1
|
Ryan RM, Ingram SL, Scimemi A. Regulation of Glutamate, GABA and Dopamine Transporter Uptake, Surface Mobility and Expression. Front Cell Neurosci 2021; 15:670346. [PMID: 33927596 PMCID: PMC8076567 DOI: 10.3389/fncel.2021.670346] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 01/31/2023] Open
Abstract
Neurotransmitter transporters limit spillover between synapses and maintain the extracellular neurotransmitter concentration at low yet physiologically meaningful levels. They also exert a key role in providing precursors for neurotransmitter biosynthesis. In many cases, neurons and astrocytes contain a large intracellular pool of transporters that can be redistributed and stabilized in the plasma membrane following activation of different signaling pathways. This means that the uptake capacity of the brain neuropil for different neurotransmitters can be dynamically regulated over the course of minutes, as an indirect consequence of changes in neuronal activity, blood flow, cell-to-cell interactions, etc. Here we discuss recent advances in the mechanisms that control the cell membrane trafficking and biophysical properties of transporters for the excitatory, inhibitory and modulatory neurotransmitters glutamate, GABA, and dopamine.
Collapse
Affiliation(s)
- Renae M. Ryan
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Susan L. Ingram
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
| | | |
Collapse
|
2
|
Sibgatullina GV, Malomouzh AI. GABA in developing rat skeletal muscle and motor neurons. PROTOPLASMA 2020; 257:1009-1015. [PMID: 32016594 DOI: 10.1007/s00709-020-01485-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
In recent years, considerable evidence is accumulated pointing to participation of gamma-aminobutyric acid (GABA) in intercellular signaling in the peripheral nervous system, including, in particular, neuromuscular transmission. However, where in the neuromuscular synapse GABA is synthesized remains not quite clear. We used histochemical methods to detect GABA and L-glutamate decarboxylase (GAD) in developing skeletal muscle fibers and in cultured motor neurons. We found that GABA can be detected already in myocytes, but with further muscle maturation, GABA synthesis gradually attenuates and completely ceases in early postnatal development. We found also that formation of GABA in muscle tissue does not depend on activity of GAD, but presumably proceeds through some other, alternative pathways. In motor neurons, GABA and GAD can be detected at the early stage of development (prior to synapse formation). Our data support the hypothesis that GABA and GAD, which are detectable in adult neuromuscular junctions, have neuronal origin. The mechanism of GABA production and its role in developing muscle tissue need further clarification.
Collapse
Affiliation(s)
- Gusel V Sibgatullina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420111, Russia
| | - Artem I Malomouzh
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420111, Russia.
- Kazan (Volga Region) Federal University, Kazan, 420008, Russia.
| |
Collapse
|
3
|
Developmental Changes in Serotonergic Modulation of GABAergic Synaptic Transmission and Postsynaptic GABA A Receptor Composition in the Cerebellar Nuclei. THE CEREBELLUM 2019; 17:346-358. [PMID: 29349630 DOI: 10.1007/s12311-018-0922-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Outputs from the cerebellar nuclei (CN) are important for generating and controlling movement. The activity of CN neurons is controlled not only by excitatory inputs from mossy and climbing fibers and by γ-aminobutyric acid (GABA)-based inhibitory transmission from Purkinje cells in the cerebellar cortex but is also modulated by inputs from other brain regions, including serotonergic fibers that originate in the dorsal raphe nuclei. We examined the modulatory effects of serotonin (5-HT) on GABAergic synapses during development, using rat cerebellar slices. As previously reported, 5-HT presynaptically decreased the amplitudes of stimulation-evoked inhibitory postsynaptic currents (IPSCs) in CN neurons, with this effect being stronger in slices from younger animals (postnatal days [P] 11-13) than in slices from older animals (P19-21). GABA release probabilities accordingly exhibited significant decreases from P11-13 to P19-21. Although there was a strong correlation between the GABA release probability and the magnitude of 5-HT-induced inhibition, manipulating the release probability by changing extracellular Ca2+ concentrations failed to control the extent of 5-HT-induced inhibition. We also found that the IPSCs exhibited slower kinetics at P11-13 than at P19-21. Pharmacological and molecular biological tests revealed that IPSC kinetics were largely determined by the prevalence of α1 subunits within GABAA receptors. In summary, pre- and postsynaptic developmental changes in serotonergic modulation and GABAergic synaptic transmission occur during the second to third postnatal weeks and may significantly contribute to the formation of normal adult cerebellar function.
