1
|
Barabás B, Reéb Z, Papp OI, Hájos N. Functionally linked amygdala and prefrontal cortical regions are innervated by both single and double projecting cholinergic neurons. Front Cell Neurosci 2024; 18:1426153. [PMID: 39049824 PMCID: PMC11266109 DOI: 10.3389/fncel.2024.1426153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024] Open
Abstract
Cholinergic cells have been proposed to innervate simultaneously those cortical areas that are mutually interconnected with each other. To test this hypothesis, we investigated the cholinergic innervation of functionally linked amygdala and prefrontal cortical regions. First, using tracing experiments, we determined that cholinergic cells located in distinct basal forebrain (BF) areas projected to the different nuclei of the basolateral amygdala (BLA). Specifically, cholinergic cells in the ventral pallidum/substantia innominata (VP/SI) innervated the basal nucleus (BA), while the horizontal limb of the diagonal band of Broca (HDB) projected to its basomedial nucleus (BMA). In addition, cholinergic neurons in these two BF areas gave rise to overlapping innervation in the medial prefrontal cortex (mPFC), yet their axons segregated in the dorsal and ventral regions of the PFC. Using retrograde-anterograde viral tracing, we demonstrated that a portion of mPFC-projecting cholinergic neurons also innervated the BLA, especially the BA. By injecting retrograde tracers into the mPFC and BA, we found that 28% of retrogradely labeled cholinergic cells were double labeled, which typically located in the VP/SI. In addition, we found that vesicular glutamate transporter type 3 (VGLUT3)-expressing neurons within the VP/SI were also cholinergic and projected to the mPFC and BA, implicating that a part of the cholinergic afferents may release glutamate. In contrast, we uncovered that GABA is unlikely to be a co-transmitter molecule in HDB and VP/SI cholinergic neurons in adult mice. The dual innervation strategy, i.e., the existence of cholinergic cell populations with single as well as simultaneous projections to the BLA and mPFC, provides the possibility for both synchronous and independent control of the operation in these cortical areas, a structural arrangement that may maximize computational support for functionally linked regions. The presence of VGLUT3 in a portion of cholinergic afferents suggests more complex functional effects of cholinergic system in cortical structures.
Collapse
Affiliation(s)
- Bence Barabás
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
- The Linda and Jack Gill Center for Molecular Bioscience, Indiana University Bloomington, Bloomington, IN, United States
| | - Zsófia Reéb
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Orsolya I. Papp
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Norbert Hájos
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- The Linda and Jack Gill Center for Molecular Bioscience, Indiana University Bloomington, Bloomington, IN, United States
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, United States
| |
Collapse
|
2
|
Abstract
Basal forebrain cholinergic neurons constitute a way station for many ascending and descending pathways. These cholinergic neurons have a role in eliciting cortical activation and arousal. It is well established that they are mainly involved in cognitive processes requiring increased levels of arousal, attentive states and/or cortical activation with desynchronized activity in the EEG. These cholinergic neurons are modulated by several afferents of different neurotransmitter systems. Of particular importance within the cortical targets of basal forebrain neurons is the hippocampal cortex. The septohippocampal pathway is a bidirectional pathway constituting the main septal efferent system, which is widely known to be implicated in every memory process investigated. The present work aims to review the main neurotransmitter systems involved in modulating cognitive processes related to learning and memory through modulation of basal forebrain neurons.
Collapse
|
3
|
Antimuscarinic-induced convulsions in fasted animals after food intake: evaluation of the effects of levetiracetam, topiramate and different doses of atropine. Naunyn Schmiedebergs Arch Pharmacol 2015; 389:57-62. [DOI: 10.1007/s00210-015-1175-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/21/2015] [Indexed: 10/22/2022]
|
4
|
Stoll C, Eltze M, Lambrecht G, Zentner J, Feuerstein TJ, Jackisch R. Functional characterization of muscarinic autoreceptors in rat and human neocortex. J Neurochem 2009; 110:837-47. [DOI: 10.1111/j.1471-4159.2009.06193.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Jackisch R, Gansser S, Cassel JC. Noradrenergic denervation facilitates the release of acetylcholine and serotonin in the hippocampus: Towards a mechanism underlying upregulations described in MCI patients? Exp Neurol 2008; 213:345-53. [DOI: 10.1016/j.expneurol.2008.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/12/2008] [Accepted: 06/14/2008] [Indexed: 12/25/2022]
|
6
|
Auld DS, Mennicken F, Day JC, Quirion R. Neurotrophins differentially enhance acetylcholine release, acetylcholine content and choline acetyltransferase activity in basal forebrain neurons. J Neurochem 2008. [DOI: 10.1046/j.1471-4159.2001.00234.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Himmel HM. Safety pharmacology assessment of central nervous system function in juvenile and adult rats: effects of pharmacological reference compounds. J Pharmacol Toxicol Methods 2008; 58:129-46. [PMID: 18585470 DOI: 10.1016/j.vascn.2008.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 06/01/2008] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Recent EU/US pediatric legislation and FDA/EMEA guidelines recognize the potential differences in safety profiles of drugs in adults versus young patients. Hence safety studies are recommended to investigate key functional domains of e.g. the developing CNS. METHODS Selected psychoactive stimulants (caffeine, d-amphetamine, scopolamine) and depressants (baclofen, diazepam, haloperidol, chlorpromazine, imipramine, morphine) were characterized upon single administration with regard to behavioural parameters, locomotor activity, body temperature, pro-/anti-convulsive activity (pentylenetetrazole, PTZ), and nocifensive responses (hotplate) in neonatal (2 weeks), juvenile (4 weeks) and adult rats (8-9 weeks). RESULTS In vehicle-treated rats, behavioural patterns matured with age, locomotor activity and handling-induced rise in body temperature were enhanced, whereas PTZ convulsion threshold dose and nocifensive response latency decreased. Single test compound treatment elicited behavioural effects characteristic for psychoactive drugs with stimulating and depressing properties regardless of age. However, incidence of certain behaviours, and magnitude of effects on locomotor activity and body temperature varied with age and became generally more pronounced in adult rats. Pro-/anti-convulsive effects and delayed nocifensive responses did not differ between juvenile and adult rats. CONCLUSION CNS effects of selected psychoactive reference compounds were qualitatively similar, but quantitatively different in neonatal, juvenile and adult rats.
