by a 504 bp 5' UTR and a 1474 bp 3' UTR. The deduced protein sequence of 518 amino acids aligns with orthologs of other vertebrates and is 54% identical to the human and mouse 5-HT(2C) receptor protein sequences. The region of the cDNA that encodes the 2nd cytoplasmic loop of the protein shows a 66% identity with vertebrate orthologs and clearly identifies the gene as a 5-HT(2C) receptor gene. Coupling sites for beta-arrestin and calmodulin are conserved in zebrafish. In-situ hybridization shows that the receptor is expressed in the brain and spinal cord including areas such as the olfactory bulb, the dorsal thalamus, the posterior tuberculum, the hypothalamus and the medulla oblongata. Reverse Transcriptase-PCR experiments indicate that the receptor gene can also be active in other tissues such as skin, ovaries, and axial muscle of adult zebrafish. Expression of the 5-HT(2C) receptor during ontogeny was found as early as 2.5 hpf. Five edited adenines in the region of the human, rat and mouse mRNA that encodes the 2nd cytoplasmic loop are conserved in the zebrafish transcript. However, RNA editing was not detected in the zebrafish. The results characterize the zebrafish 5-HT(2C) receptor gene and gene expression pattern for the first time. The similarities to mammalian 5-HT(2C) receptor genes suggest the use of zebrafish for the study of 5-HT(2C) receptor function in behavior, development and drug discovery.
Collapse
Affiliation(s)
- Henning Schneider
- DePauw University, Department of Biology, Greencastle, IN 46135, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kalinina TS, Shishkina GT, Dygalo NN. Induction of Tyrosine Hydroxylase Gene Expression by Glucocorticoids in the Perinatal Rat Brain is Age-Dependent. Neurochem Res 2012; 37:811-8. [DOI: 10.1007/s11064-011-0676-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/09/2011] [Accepted: 12/15/2011] [Indexed: 11/30/2022]
|
7
|
Smith VM, Sterniczuk R, Phillips CI, Antle MC. Altered photic and non-photic phase shifts in 5-HT(1A) receptor knockout mice. Neuroscience 2008; 157:513-23. [PMID: 18930788 DOI: 10.1016/j.neuroscience.2008.09.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 11/30/2022]
Abstract
The mammalian circadian clock located in the suprachiasmatic nucleus (SCN) is thought to be modulated by 5-HT. 5-HT is though to inhibit photic phase shifts by inhibiting the release of glutamate from retinal terminals, as well as by decreasing the responsiveness of retinorecipient cells in the SCN. Furthermore, there is also evidence that 5-HT may underlie, in part, non-photic phase shifts of the circadian system. Understanding the mechanism by which 5-HT accomplishes these goals is complicated by the wide variety of 5-HT receptors found in the SCN, the heterogeneous organization of both the circadian clock and the location of 5-HT receptors, and by a lack of sufficiently selective pharmacological agents for the 5-HT receptors of interest. Genetically modified animals engineered to lack a specific 5-HT receptor present an alternative avenue of investigation to understand how 5-HT regulates the circadian system. Here we examine behavioral and molecular responses to both photic and non-photic stimuli in mice lacking the 5-HT(1A) receptor. When compared with wild-type controls, these mice exhibit larger phase advances to a short late-night light pulse and larger delays to long 12 h light pulses that span the whole subjective night. Fos and mPer1 expression in the retinorecipient SCN is significantly attenuated following late-night light pulses in the 5-HT(1A) knockout animals. Finally, non-photic phase shifts to (+/-)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) are lost in the knockout animals, while attenuation of the phase shift to the long light pulse due to rebound activity following a wheel lock is unaffected. These findings suggest that the 5-HT(1A) receptor plays an inhibitory role in behavioral phase shifts, a facilitatory role in light-induced gene expression, a necessary role in phase shifts to 8-OH-DPAT, and is not necessary for activity-induced phase advances that oppose photic phase shifts to long light pulses.