Collapse
|
4
|
Sotelo C. Molecular layer interneurons of the cerebellum: developmental and morphological aspects. CEREBELLUM (LONDON, ENGLAND) 2015; 14:534-56. [PMID: 25599913 DOI: 10.1007/s12311-015-0648-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the past 25 years, our knowledge on the development of basket and stellate cells (molecular layer interneurons [MLIs]) has completely changed, not only regarding their origin from the ventricular zone, corresponding to the primitive cerebellar neuroepithelium, instead of the external granular layer, but above all by providing an almost complete account of the genetic regulations (transcription factors and other genes) involved in their differentiation and synaptogenesis. Moreover, it has been shown that MLIs' precursors (dividing neuroblasts) and not young postmitotic neurons, as in other germinal neuroepithelia, leave the germinative zone and migrate all along a complex and lengthy path throughout the presumptive cerebellar white matter, which provides suitable niches exerting epigenetic influences on their ultimate neuronal identities. Recent studies carried out on the anatomical-functional properties of adult MLIs emphasize the importance of these interneurons in regulating PC inhibition, and point out the crucial role played by electrical synaptic transmission between MLIs as well as ephaptic interactions between them and Purkinje cells at the pinceaux level, in the regulation of this inhibition.
Collapse
Affiliation(s)
- Constantino Sotelo
- INSERM, UMRS_U968, Institut de la Vision, 17 Rue Moreau, Paris, 75012, France.
- Institut de la Vision, Sorbonne Université, UPMC Univ Paris 06, Paris, 75012, France.
- CNRS, UMR_7210, Paris, 75012, France.
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Miguel Hernández (UMH), Avenida Ramón y Cajal s/n, 03550, San Juan de Alicante, Spain.
| |
Collapse
|
5
|
Butt AM, Fern RF, Matute C. Neurotransmitter signaling in white matter. Glia 2014; 62:1762-79. [PMID: 24753049 DOI: 10.1002/glia.22674] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 03/04/2014] [Accepted: 03/31/2014] [Indexed: 12/16/2022]
Abstract
White matter (WM) tracts are bundles of myelinated axons that provide for rapid communication throughout the CNS and integration in grey matter (GM). The main cells in myelinated tracts are oligodendrocytes and astrocytes, with small populations of microglia and oligodendrocyte precursor cells. The prominence of neurotransmitter signaling in WM, which largely exclude neuronal cell bodies, indicates it must have physiological functions other than neuron-to-neuron communication. A surprising aspect is the diversity of neurotransmitter signaling in WM, with evidence for glutamatergic, purinergic (ATP and adenosine), GABAergic, glycinergic, adrenergic, cholinergic, dopaminergic and serotonergic signaling, acting via a wide range of ionotropic and metabotropic receptors. Both axons and glia are potential sources of neurotransmitters and may express the respective receptors. The physiological functions of neurotransmitter signaling in WM are subject to debate, but glutamate and ATP-mediated signaling have been shown to evoke Ca(2+) signals in glia and modulate axonal conduction. Experimental findings support a model of neurotransmitters being released from axons during action potential propagation acting on glial receptors to regulate the homeostatic functions of astrocytes and myelination by oligodendrocytes. Astrocytes also release neurotransmitters, which act on axonal receptors to strengthen action potential propagation, maintaining signaling along potentially long axon tracts. The co-existence of multiple neurotransmitters in WM tracts suggests they may have diverse functions that are important for information processing. Furthermore, the neurotransmitter signaling phenomena described in WM most likely apply to myelinated axons of the cerebral cortex and GM areas, where they are doubtless important for higher cognitive function.