Collapse
Affiliation(s)
- Herbert M Himmel
- BHC-GDD-GED-NDS-SP, Safety Pharmacology, Bayer HealthCare AG, Wuppertal, Germany.
| |
Collapse
|
8
|
Aznavour N, Watkins KC, Descarries L. Postnatal development of the cholinergic innervation in the dorsal hippocampus of rat: Quantitative light and electron microscopic immunocytochemical study. J Comp Neurol 2008; 486:61-75. [PMID: 15834959 DOI: 10.1002/cne.20501] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Choline acetyltransferase (ChAT) immunocytochemistry was used to examine the distribution and ultrastructural features of the acetylcholine (ACh) innervation in the dorsal hippocampus of postnatal rat. The length of ChAT-immunostained axons was measured and the number of ChAT-immunostained varicosities counted, in each layer of CA1, CA3, and dentate gyrus, at postnatal ages P8, P16, and P32. At P8, an elaborate network of varicose ChAT-immunostained axons was already visible. At P16, the laminar distribution of this network resembled that in the adult, but adult densities were reached only by P32. Between P8 and P32, the mean densities for the three regions increased from 8.4 to 14 meters of axons and 2.3 to 5.7 million varicosities per cubic millimeter of tissue. At the three postnatal ages, the ultrastructural features of ChAT-immunostained axon varicosities from the strata pyramidale and radiatum of CA1 were similar between layers and comparable to those in adult, except for an increasing frequency of mitochondria (up to 41% at P32). The proportion of these profiles displaying a synaptic junction was equally low at all ages, indicating an average synaptic incidence of 7% for whole varicosities, as previously found in adult. The observed junctions were small, usually symmetrical, and made mostly with dendritic branches. These results demonstrate the precocious and rapid maturation of the hippocampal cholinergic innervation and reveal its largely asynaptic nature as soon as it is formed. They emphasize the remarkable growth capacities of individual ACh neurons and substantiate a role for diffuse transmission by ACh during hippocampal development.
Collapse
Affiliation(s)
- Nicolas Aznavour
- Département de Pathologie et Biologie Cellulaire, Centre de Recherche en Sciences Neurologiques, Faculté de Médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | |
Collapse
|
9
|
Ehret A, Birthelmer A, Rutz S, Riegert C, Rothmaier AK, Jackisch R. Agonist-mediated regulation of presynaptic receptor function during development of rat septal neurons in culture. J Neurochem 2007; 102:1071-82. [PMID: 17472710 DOI: 10.1111/j.1471-4159.2007.04598.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Presynaptic receptors modulating the release of acetylcholine (ACh) were studied in fetal septal neurons cultured in a growth medium to which various drugs were added from day 3 in vitro (DIV 3) to DIV 14. The influence of these drugs on the function of the presynaptic muscarinic (M-) autoreceptor was determined at DIV 14 by measuring the inhibitory effect of the M-agonist oxotremorine on the electrically-evoked release of [(3)H]ACh from cultures pre-incubated with [(3)H]choline. The presence of the M-agonists oxotremorine (100 micromol/L) or carbachol (100 micromol/L) from DIV 3 to DIV 14, or from DIV 13 to DIV 14, abolished M-autoreceptor function at DIV 14, whereas the presence of the M-antagonist atropine (10 micromol/L from DIV 3 to DIV 14) during growth left M-autoreceptor function unaltered. Inhibition of ACh esterase by donepezil (1 micromol/L from DIV 3 to DIV 14) weakly decreased M-autoreceptor function at DIV 14; inhibition of neuronal firing by 0.1 tetrodotoxin (0.1 micromol/L from DIV 3 to DIV 14) did not tend to affect M-autoreceptor function at DIV 14. Co-cultivation of fetal septal and raphe neurons for 2 weeks yielded cell cultures containing both vesicular ACh transporter- and tryptophan hydroxylase-immunopositive cells. From these cultures, the release of both [(3)H]ACh and [(3)H]5-HT could be induced by electrical field stimulation. In co-cultured neurons versus septal-only ones the inhibitory effect of oxotremorine on the evoked release of [(3)H]ACh appeared almost normal, whereas that of the selective 5-HT(1B) agonist 3-(1,2,5,6-tetrahydropyrid-4-yl)pyrrollo[3,2-b]pyrid-5-one (CP-93,129) was completely abolished. The effects of CP-93,129 were also absent on DIV 14 in septal mono-cultures grown in the presence of CP-93,129 (10 micromol/L) from DIV 3 to DIV 14. It is therefore concluded that the regulation of presynaptic receptor function strongly depends on the concentrations of endogenous transmitters in the neuronal environment.
