1
|
Federighi G, Asteriti S, Cangiano L. Lumbar spinal cord neurons putatively involved in ejaculation are sexually dimorphic in early postnatal mice. J Comp Neurol 2020; 528:624-636. [PMID: 31566721 DOI: 10.1002/cne.24776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 01/23/2023]
Abstract
A crucial role in ejaculation is thought to be played by a population of lumbar spino-thalamic neurons (LSt), which express galanin and other neuropeptides. In rats, these neurons are activated with ejaculation and their lesion selectively abolishes ejaculation but not other mating behaviors. Consistently with their role, in adult rats and humans, LSt neurons are sexually dimorphic, being more numerous in males. Here we examined whether sexual dimorphism arises early in development, using a transgenic mouse line in which the expression of fluorescent protein is driven by the galanin promoter. We focused on postnatal day 4, shortly after a transient perinatal androgen surge in males that could play an organizational role in LSt development. We found a population of brightly fluorescent neurons organized in bilateral columns dorsolateral to the central canal in segments L1-L5, the expected location of the LSt group. Their number was close to that of adult preparations and significantly greater in male than in female siblings (+19%; CI95% : +13% to +27%; p < .01). This was not due to a generalized higher galanin expression in the male since fluorescent L4 DRG neurons, innervating the hindlimbs and lower back, were not significantly dimorphic (-4%; CI95% : -10% to +8%; p = .92). Unexpectedly, we found in cervical segments a population of fluorescent neurons having a location relative to the central canal similar to the LSt. Thus, the LSt group is sexually dimorphic soon after birth. However, it is possible that only a subset of its neurons participate in the control of ejaculation.
Collapse
Affiliation(s)
| | - Sabrina Asteriti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Lorenzo Cangiano
- Department of Translational Research, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Krotov V, Tokhtamysh A, Kopach O, Dromaretsky A, Sheremet Y, Belan P, Voitenko N. Functional Characterization of Lamina X Neurons in ex-Vivo Spinal Cord Preparation. Front Cell Neurosci 2017; 11:342. [PMID: 29163053 PMCID: PMC5672841 DOI: 10.3389/fncel.2017.00342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/16/2017] [Indexed: 11/25/2022] Open
Abstract
Functional properties of lamina X neurons in the spinal cord remain unknown despite the established role of this area for somatosensory integration, visceral nociception, autonomic regulation and motoneuron output modulation. Investigations of neuronal functioning in the lamina X have been hampered by technical challenges. Here we introduce an ex-vivo spinal cord preparation with both dorsal and ventral roots still attached for functional studies of the lamina X neurons and their connectivity using an oblique LED illumination for resolved visualization of lamina X neurons in a thick tissue. With the elaborated approach, we demonstrate electrophysiological characteristics of lamina X neurons by their membrane properties, firing pattern discharge and fiber innervation (either afferent or efferent). The tissue preparation has been also probed using Ca2+ imaging with fluorescent Ca2+ dyes (membrane-impermeable or -permeable) to demonstrate the depolarization-induced changes in intracellular calcium concentration in lamina X neurons. Finally, we performed visualization of subpopulations of lamina X neurons stained by retrograde labeling with aminostilbamidine dye to identify sympathetic preganglionic and projection neurons in the lamina X. Thus, the elaborated approach provides a reliable tool for investigation of functional properties and connectivity in specific neuronal subpopulations, boosting research of lamina X of the spinal cord.