Collapse
Affiliation(s)
- Arthur M Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, United Kingdom
| | | | | |
Collapse
|
6
|
Takeuchi Y, Liu JQ, Matsumoto Y, Miki T, Ohta KI, Warita K, Suzuki S, Tamai M. Secretion-related structures of hypothalamo-hypophysial terminals in the rat posterior pituitary. Okajimas Folia Anat Jpn 2013; 90:69-76. [PMID: 24670492 DOI: 10.2535/ofaj.90.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hypothalamic terminals were investigated in the rat posterior pituitary (PP). Injection of wheat germ agglutinin conjugated horseradish peroxidase (WGA-HRP) and co-injection of WGA-HRP with Rab3A-siRNA were made into the hypothalamus, respectively. Additional injection of WGA-HRP was made into the hypothalamus in the animals exposed to ethanol. These injections resulted in heavy labeling of fibers exclusively confined to the PP. Ultrastructural observations showed terminals, fibers, pituicytes, capillaries and vascular spaces in the PP. Although the majority of terminals were observed to contain large dense core vesicles (LDCVs) and HRP-reaction products (HRP-RPs), exocytosis of LDCVs in close proximity to cell membrane was not found. Interestingly, a few terminals showed alteration of cell membrane called "apocrine-like structure" containing LDCV and RP. The narrow neck portion of the structure gave the appearance that it may have been in some stage of separating from terminals. Other remarkable feature was that terminals occasionally reveal the structure of "leakage" of RP discharged into vascular spaces crossing cell membrane. Such hormone-releasing mechanism might be involved in one of "diacrine-like secretion". In the present study secretion-related structures of hypothalamic terminals in the PP are quite different from normal vesicular exocytosis.
Collapse
Affiliation(s)
- Yoshiki Takeuchi
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Developmental switching of perisomatic innervation from climbing fibers to basket cell fibers in cerebellar Purkinje cells. J Neurosci 2012; 31:16916-27. [PMID: 22114262 DOI: 10.1523/jneurosci.2396-11.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In early postnatal development, perisomatic innervation of cerebellar Purkinje cells (PCs) switches from glutamatergic climbing fibers (CFs) to GABAergic basket cell fibers (BFs). Here we examined the switching process in C57BL/6 mice. At postnatal day 7 (P7), most perisomatic synapses were formed by CFs on to somatic spines. The density of CF-spine synapses peaked at P9, when pericellular nest around PCs by CFs was most developed, and CF-spine synapses constituted 88% of the total perisomatic synapses. Thereafter, CF-spine synapses dropped to 63% at P12, 6% at P15, and <1% at P20, whereas BF synapses increased reciprocally. During the switching period, a substantial number of BF synapses existed as BF-spine synapses (37% of the total perisomatic synapses at P15), and free spines surrounded by BFs or Bergmann glia also emerged. By P20, BF-spine synapses and free spines virtually disappeared, and BF-soma synapses became predominant (88%), thus attaining the adult pattern of perisomatic innervation. Parallel with the presynaptic switching, postsynaptic receptor phenotype also switched from glutamatergic to GABAergic. In the active switching period, particularly at P12, fragmental clusters of AMPA-type glutamate receptor were juxtaposed with those of GABA(A) receptor. When examined with serial ultrathin sections, immunogold labeling for glutamate and GABA(A) receptors was often clustered beneath single BF terminals. These results suggest that a considerable fraction of somatic spines is succeeded from CFs to BFs and Bergmann glia in the early postnatal period, and that the switching of postsynaptic receptor phenotypes mainly proceeds under the coverage of BF terminals.
Collapse
|
8
|
Abstract
Neurons have long held the spotlight as the central players of the nervous system, but we must remember that we have equal numbers of astrocytes and neurons in the brain. Are these cells only filling up the space and passively nurturing the neurons, or do they also contribute to information transfer and processing? After several years of intense research since the pioneer discovery of astrocytic calcium waves and glutamate release onto neurons in vitro, the neuronal-glial studies have answered many questions thanks to technological advances. However, the definitive in vivo role of astrocytes remains to be addressed. In addition, it is becoming clear that diverse populations of astrocytes coexist with different molecular identities and specialized functions adjusted to their microenvironment, but do they all belong to the umbrella family of astrocytes? One population of astrocytes takes on a new function by displaying both support cell and stem cell characteristics in the neurogenic niches. Here, we define characteristics that classify a cell as an astrocyte under physiological conditions. We will also discuss the well-established and emerging functions of astrocytes with an emphasis on their roles on neuronal activity and as neural stem cells in adult neurogenic zones.