Collapse
Affiliation(s)
- Andreas Ehret
- Laboratory of Neuropharmacology, Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Hansastrasse, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Rutz S, Riegert C, Rothmaier AK, Buhot MC, Cassel JC, Jackisch R. Presynaptic serotonergic modulation of 5-HT and acetylcholine release in the hippocampus and the cortex of 5-HT1B-receptor knockout mice. Brain Res Bull 2006; 70:81-93. [PMID: 16750486 DOI: 10.1016/j.brainresbull.2006.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2006] [Revised: 04/03/2006] [Accepted: 04/07/2006] [Indexed: 12/28/2022]
Abstract
Lesioning of serotonergic afferents increases hippocampal ACh release and attenuates memory deficits produced by cholinergic lesions. Improved memory performance described in 5-HT1B-knockout (KO) mice might thus be due to a weaker 5-HT1B-mediated inhibitory influence of 5-HT on hippocampal ACh release. The selective delay-dependent impairment of working memory observed in these KO mice suggests, however, that cortical regions also participate in task performance, possibly via indirect influences of 5-HT on ACh release. To provide neuropharmacological support for these hypotheses we measured evoked ACh and 5-HT release in hippocampal and cortical slices of wild-type (WT) and 5-HT1B KO mice. Superfused slices (preincubated with [3H]choline or [3H]5-HT) were electrically stimulated in the absence or presence of 5-HT1B receptor ligands. In hippocampus and cortex, 5-HT1B agonists decreased and antagonists increased 5-HT release in WT, but not in 5-HT1B KO mice. In 5-HT1B KO mice, 5-HT release was enhanced in both structures, while ACh release (in nCi) was reduced. ACh release was inhibited by 5-HT1B agonists in hippocampal (not cortical) slices of WT but not of 5-HT1B KO mice. Our data (i) confirm the absence of autoinhibition of 5-HT release in 5-HT1B-KO mice, (ii) demonstrate a reduced release of ACh, and the absence of 5-HT1B-receptor-mediated inhibition of ACh release, in the hippocampus and cortex of 5-HT1B-KO mice, and (iii) are compatible with an indirect role of cortical ACh in the working memory impairment observed in these KO mice.
Collapse
Affiliation(s)
- Susanne Rutz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Laboratory of Neuropharmacology, University of Freiburg, Hansastrasse 9A, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Domek-Łopacińska K, van de Waarenburg M, Markerink-van Ittersum M, Steinbusch HWM, de Vente J. Nitric oxide-induced cGMP synthesis in the cholinergic system during the development and aging of the rat brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 158:72-81. [PMID: 16005523 DOI: 10.1016/j.devbrainres.2005.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 05/27/2005] [Accepted: 06/03/2005] [Indexed: 11/25/2022]
Abstract
cGMP synthesis in cholinergic neurons of the basal forebrain, the caudate putamen, and the tegmento-pedunculopontine nucleus of the rat was studied during development after birth at P1, P4, P10, and P21, in the adult, and during aging. NO-mediated cGMP synthesis in these neurons was studied using the approach of in vitro incubation of brain slices in combination with cGMP-immunocytochemistry. The percentage of NO-responsive, cGMP-synthesizing cholinergic cells in the septum and diagonal band of Broca decreased from 75% to 6% in adult animals and to 2% in aged ones. In the caudate putamen, this decrease was from 81% to 21% in adult and 11% in aged animals. Cholinergic cells of the tegmento-pedunculopontine nucleus were unresponsive to NO and never showed cGMP-immunoreactivity. In addition, it was observed that the amount of NO-responsive, cGMP-synthesizing cholinergic fibers in the hippocampus declined in parallel with the maturation of the septal-hippocampal cholinergic pathway, whereas in the caudate putamen, this colocalization became complete 2 weeks after birth. It is concluded that the property of NO-mediated cGMP synthesis in the cholinergic nuclei of the forebrain is developmentally regulated after birth and that NO-cGMP signal transduction has a role in establishing cholinergic neuronal connections in the hippocampus and caudate putamen.