Collapse
Affiliation(s)
- Volodymyr Krotov
- Department of Sensory Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine.,Department of Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Anastasia Tokhtamysh
- Department of Sensory Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Olga Kopach
- Department of Sensory Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Andrew Dromaretsky
- Department of Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Yevhenii Sheremet
- Department of Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Pavel Belan
- Department of Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine.,Chair of Biophysics and Molecular Physiology, Kyiv Academic University, Kyiv, Ukraine
| | - Nana Voitenko
- Department of Sensory Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine.,Chair of Biophysics and Molecular Physiology, Kyiv Academic University, Kyiv, Ukraine
| |
Collapse
|
3
|
Newton BW. Walking a fine line: is it possible to remain an empathic physician and have a hardened heart? Front Hum Neurosci 2013; 7:233. [PMID: 23781181 PMCID: PMC3678078 DOI: 10.3389/fnhum.2013.00233] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/15/2013] [Indexed: 12/22/2022] Open
Abstract
Establishing an empathic physician-patient relationship is an essential physician skill. This chapter discusses the sexually dimorphic aspects of the neural components involved in affective and cognitive empathy, and examines why men and women medical students or physicians express different levels of empathy. Studies reveal levels of medical student affective or cognitive empathy can help reveal which medical specialty a student will enter. The data show students or physicians with higher empathy enter into specialties characterized by large amounts of patient contact and continuity of care; and individuals with lower levels of empathy desire specialties having little or no patient contact and little to no continuity of care. Burnout and stress can decrease the empathy physicians had when they first entered medical school to unacceptable levels. Conversely, having a too empathetic physician can let patient conditions and reactions interfere with the ability to provide effective care. By learning to blunt affective empathic responses, physicians establish a certain degree of empathic detachment with the patient in order to provide objective care. However, a physician must not become so detached and hardened that their conduct appears callous, because it is still important for physicians, especially those in specialties with a large amount of patient contact, to use empathic communication skills.
Collapse
Affiliation(s)
- Bruce W. Newton
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical SciencesLittle Rock, AR, USA
| |
Collapse
|
4
|
Forger NG. The organizational hypothesis and final common pathways: Sexual differentiation of the spinal cord and peripheral nervous system. Horm Behav 2009; 55:605-10. [PMID: 19446077 PMCID: PMC2703449 DOI: 10.1016/j.yhbeh.2009.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 03/11/2009] [Accepted: 03/12/2009] [Indexed: 10/20/2022]
Abstract
In honor of the 50th anniversary of the "organizational hypothesis," this paper reviews work on sexual differentiation of the spinal cord and peripheral nervous system. Topics considered include the spinal nucleus of the bulbocavernosus, the ejaculation center, the cremaster nucleus, sensory and autonomic neurons, and pain. These relatively simple neural systems offer ample confirmation that early exposure to testicular hormones masculinizes the nervous system, including final common pathways. However, I also discuss findings that challenge, or at least stretch, the organizational hypothesis, with important implications for understanding sex differences throughout the nervous system.
Collapse
Affiliation(s)
- Nancy G Forger
- Department of Psychology and Center for Neuroendocrine Studies, University of Massachusetts, Amherst MA 01003, USA.
| |
Collapse
|
5
|
Seddik R, Schlichter R, Trouslard J. Modulation of GABAergic synaptic transmission by terminal nicotinic acetylcholine receptors in the central autonomic nucleus of the neonatal rat spinal cord. Neuropharmacology 2006; 51:77-89. [PMID: 16678861 DOI: 10.1016/j.neuropharm.2006.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 02/09/2006] [Accepted: 03/05/2006] [Indexed: 11/20/2022]
Abstract
Using patch clamp recordings from an in vitro spinal cord slice preparation of neonatal rats (9-15days old), we characterized the GABAergic synaptic transmission in sympathetic preganglionic neurones (SPN) of the central autonomic nucleus (CA) of lamina X. Local applications of isoguvacine (100microM), a selective agonist at GABA(A) receptors, induced in all cells tested a chloride current which was abolished by bicuculline, a competitive antagonist at GABA(A) receptors. In addition, 25% of the recorded cells displayed spontaneous tetrodotoxin-insensitive and bicuculline-sensitive chloride miniature inhibitory postsynaptic currents (mIPSCs). Acetylcholine (100microM) increased the frequency of GABAergic mIPSCs without affecting their amplitudes or their kinetic properties indicating a presynaptic site of action. The presynaptic effect of ACh was restricted to GABAergic neurones synapsing onto sympathetic preganglionic neurones. The facilitatory effect of ACh was abolished in the absence of external calcium or in the presence of 100microM cadmium added to the bath solution. Choline 10mM, an agonist at alpha7 nicotinic acetylcholine receptors (nAChRs) or muscarine (10microM), a muscarinic receptor agonist, did not reproduce the presynaptic effect of ACh. The presynaptic effect of ACh was blocked by 1microM of dihydro-beta-erythroidine (DHbetaE), an antagonist of non-alpha7 nAChRs but was insensitive to alpha7 nAChRs antagonists (strychnine, alpha-bungarotoxin and methyllycaconitine) or to the muscarinic receptor antagonist atropine (10microM). It was concluded that SPNs of the central autonomic nucleus displayed a functional GABAergic transmission which is facilitated by terminal non alpha7 nAChRs.