Collapse
|
9
|
Viltono L, Patrizi A, Fritschy JM, Sassoè-Pognetto M. Synaptogenesis in the cerebellar cortex: differential regulation of gephyrin and GABAA receptors at somatic and dendritic synapses of Purkinje cells. J Comp Neurol 2008; 508:579-91. [PMID: 18366064 DOI: 10.1002/cne.21713] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In rodent cerebellar cortex, synaptogenesis occurs entirely postnatally, allowing study of the mechanisms of synapse formation in vivo. Here we monitored the clustering of GABA(A) receptors and the scaffolding protein gephyrin at GABAergic postsynaptic sites during rat cerebellar development. We found that GABA(A) receptors and gephyrin co-aggregate at nascent synapses in the molecular and Purkinje cell layers with a similar time course. With few exceptions, gephyrin and GABA(A) receptor subunits clustered selectively in front of presynaptic boutons expressing the vesicular inhibitory amino acid transporter VIAAT and no ectopic localization of these molecules was observed. Surprisingly, gephyrin clusters outlining the cell body of Purkinje cells were transient, and disappeared rapidly at the end of the second postnatal week. The loss of gephyrin from perisomatic synapses was coincident with a significant reduction in the size of GABA(A) receptor clusters. Furthermore, these changes were accompanied by a developmental decrease in the size of synaptic appositions, as documented by electron microscopy. These findings suggest that gephyrin takes part in the initial assembly of postsynaptic specializations and reveal an unsuspected heterogeneity in the molecular organization of the postsynaptic apparatus at somatic and dendritic synapses of mature Purkinje cells.
Collapse
Affiliation(s)
- Laura Viltono
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, I-10126 Torino, Italy
| | | | | | | |
Collapse
|
10
|
Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 2007; 87:1215-84. [PMID: 17928584 DOI: 10.1152/physrev.00017.2006] [Citation(s) in RCA: 892] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Developing networks follow common rules to shift from silent cells to coactive networks that operate via thousands of synapses. This review deals with some of these rules and in particular those concerning the crucial role of the neurotransmitter gamma-aminobuytric acid (GABA), which operates primarily via chloride-permeable GABA(A) receptor channels. In all developing animal species and brain structures investigated, neurons have a higher intracellular chloride concentration at an early stage leading to an efflux of chloride and excitatory actions of GABA in immature neurons. This triggers sodium spikes, activates voltage-gated calcium channels, and acts in synergy with NMDA channels by removing the voltage-dependent magnesium block. GABA signaling is also established before glutamatergic transmission, suggesting that GABA is the principal excitatory transmitter during early development. In fact, even before synapse formation, GABA signaling can modulate the cell cycle and migration. The consequence of these rules is that developing networks generate primitive patterns of network activity, notably the giant depolarizing potentials (GDPs), largely through the excitatory actions of GABA and its synergistic interactions with glutamate signaling. These early types of network activity are likely required for neurons to fire together and thus to "wire together" so that functional units within cortical networks are formed. In addition, depolarizing GABA has a strong impact on synaptic plasticity and pathological insults, notably seizures of the immature brain. In conclusion, it is suggested that an evolutionary preserved role for excitatory GABA in immature cells provides an important mechanism in the formation of synapses and activity in neuronal networks.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Insititut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale U. 29, Marseille, France.
| | | | | | | |
Collapse
|
11
|
Cheluja MG, Scolari MJ, Coelho TM, Blake MG, Boccia MM, Baratti CM, Acosta GB. l-serine and GABA uptake by synaptosomes during postnatal development of rat. Comp Biochem Physiol A Mol Integr Physiol 2007; 146:499-505. [PMID: 16481208 DOI: 10.1016/j.cbpa.2005.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Revised: 11/21/2005] [Accepted: 11/25/2005] [Indexed: 10/25/2022]
Abstract
Postnatal development changes in mechanisms of synaptosomal amino acid transport have been studied in rat cerebral cortex. Specific uptake of radiolabeled L-serine was examined and compared with that of radiolabeled GABA using synaptosomes-enriched fractions freshly prepared from cerebral cortex at different postnatal days from the birth to young adulthood. The preparations were incubated with 10 nM of [3H]L-serine and 10 nM of [3H]-GABA in either the presence or absence of NaCl, KCl or choline chloride, at 2 and 30 degrees C, for different periods up to 30 min. The uptake of [3H]l-serine was temperature dependent in synaptosomal fractions prepared from cerebral cortex of rats in postnatal days 5, 7, 13 and 21, but stronger dependence was observed in adult brain, irrespective of the presence of Na+, K+ or choline ions. At all postnatal ages studied, [3H]-GABA uptake showed a high activity in the presence of Na+ ions and at 30 degrees C. The values of Km were 90-489 microM in L-serine uptake. However, in the uptake of GABA the values of Km were 80-150 microM. The highest values of Vmax were obtained at 5 and 21 postnatal days for both transport systems. These results indicate that the uptake of l-serine and GABA are regulated differentially during postnatal development.