Collapse
Affiliation(s)
- K Domek-Łopacińska
- European Graduate School of Neuroscience (EURON), Maastricht University, Department of Psychiatry and Neuropsychology, UNS50, POB 616, 6200 MD Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
Semba K. Phylogenetic and ontogenetic aspects of the basal forebrain cholinergic neurons and their innervation of the cerebral cortex. PROGRESS IN BRAIN RESEARCH 2003; 145:3-43. [PMID: 14650904 DOI: 10.1016/s0079-6123(03)45001-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Kazue Semba
- Department of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, Tupper Medical Building, 6850 College Street, Halifax, NS B3H 1X5, Canada.
| |
Collapse
|
13
|
Birthelmer A, Stemmelin J, Jackisch R, Cassel JC. Presynaptic modulation of acetylcholine, noradrenaline, and serotonin release in the hippocampus of aged rats with various levels of memory impairments. Brain Res Bull 2003; 60:283-96. [PMID: 12754090 DOI: 10.1016/s0361-9230(03)00042-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aged (25-27 months) Long-Evans female rats were distinguished according to whether they showed no significant impairment (AU), moderate impairment (AMI), or severe impairment (ASI) in a spatial reference-memory task. Young (3-5 months) rats served as controls. Electrically evoked overflow of tritium was assessed in hippocampal slices preloaded with [3H]choline or [3H]serotonin (5-HT). Nicotine-evoked overflow of tritium was measured after preloading with [3H]noradrenaline (NA). Choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activity, and concentration of monoamines were assessed in homogenates. Aged rats exhibited reduced accumulation of [3H]choline and [3H]5-HT, increased accumulation of [3H]NA, and weaker electrically evoked overflow of [3H]acetylcholine ([3H]ACh) and [3H]5-HT. The overflow of [3H]NA was not altered consistently by aging. Roughly, drugs acting presynaptically had comparable effects in aged rats: oxotremorine and CP 93,129 inhibited the overflow of [3H]ACh, CP 93,129 and UK 14,304 reduced that of [3H]5-HT. ChAT or AChE activity, and 5-HT concentration were not changed by age; NA concentration was reduced. When significant, changes were comparable in AU, AMI, and ASI rats. Data show that aging alters cholinergic and serotonergic hippocampal innervations, release of ACh and 5-HT, but not presynaptic release-modulating mechanisms. These alterations do not account for variability in water-maze performance of aged rats.
Collapse
Affiliation(s)
- A Birthelmer
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Universität Freiburg, Neuropharmakologisches Labor, Hansastrasse 9A, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
14
|
Birthelmer A, Lazaris A, Schweizer T, Jackisch R, Cassel JC. Presynaptic regulation of neurotransmitter release in the cortex of aged rats with differential memory impairments. Pharmacol Biochem Behav 2003; 75:147-62. [PMID: 12759123 DOI: 10.1016/s0091-3057(03)00065-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cluster analysis of water-maze reference-memory performances of 25-27-month-old (compared to 3-5-month-old) rats distinguished subpopulations of young adult rats (YOUNG), aged rats with no significant impairment (AU), aged rats with moderate impairment (AMI), and aged rats with severe impairment (ASI). In the frontoparietal cortex, we subsequently assessed the electrically evoked release of tritium in slices preloaded with [3H]choline, [3H]noradrenaline (NA), or [3H]serotonin (5-HT) and the effects of an agonist (oxotremorine, UK 14,304, and CP 93,129) of the respective autoreceptors. Cholinergic and monoaminergic markers were measured in homogenates. Overall, aged rats exhibited reduced accumulation of [3H]choline (-25%) and weaker evoked transmitter release (in % of accumulated tritium: -44%, -20%, and -34%, for [3H]acetylcholine, [3H]NA, and [3H]5-HT, respectively). In all rats, the inhibitory effects of the autoreceptor agonists on the evoked release of [3H] were comparable. Acetylcholinesterase (AChE), not choline acetyltransferase (ChAT), activity was reduced. The results suggest age-related modifications in the cholinergic, noradrenergic, and serotonergic innervation of the frontoparietal cortex, alterations of evoked transmitter release, but no interference with presynaptic autoinhibition of the release. Neither of these alterations seemed to account for the cognitive impairment assessed.
Collapse
Affiliation(s)
- A Birthelmer
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität Freiburg, Neuropharmakologisches Labor, Hansastrasse 9A, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
15
|
Birthelmer A, Ehret A, Amtage F, Förster S, Lehmann O, Jeltsch H, Cassel JC, Jackisch R. Neurotransmitter release and its presynaptic modulation in the rat hippocampus after selective damage to cholinergic or/and serotonergic afferents. Brain Res Bull 2003; 59:371-81. [PMID: 12507688 DOI: 10.1016/s0361-9230(02)00930-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
UNLABELLED Male Long-Evans rats sustained injections of 5,7-dihydroxytryptamine (5,7-DHT) into the fimbria-fornix and the cingular bundle or/and intraseptal injections of 192 IgG-saporin to induce serotonergic or/and cholinergic hippocampal denervations; Sham-operated rats served as controls. Four to ten weeks after lesioning, we measured (i). the electrically evoked release of acetylcholine ([3H]ACh), noradrenaline ([3H]NA) and serotonin ([3H]5-HT) in hippocampal slices in the presence of drugs acting on auto- or heteroreceptors, (ii). the nicotine-evoked release of NA and (iii). the choline acetyltransferase (ChAT) activity and the concentration of monoamines in homogenates. Saporin lesions reduced the accumulation of [3H]choline, the release of [3H]ACh and the ChAT activity, but increased the concentration of NA and facilitated the release of [3H]NA evoked by nicotine. 5,7-DHT lesions reduced the accumulation and the release of [3H]5-HT, the concentration of 5-HT, and also facilitated the release of [3H]NA evoked by nicotine. Accumulation and electrically evoked release of [3H]NA were not altered by either lesion. The combination of both toxins resulted in an addition of their particular effects. The 5-HT(1B) receptor agonist, CP 93129, and the muscarinic agonist, oxotremorine, reduced the release of [3H]ACh in control and 5,7-DHT-lesioned rats; in rats injected with saporin, their effects could not be measured reliably. CP 93129 and the alpha(2)-adrenoceptor agonist, UK 14304, reduced the release of [3H]5-HT in all groups by about 65%. IN CONCLUSION (i). selective neurotoxins can be combined to enable controlled and selective damage of hippocampal transmitter systems; (ii). 5-HT exerts an inhibitory influence on the nicotine-evoked release of NA, but partial serotonergic lesions do not influence the release of ACh at a presynaptic level and (iii). presynaptic modulatory mechanisms involving auto- and heteroreceptors may be conserved on fibres spared by the lesions.