Collapse
Affiliation(s)
- Riad Seddik
- Department of Physiology, University of Basel, Pharmazentrum, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
6
|
Wall PD, Kerr BJ, Ramer MS. Primary afferent input to and receptive field properties of cells in rat lumbar area X. J Comp Neurol 2002; 449:298-306. [PMID: 12115681 DOI: 10.1002/cne.10294] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study we examined the primary afferent input to rat area X of Rexed, and characterized sensory receptive fields (RFs) of the cells therein. This poorly understood area contains primary afferent fibres, some of which are arranged into a compact bundle beneath the central canal. Anterograde transport of the B fragment of cholera toxin (CTB) from the sciatic nerve showed a strictly ipsilateral projection to segments in L4 and L5 but both ipsi- and contralateral projections in L6 and more caudal segments. The response of cells in area X to mechanical cutaneous stimuli was recorded through extracellular microelectrodes in decerebrate, decerebrate-spinal, and urethane-anaesthetised preparations. The lateral edge of area X was marked by an abrupt change in the RFs: Lateral to area X in the dorsal horn, they were strictly unilateral and relatively small. At a mean of 90 microm from the midline, there was an abrupt expansion of the RFs to cover at least the entire ipsilateral dermatome. Within area X, 70% of the cells' RFs extended across the midline to include contralateral skin. In 35% of cells recorded in rats with intact spinal cords, the RF extended rostrally onto the forelimb. In a small number of cells, the RF included ear pinnae and nose. The precise function of area X cells remains unknown; although they have been shown to be involved in visceral reflexes, the fact that they receive convergent input from a wide variety of tissues and from local and remote body parts implies a more generalized, integrative function.
Collapse
Affiliation(s)
- Patrick D Wall
- Sensory Function Group, Centre for Neuroscience Research, Guy's, King's and St. Thomas' School of Biomedical Sciences, King's College London, Guy's Campus, SE1 1UL London, United Kingdom
| | | | | |
Collapse
|
7
|
Phelan KD, Newton BW. Intracellular recording of lamina X neurons in a horizontal slice preparation of rat lumbar spinal cord. J Neurosci Methods 2000; 100:145-50. [PMID: 11040377 DOI: 10.1016/s0165-0270(00)00247-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A horizontal slice preparation of postnatal rat lumbar spinal cord has been developed which allows correlative observations of the morphology, electrophysiology, and receptor pharmacology of lamina X neurons. These slices better maintain afferent input and somatodendritic morphology and are amenable to subsequent immunohistochemical processing. Stable intracellular recordings obtained from postnatal day 14-45 animals reveal that a number of different intrinsic membrane conductances contribute to the regulation of excitability in lamina X neurons. In addition, lamina X neurons possess inhibitory GABAergic as well as excitatory glutamate and cholecystokinin receptors. This preparation will be useful in future studies designed to characterize developmental changes in the intrinsic membrane properties, synaptic profiles and neuropeptide responsiveness of lamina X neurons in the rat. Such a characterization is important given that lamina X represents a unique sexually dimorphic region that is a convergence site for somatic and visceral afferent inputs, which includes nociceptive information.
Collapse
Affiliation(s)
- K D Phelan
- Department of Anatomy/Slot 510 and Arkansas Center for Neuroscience, University of Arkansas for Medical Sciences, 4301 West Markham St., Little Rock, AR 72205-7199, USA.
| | | |
Collapse
|