Collapse
Affiliation(s)
- María Gabriela Cheluja
- Instituto de Investigaciones Farmacológicas (ININFA-CONICET-UBA), Junín 956. 5 piso, C1113AAD, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
12
|
Sotelo C. Development of “Pinceaux” formations and dendritic translocation of climbing fibers during the acquisition of the balance between glutamatergic and γ-aminobutyric acidergic inputs in developing Purkinje cells. J Comp Neurol 2007; 506:240-62. [DOI: 10.1002/cne.21501] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Takayama C, Inoue Y. Developmental expression of GABA transporter-1 and 3 during formation of the GABAergic synapses in the mouse cerebellar cortex. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 158:41-9. [PMID: 16024093 DOI: 10.1016/j.devbrainres.2005.05.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 05/26/2005] [Accepted: 05/26/2005] [Indexed: 12/01/2022]
Abstract
In the brain, gamma-amino butyric acid (GABA), released extrasynaptically and synaptically from GABAergic neurons, plays important roles in morphogenesis, expression of higher functions and so on. In the GABAergic transmission system, plasma membrane GABA transporters (GATs) mediate GABA-uptake from the synaptic cleft in the mature brain and are thought to mediate diacrine of cytosolic GABA in the immature brain. In the present study, we focused on two GATs (GAT-1 and GAT-3) in the mouse cerebellar cortex, which are widely localized in neural and glial cells. Firstly, we examined the localization of GATs in the dendrites and cell bodies of developing GABAergic neurons, where GABA is extrasynaptically distributed, to clarify the GABA-diacrine before synaptogenesis. Secondly, we examined the developmental changes in the localization of GATs to reveal the development of the GABA-uptake system. Neither transporter was detected within the dendrites and cell bodies of GABAergic neurons, including Purkinje, stellate, basket and Golgi cells, in the immature cerebellar cortex. GAT-1 was observed within the Golgi cell axon terminals after postnatal day 5 (P5) and presynaptic axons of stellate and basket cells after P7. GAT-3 was localized within the astrocyte processes, sealing the GABAergic synapses in the Purkinje cell and granular layers after P10. These results indicated that GABA-diacrine did not work in the mouse cerebellar cortex. The onset of GAT-1-expression was prior to that of GAT-3. GAT-1 started to be localized within the GABAergic axon terminals during synapse formation. GAT-3 started to be localized within astrocyte processes when they sealed the synapses.
Collapse
Affiliation(s)
- Chitoshi Takayama
- Department of Molecular Neuroanatomy, Hokkaido University School of Medicine, Kita-15 Nishi-7, Kita-Ku, Sapporo 060-8638, Japan.
| | | |
Collapse
|
14
|
Abstract
In the adult central nervous system (CNS), GABA is a predominant inhibitory neurotransmitter that regulates glutamatergic activity. Recent studies have revealed that GABA serves as an excitatory transmitter in the immature CNS and acts as a trophic factor for brain development. Furthermore, synaptic transmission by GABA is also involved in the expression of higher brain functions, such as memory, learning and anxiety. These results indicate that GABA plays various roles in the expression of brain functions and GABAergic roles change developmentally in accordance with alterations in GABAergic transmission and signaling. We have investigated morphologically the developmental changes in the GABAergic transmission system and the key factors important for the formation of GABAergic synapses and networks using the mouse cerebellum, which provides an ideal system for the investigation of brain development. Here, we focus on GABA and GABA(A) receptors in the developing cerebellum and address the processes of how GABA exerts its effect on developing neurons and the mechanisms underlying the formation of functional GABAergic synapses.