Collapse
Affiliation(s)
- A Birthelmer
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Universität Freiburg, Neuropharmakologisches Labor, Hansastrasse, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Auld DS, Kornecook TJ, Bastianetto S, Quirion R. Alzheimer's disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol 2002; 68:209-45. [PMID: 12450488 DOI: 10.1016/s0301-0082(02)00079-5] [Citation(s) in RCA: 472] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is the most common form of degenerative dementia and is characterized by progressive impairment in cognitive function during mid- to late-adult life. Brains from AD patients show several distinct neuropathological features, including extracellular beta-amyloid-containing plaques, intracellular neurofibrillary tangles composed of abnormally phosphorylated tau, and degeneration of cholinergic neurons of the basal forebrain. In this review, we will present evidence implicating involvement of the basal forebrain cholinergic system in AD pathogenesis and its accompanying cognitive deficits. We will initially discuss recent results indicating a link between cholinergic mechanisms and the pathogenic events that characterize AD, notably amyloid-beta peptides. Following this, animal models of dementia will be discussed in light of the relationship between basal forebrain cholinergic hypofunction and cognitive impairments in AD. Finally, past, present, and future treatment strategies aimed at alleviating the cognitive symptomatology of AD by improving basal forebrain cholinergic function will be addressed.
Collapse
Affiliation(s)
- Daniel S Auld
- Douglas Hospital Research Centre, 6875 Blvd Lasalle, Verdun, Que, Canada H4H 1R3
| | | | | | | |
Collapse
|
17
|
Ehret A, Haaf A, Jeltsch H, Heimrich B, Feuerstein TJ, Jackisch R. Modulation of electrically evoked acetylcholine release in cultured rat septal neurones. J Neurochem 2001; 76:555-64. [PMID: 11208918 DOI: 10.1046/j.1471-4159.2001.00030.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The electrically evoked release of acetylcholine and its modulation via auto- and heteroreceptors were studied in primary cell cultures prepared from embryonic rat septum (ED 17). Cultures were grown for 1, 2 or 3 weeks on circular, poly D-lysine-coated glass coverslips. They developed a dense network of non-neuronal and neuronal cells, only some of which were immunopositive for choline acetyltransferase. To measure acetylcholine release, the cells on the coverslips were pre-incubated with [3H]choline (0.1 micromol/L), superfused with modified Krebs-Henseleit buffer at 25 degrees C and electrically stimulated twice for 2 min (S1, S2; 3 Hz, 0.5 ms, 90-100 mA). The electrically evoked overflow of [3H] from the cells consisted of approximately 80% of authentic [3H]Ach, was largely Ca2+-dependent and tetrodotoxin sensitive, and hence represents an action potential-evoked, exocytotic release of acetylcholine. Using pairs of selective agonists and antagonist added before S2, muscarinic autoreceptors, as well as inhibitory adenosine A1- and opioid mu-receptors, could be detected, whereas delta-opioid receptors were not found. Evoked [3H] overflow from cultures grown for 1 week, although Ca2+ dependent and tetrodotoxin sensitive, was insensitive to the muscarinic agonist oxotremorine, whereas the effect of oxotremorine on cells grown for 3 weeks was even more pronounced than that in 2-week-old cultures. In conclusion, similar to observations on rat septal tissue in vivo, acetylcholine release from septal cholinergic neurones grown in vitro is inhibited via muscarinic, adenosine A1 and mu-opioid receptors. This in vitro model may prove useful in the exploration of regulatory mechanisms underlying the expression of release modulating receptors on septal cholinergic neurones.