Collapse
Affiliation(s)
- V M Smith
- Department of Psychology, University of Calgary, 2500 University Drive Northwest, Calgary, Alberta, Canada T2N 1N4
| | | | | | | |
Collapse
|
8
|
Graff C, Kohler M, Pévet P, Wollnik F. Involvement of the retinohypothalamic tract in the photic-like effects of the serotonin agonist quipazine in the rat. Neuroscience 2005; 135:273-83. [PMID: 16084651 DOI: 10.1016/j.neuroscience.2005.05.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 05/19/2005] [Accepted: 05/29/2005] [Indexed: 10/25/2022]
Abstract
Light is the major synchronizer of the mammalian circadian pacemaker located in the suprachiasmatic nucleus. Photic information is perceived by the retina and conveyed to the suprachiasmatic nucleus either directly by the retinohypothalamic tract or indirectly by the intergeniculate leaflet and the geniculohypothalamic tract. In addition, serotonin has been shown to affect the suprachiasmatic nucleus by both direct and indirect serotonin projections from the raphe nuclei. Indeed, systemic as well as local administrations of the serotonin agonist quipazine in the region of the suprachiasmatic nucleus mimic the effects of light on the circadian system of rats, i.e. they induce phase-advances of the locomotor activity rhythm as well as c-FOS expression in the suprachiasmatic nucleus during late subjective night. The aim of this study was to localize the site(s) of action mediating those effects. Phase shifts of the locomotor activity rhythm as well as c-FOS expression in the suprachiasmatic nucleus after s.c. injection of quipazine (10 mg/kg) were assessed in Lewis rats, which had received either radio-frequency lesions of the intergeniculate leaflet or infusions of the serotonin neurotoxin 5,7-dihydroxytryptamine into the suprachiasmatic nucleus (25 microg) or bilateral enucleation. Lesions of intergeniculate leaflet and serotonin afferents to the suprachiasmatic nucleus did not reduce the photic-like effects of quipazine, whereas bilateral enucleation and the subsequent degeneration of the retinohypothalamic tract abolished both the phase-shifting and the FOS-inducing effects of quipazine. The results indicate that photic-like effects of quipazine are mediated via the retinohypothalamic tract.
Collapse
Affiliation(s)
- C Graff
- Department of Animal Physiology, Institute of Biology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany.
| | | | | | | |
Collapse
|
9
|
Antle MC, Ogilvie MD, Pickard GE, Mistlberger RE. Response of the mouse circadian system to serotonin 1A/2/7 agonists in vivo: surprisingly little. J Biol Rhythms 2003; 18:145-58. [PMID: 12693869 DOI: 10.1177/0748730403251805] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Serotonin (5-HT) is thought to play a role in regulating nonphotic phase shifts and modulating photic phase shifts of the mammalian circadian system, but results with different species (rats vs. hamsters) and techniques (in vivo vs. in vitro; systemic vs. intracerebral drug delivery) have been discordant. Here we examined the effects of the 5-HT1A/7 agonist 8-OH-DPAT and the 5-HT1/2 agonist quipazine on the circadian system in mice, with some parallel experiments conducted with hamsters for comparative purposes. In mice, neither drug, delivered systemically at a range of circadian phases and doses, induced phase shifts significantly different from vehicle injections. In hamsters, quipazine intraperitoneally (i.p.) did not induce phase shifts, whereas 8-OH-DPAT induced phase shifts after i.p. but not intra-SCN injections. In mice, quipazine modestly increased c-Fos expression in the SCN (site of the circadian pacemaker) during the subjective day, whereas 8-OH-DPAT did not affect SCN c-Fos. In hamsters, both drugs suppressed SCN c-Fos in the subjective day. In both species, both drugs strongly induced c-Fos in the paraventricular nucleus (within-subject positive control). 8-OH-DPAT did not significantly attenuate light-induced phase shifts in mice but did in hamsters (between-species positive control). These results indicate that in the intact mouse in vivo, acute activation of 5-HT1A/2/7 receptors in the circadian system is not sufficient to reset the SCN pacemaker or to oppose phase-shifting effects of light. There appear to be significant species differences in the susceptibility of the circadian system to modulation by systemically delivered serotonergics.
Collapse
Affiliation(s)
- Michael C Antle
- Department of Psychology, Columbia University, New York, NY 10027, USA
| | | | | | | |
Collapse
|
10
|
Abstract
The suprachiasmatic nucleus (SCN) is the site of the generation and entrainment of circadian rhythms. Similar to other structures, it develops throughout gestation but is still immature for some time after. This suggests that the SCN could be vulnerable to maternal influences, such as poor nutrition, stress and drugs, all of which can affect neuronal development. Evidence is accumulating that suggests that this is the case, with body size at birth influencing melatonin production in adult humans and maternal malnutrition, and stress affecting sleep in rodents. Interestingly, the maternal environment affects the phase of rhythms and the response of the circadian timing system to light pulses. The nature of these changes in adult rhythmicity is similar to those commonly associated with depression in humans. Thus, abnormal fetal programming might predispose adults to depressive illness.
Collapse
Affiliation(s)
- David J Kennaway
- Dept Obstetrics and Gynaecology, University of Adelaide, Medical School, Frome Road, 5005, Adelaide, Australia.
| |
Collapse
|