Collapse
Affiliation(s)
- Chitoshi Takayama
- Department of Molecular Neuroanatomy, Hokkaido University School of Medicine, Sapporo, Japan.
| | | |
Collapse
|
15
|
Pow DV, Sullivan RKP, Williams SM, Scott HL, Dodd PR, Finkelstein D. Differential expression of the GABA transporters GAT-1 and GAT-3 in brains of rats, cats, monkeys and humans. Cell Tissue Res 2005; 320:379-92. [PMID: 15821932 DOI: 10.1007/s00441-004-0928-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 05/25/2004] [Indexed: 10/25/2022]
Abstract
The homeostasis of GABA is critical to normal brain function. Extracellular levels of GABA are regulated mainly by plasmalemmal gamma-aminobutyric acid (GABA) transporters. Whereas the expression of GABA transporters has been extensively studied in rodents, validation of this data in other species, including humans, has been limited. As this information is crucial for our understanding of therapeutic options in human diseases such as epilepsy, we have compared, by immunocytochemistry, the distributions of the GABA transporters GAT-1 and GAT-3 in rats, cats, monkeys and humans. We demonstrate subtle differences between the results reported in the literature and our results, such as the predominance of GAT-1 labelling in neurons rather than astrocytes in the rat cortex. We note that the optimal localisation of GAT-1 in cats, monkeys and humans requires the use of an antibody against the human sequence carboxyl terminal region of GAT-1 rather than against the slightly different rat sequence. We demonstrate that GAT-3 is localised mainly to astrocytes in hindbrain and midbrain regions of rat brains. However, in species such as cats, monkeys and humans, additional strong immunolabelling of oligodendrocytes has also been observed. We suggest that differences in GAT distribution, especially the expression of GAT-3 by oligodendrocytes in humans, must be accommodated in extrapolating rodent models of GABA homeostasis to humans.
Collapse
Affiliation(s)
- David V Pow
- Department of Physiology and Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia.
| | | | | | | | | | | |
Collapse
|
16
|
Takayama C, Inoue Y. Extrasynaptic localization of GABA in the developing mouse cerebellum. Neurosci Res 2004; 50:447-58. [PMID: 15567482 DOI: 10.1016/j.neures.2004.08.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Accepted: 08/17/2004] [Indexed: 11/24/2022]
Abstract
In the adult brain, gamma-amino butyric acid (GABA) is synaptically released and mediates inhibitory transmission. Recent studies have revealed that GABA is a trophic factor for brain development. To reveal the distribution of GABA and its secretion mechanisms during brain development, we investigated the immunohistochemical localization of two molecules, GABA and vesicular GABA transporter (VGAT), which is a GABAergic vesicle protein, in the developing mouse cerebellum by means of newly developed antibodies. Furthermore, we tested the relationship between developmental changes in distribution of above two molecules in the presynapses and ontogeny of GABAergic synapses. GABAergic synapses were detected by immunohistochemistry for the GABA(A) receptor alpha1 subunit, which is an essential subunit for inhibitory synaptic transmission in the mature cerebellar cortex. Until postnatal day 7 (P7), GABA was localized throughout the GABAergic neurons, and VGAT accumulated at axon varicosities and growth cones, where the alpha1 subunit did not accumulate. After P10, both GABA and VGAT became confined to the terminal sites where the alpha1 subunit was localized. These results suggested that GABA was extrasynaptically released from axon varicosities and growth cones by vesicular secretion 'exocytosis' and from all parts of GABAergic neurons during the cerebellar development by non-vesicular secretion 'diacrine'.