Collapse
Affiliation(s)
- A Ehret
- Institut für Pharmakologie und Toxikologie, Neuropharmakologisches Laboratorium, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
gamma-Hydroxybutyric acid (GHB) is a naturally occurring metabolite of GABA that has been postulated to exert ubiquitous neuropharmacological effects through GABA(B) receptor (GABA(B)R)-mediated mechanisms. The alternative hypothesis that GHB acts via a GHB-specific, G protein-coupled presynaptic receptor that is different from the GABA(B)R was tested. The effect of GHB on regional and subcellular brain adenylyl cyclase in adult and developing rats was determined and compared with that of the GABA(B)R agonist (-)-baclofen. Also, using guanosine 5'-O:-(3-[(35)S]thiotriphosphate) ([(35)S]GTPgammaS) binding and low-K:(m) GTPase activity as markers the effects of GHB and (-)-baclofen on G protein activity in the brain were determined. Neither GHB nor baclofen had an effect on basal cyclic AMP (cAMP) levels. GHB significantly decreased forskolin-stimulated cAMP levels by 40-50% in cortex and hippocampus but not thalamus or cerebellum, whereas (-)-baclofen had an effect throughout the brain. The effect of GHB on adenylyl cyclase was observed in presynaptic and not postsynaptic subcellular tissue preparations, but the effect of baclofen was observed in both subcellular preparations. The GHB-induced alteration in forskolin-induced cAMP formation was blocked by a specific GHB antagonist but not a specific GABA(B)R antagonist. The (-)-baclofen-induced alteration in forskolin-induced cAMP formation was blocked by a specific GABA(B)R antagonist but not a specific GHB antagonist. The negative coupling of GHB to adenylyl cyclase appeared at postnatal day 21, a developmental time point that is concordant with the developmental appearance of [(3)H]GHB binding in cerebral cortex, but the effects of (-)-baclofen were present by postnatal day 14. GHB and baclofen both stimulated [(35)S]GTPgammaS binding and low-K:(m) GTPase activity by 40-50%. The GHB-induced effect was blocked by GHB antagonists but not by GABA(B)R antagonists and was seen only in cortex and hippocampus. The (-)-baclofen-induced effect was blocked by GABA(B)R antagonists but not by GHB antagonists and was observed throughout the brain. These data support the hypothesis that GHB induces a G protein-mediated decrease in adenylyl cyclase via a GHB-specific G protein-coupled presynaptic receptor that is different from the GABA(B)R.
Collapse
Affiliation(s)
- O C Snead
- Department of Pediatrics, Faculty of Medicine, University of Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Göbel I, Trendelenburg AU, Cox SL, Meyer A, Starke K. Electrically evoked release of [(3)H]noradrenaline from mouse cultured sympathetic neurons: release-modulating heteroreceptors. J Neurochem 2000; 75:2087-94. [PMID: 11032898 DOI: 10.1046/j.1471-4159.2000.0752087.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cultured neurons from the thoracolumbar sympathetic chain of newborn mice are known to possess release-inhibiting alpha(2)-autoreceptors. The present study was carried out in a search for release-modulating heteroreceptors on these neurons. Primary cultures were preincubated with [(3)H]noradrenaline and then superfused and stimulated by single pulses, trains of 8 pulses at 100 Hz, or trains of 36 pulses at 3 Hz. The cholinergic agonist carbachol reduced the evoked overflow of tritium. Experiments with antagonists indicated that the inhibition was mediated by M(2) muscarinic receptors. The cannabinoid agonist WIN 55,212-2 reduced the evoked overflow of tritium through CB(1) receptors. Prostaglandin E(2), sulprostone, and somatostatin also caused presynaptic inhibition. The inhibitory effects of carbachol, WIN 55,212-2, prostaglandin E(2), and somatostatin were abolished (at the highest concentration of WIN 55, 212-2 almost abolished) by pretreatment of the cultures with pertussis toxin (250 ng/ml). Several drugs, including the beta(2)-adrenoceptor agonist salbutamol, opioid receptor agonists, neuropeptide Y, angiotensin II, and bradykinin, failed to change the evoked overflow of tritium. These results demonstrate a distinct pattern of presynaptic inhibitory heteroreceptors, all coupled to pertussis toxin-sensitive G proteins. The lack of operation of several presynaptic receptors known to exist in adult mice in situ may be due to the age of the (newborn) donor animals or to the culture conditions.
Collapse
Affiliation(s)
- I Göbel
- Pharmakologisches Institut, Freiburg im Breisgau, Germany
| | | | | | | | | |
Collapse
|
20
|
Gazyakan E, Disko U, Haaf A, Heimrich B, Jackisch R. Postnatal development of opioid receptors modulating acetylcholine release in hippocampus and septum of the rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 123:135-41. [PMID: 11042342 DOI: 10.1016/s0165-3806(00)00091-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The postnatal development of presynaptic opioid receptors inhibiting the release of acetylcholine (ACh) was studied in rat brain hippocampus, medial septum (MS) and diagonal band of Broca (DB). To this end, the corresponding brain slices (350 microm thick) of rats of various postnatal ages (postnatal day 4 [P4] to P16, and adult) were preincubated with [(3)H]choline and stimulated twice for 2 min (S(1), S(2): at 3 Hz, 2 ms, 60 mA) during superfusion with physiological buffer containing hemicholinium-3. In parallel, the activity of choline acetyltransferase (ChAT) was determined in crude homogenates of the tissues as a marker for the development of cholinergic neurons. At any postnatal age, the electrically evoked overflow of tritium from slices preincubated with [(3)H]choline was highest in the DB, followed by the MS and the hippocampus. The evoked [(3)H]overflow increased with postnatal age, reached about 50% (MS, DB) or 30% (hippocampus) of the corresponding adult levels at P16 and correlated significantly with the corresponding ChAT activities. Presence of the preferential mu-opioid receptor agonist DAMGO during S(2) significantly inhibited the evoked overflow of tritium already at P4 in DB and MS, whereas in the hippocampus significant inhibitory effects were first observed at P8 only. Moreover, adult levels of inhibition due to DAMGO were reached at P16 in the DB and MS but not in the hippocampus. In septal areas, also the effect of the preferential delta-opioid receptor agonist DPDPE on the evoked [(3)H]overflow was studied: in contrast to DAMGO, however, significant inhibitory effects of DPDPE were first observed at P12 only. In conclusion, the postnatal development of presynaptic mu-opioid receptors on cholinergic neurons in the DB and MS starts earlier than in the hippocampus and precedes that of presynaptic delta-opioid receptors.
Collapse
Affiliation(s)
- E Gazyakan
- Institut für Pharmakologie und Toxikologie, Neuropharmakologisches Labor, Universität Freiburg, Hansastrasse 9A, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
21
|
Suhr R, Balse E, Haaf A, Kelche C, Cassel JC, Jackisch R. Modulation of acetylcholine and 5-hydroxytryptamine release in hippocampal slices of rats with fimbria-fornix lesions and intrahippocampal grafts containing cholinergic and/or serotonergic neurons. Brain Res Bull 1999; 50:15-25. [PMID: 10507467 DOI: 10.1016/s0361-9230(99)00083-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Three-month-old Long-Evans female rats sustained aspirative lesions of the dorsal septohippocampal pathways and, 2 weeks later, received intrahippocampal suspension grafts containing fetal cells from the mesencephalic raphe (rich in serotonergic neurons; RAPHE), the medial septum and the diagonal band of Broca (rich in cholinergic neurons; SEPT), or a mixture of both (COTR). Lesion-only (LES) and sham-operated rats (SHAM) were used as controls. Hippocampal slices of these rats (5-9 month after surgery) were preincubated with [3H]choline or [3H]5-HT, superfused continuously (in the presence of hemicholinium-3 or fluvoxamine) and stimulated electrically (360 pulses, 2 ms, 3 Hz, 26-28 mA) in order to study the presynaptic modulation of acetylcholine (ACh) and serotonin (5-HT) release. The accumulation of [3H]choline and the evoked overflow of [3H]ACh were significantly reduced in slices from LES and RAPHE rats, but reached a close-to-normal level in SEPT and COTR rats. As to accumulation and overflow of [3H]5-HT, the lesion-induced reduction was compensated for only in RAPHE and COTR rats. The relative amount of evoked [3H]5-HT release (in % of tissue-3H) was significantly increased in LES and SEPT rats. Only slight differences (group LES) were found in the sensitivity of muscarinic and serotonergic autoreceptors towards oxotremorine and CP 93,129, respectively. Moreover, CP 93,129 induced a significantly weaker inhibition of ACh release in slices of COTR rats than in all other groups. Using the 5-HT1A receptor agonist 8-OH-DPAT and antagonist Way 100,635, no evidence for a modulatory influence of 5-HT1A receptors was found in RAPHE and COTR rats. It is concluded that despite substantial lesion- and graft-induced changes in the amount of ACh and 5-HT released by hippocampal slices of lesion-only or grafted rats, the presynaptic modulation of these transmitters is only slightly affected by changes in the neuronal environment.
Collapse
Affiliation(s)
- R Suhr
- Institut für Pharmakologie und Toxikologie der Universität Freiburg, Neuropharmakologisches Labor, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Gruslin E, Descombes S, Psarropoulou C. Epileptiform activity generated by endogenous acetylcholine during blockade of GABAergic inhibition in immature and adult rat hippocampus. Brain Res 1999; 835:290-7. [PMID: 10415385 DOI: 10.1016/s0006-8993(99)01605-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We tested the effects of the acetylcholinesterase inhibitor eserine (10 microM), an indicator of the activity of endogenous ACh, on the generation of epileptiform discharges during blockade of inhibitory GABA(A)-mediated potentials by bicuculline (10 microM), in the CA3 area of hippocampal slices from postnatal days 4-20 (P4-P20) immature and adult rats. Eserine provoked or significantly increased the frequency of spontaneous synchronous epileptiform discharges, in 6/22 (27%) P4-P10 slices, 34/35 P11-P20 slices and 18/18 adult slices, an epileptogenic effect. In immature slices, spontaneous discharges showed a stable frequency throughout perfusion with eserine, while in 5/11 adult slices an initial fast frequency was followed by a slower steady-state one. The cholinergic agonist carbachol (CCh, 25 microM) provoked only transient or no spontaneous synchronous discharges in adult slices (n=8), thus suggesting that massive activation of cholinergic receptors may lead to suppression of epileptiform activity in adult brain. Stimulus-induced excitatory CA3 responses, were depressed by eserine in approximately half of 20 P4-P10, 45 P11-P20 and 11 adult slices. The depression consisted of a decrease in the amplitude, duration, and number of population spikes of the field potentials by about 30%, a minor neuroprotective effect, which did not change with maturation. The different developmental profiles of the epileptogenic and neuroprotective effects of endogenous ACh suggest that they are mediated by different mechanisms. These experiments demonstrate that, endogenous ACh is sufficient to induce epileptogenesis during a decrease or failure of GABAergic inhibition, in both >/=P10 immature and in adult hippocampus. We therefore suggest that clinical or behavioral conditions which raise the concentration of endogenous ACh may lower the threshold to seizures.
Collapse
Affiliation(s)
- E Gruslin
- Ste-Justine Hospital Research Center and Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | | | | |
Collapse
|
23
|
Disko U, Haaf A, Gazyakan E, Heimrich B, Jackisch R. Postnatal development of muscarinic autoreceptors in the rat brain: lateral and medial septal nuclei and the diagonal band of Broca. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 114:1-8. [PMID: 10209237 DOI: 10.1016/s0165-3806(99)00007-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The postnatal development of the release of acetylcholine (ACh) and of presynaptic, release-inhibiting muscarinic autoreceptors was studied in the lateral septum (LS), the medial septum (MS) and the diagonal band of Broca (DB) of the rat brain. To this end, slices (350 micrometer thick) containing these brain regions from rats of various postnatal ages (postnatal day 3 [P3] to P16, and adult) were pre-incubated with [3H]choline and stimulated twice (S1, S2: 360 pulses, 3 Hz) during superfusion with physiological buffer containing hemicholinium-3 (10 microM). In addition, the activity of choline acetyltransferase (ChAT, in crude homogenates) was determined as a marker for the development of cholinergic functions. At any postnatal age, the electrically-evoked overflow of tritium from slices pre-incubated with [3H]choline was highest in the DB, followed by the MS whereas in slices containing the LS, it was only small. In all septal regions, the evoked [3H]overflow was Ca2+-dependent and tetrodotoxin-sensitive at P3. It increased with postnatal age and reached about 60% of the corresponding adult levels at P16. Presence of the muscarinic agonist oxotremorine (1 microM) during S2 significantly inhibited the evoked overflow of tritium beginning from P5: no significant effect was detected at P3. The ACh esterase inhibitor physostigmine (1 microM) exhibited significant inhibitory effects from P13 onwards, whereas the muscarinic antagonist atropine (1 microM) did not change the evoked ACh release. The activity of ChAT, as measured for these septal regions at various postnatal ages, correlated well with the [3H]overflow induced by electrical stimulation. In conclusion, (1) electrically-evoked release of ACh was measured for the first time in three septal subregions; (2) the postnatal development of the presynaptic cholinergic functions: ChAT activity, ACh release and muscarinic autoreceptors occurs almost synchronously in these regions of the septal complex and parallels that in the hippocampal formation; (3) as in the hippocampus, the postnatal development of autoreceptors was delayed with respect to the exocytotic release of ACh.
Collapse
Affiliation(s)
- U Disko
- Institut für Pharmakologie und Toxikologie, Neuropharmakologisches Labor, Universität Freiburg, Hansastrasse 9A, D-79104, Freiburg, Germany
| | | | | | | | | |
Collapse
|
24
|
Disko U, Haaf A, Heimrich B, Jackisch R. Postnatal development of muscarinic autoreceptors modulating acetylcholine release in the septohippocampal cholinergic system. II. Cell body region: septum. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 108:31-7. [PMID: 9693781 DOI: 10.1016/s0165-3806(98)00027-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We studied the postnatal development of the release of acetylcholine (ACh) and of presynaptic, release-inhibiting muscarinic autoreceptors in the cell body region of the septohippocampal cholinergic pathway. To this end, septal slices (350 microns thick) from rats of various postnatal ages (postnatal day 3 [P3] to P16) were preincubated with [3H]choline and stimulated twice (S1, S2: 360 pulses, 2 ms, 3 Hz, 60 mA) during superfusion with physiological buffer containing hemicholinium-3 (10 microM). In parallel, the activities of hemicholinium-sensitive high-affinity choline uptake (HACU, in synaptosomes) and of choline acetyltransferase (ChAT, in crude homogenates) were determined as markers for the development of cholinergic functions. In septal slices preincubated with [3H]choline, the electrically evoked overflow of 3H at S1 increased from 0.31% (P3) to 2.10% of tissue 3H (P16), the latter value being still lower than that of septal slices from adult rats (3.46% of tissue 3H). Already at P3, the evoked overflow of 3H was Ca(2+)-dependent and sensitive to tetrodotoxin, indicating an action potential-evoked exocytotic mechanism of ACh release early after birth. Presence of the muscarinic agonist oxotremorine (1 microM) significantly inhibited the evoked ACh release in septal slices beginning from P5: no significant effect was detectable at P3. The ACh esterase inhibitor physostigmine (1 microM) exhibited significant inhibitory effects from P13 onwards. The muscarinic antagonist atropine (1 microM) enhanced the evoked ACh release only in septal tissue from adult rats. The specific activities of HACU, or ChAT showed a 2- or 8-fold increase, respectively, from P3 to P16. In conclusion, presynaptic cholinergic functions seem to develop almost in parallel both in the cell body and the target area of the septohippocampal projection: also in the septal region nerve terminals on axon collaterals are endowed very early (at least at P3) with the apparatus for action potential-induced, exocytotic release of ACh. In contrast, the appearance of feedback inhibition via presynaptic muscarinic autoreceptors is delayed. Autoinhibition due to endogenously released ACh can be detected only later, most probably when endogenous ACh concentrations in the septal nuclei have reached a threshold value.
Collapse
Affiliation(s)
- U Disko
- Institut für Pharmakologie und Toxikologie, Neuropharmakologisches Labor, Universität Freiburg, Germany
| | | | | | | |
Collapse
|