Collapse
Affiliation(s)
- Chitoshi Takayama
- Department of Molecular Neuroanatomy, Hokkaido University School of Medicine, Kita-15 Nishi-7, Kita-Ku, Sapporo 060 8638, Japan.
| | | |
Collapse
|
17
|
Schousboe A, Larsson OM, Sarup A, White HS. Role of the betaine/GABA transporter (BGT-1/GAT2) for the control of epilepsy. Eur J Pharmacol 2004; 500:281-7. [PMID: 15464040 DOI: 10.1016/j.ejphar.2004.07.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 10/26/2022]
Abstract
Inactivation of gamma-aminobutric acid (GABA) as a neurotransmitter is mediated by diffusion in the synaptic cleft followed by binding to transporter sites and translocation into the intracellular compartment. The GABA transporters of which four subtypes have been cloned (GAT1-4) are distributed at presynaptic nerve endings as well as extrasynaptically on astrocytic and neuronal elements. This anatomical arrangement of the transporters appears to be of critical functional importance for the maintenance of GABAergic neurotransmission. Pharmacological characterization of the GABA transporters using a large number of GABA analogs having restricted conformation and lipophilic character has been of instrumental importance for elucidation of the functional importance of the different transporters. One such analog EF1502 (N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-3-hydroxy-4-methylamino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol) has been shown to selectively inhibit GAT1 (GABA transporter 1) and GAT2/BGT-1 (betaine/GABA transporter). Moreover, this GABA analog exhibits an unusually high efficiency as an anticonvulsant suggesting a novel role of the betaine/GABA transporter in epileptic seizure control. It is hypothesized that extrasynaptic actions of GABA may be involved in this phenomenon.
Collapse
Affiliation(s)
- Arne Schousboe
- Department of Pharmacology, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
18
|
Dalby NO. Inhibition of gamma-aminobutyric acid uptake: anatomy, physiology and effects against epileptic seizures. Eur J Pharmacol 2004; 479:127-37. [PMID: 14612144 DOI: 10.1016/j.ejphar.2003.08.063] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The transport of gamma-aminobutyric (GABA) limits the overspill from the synaptic cleft and serves to maintain a constant extracellular level of GABA. Two transporters, GABA transporter-1 (GAT-1) and GAT-3, are the most likely candidates for regulating GABA transport in the brain. Drugs acting either selectively or nonselectively at GATs exert distinct anticonvulsant effects, presumably because of distinct regions of action. Here I shall give a brief review of the localization and physiology of GATs and describe effects of selective and nonselective inhibitors thereof in different animal models of epilepsy.
Collapse
|
19
|
Number, density, and surface/cytoplasmic distribution of GABA transporters at presynaptic structures of knock-in mice carrying GABA transporter subtype 1-green fluorescent protein fusions. J Neurosci 2002. [PMID: 12451126 DOI: 10.1523/jneurosci.22-23-10251.2002] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABA transporter subtype 1 (GAT1) molecules were counted near GABAergic synapses, to a resolution of approximately 0.5 microm. Fusions between GAT1 and green fluorescent protein (GFP) were tested in heterologous expression systems, and a construct was selected that shows function, expression level, and trafficking similar to that of wild-type (WT) GAT1. A strain of knock-in mice was constructed that expresses this mGAT1-GFP fusion in place of the WT GAT1 gene. The pattern of fluorescence in brain slices agreed with previous immunocytochemical observations. [3H]GABA uptake, synaptic electrophysiology, and subcellular localization of the mGAT1-GFP construct were also compared with WT mice. Quantitative fluorescence microscopy was used to measure the density of mGAT1-GFP at presynaptic structures in CNS preparations from the knock-in mice. Fluorescence measurements were calibrated with transparent beads and gels that have known GFP densities. Surface biotinylation defined the fraction of transporters on the surface versus those in the nearby cytoplasm. The data show that the presynaptic boutons of GABAergic interneurons in cerebellum and hippocampus have a membrane density of 800-1300 GAT1 molecules per square micrometer, and the axons that connect boutons have a linear density of 640 GAT1 molecules per micrometer. A cerebellar basket cell bouton, a pinceau surrounding a Purkinje cell axon, and a cortical chandelier cell cartridge carry 9000, 7.8 million, and 430,000 GAT1 molecules, respectively; 61-63% of these molecules are on the surface membrane. In cultures from hippocampus, the set of fluorescent cells equals the set of GABAergic interneurons. Knock-in mice carrying GFP fusions of membrane proteins provide quantitative data required for understanding the details of synaptic transmission in living neurons.
Collapse
|
20
|
Abstract
Although glial GABA uptake and release have been studied in vitro, GABA transporters (GATs) have not been characterized in glia in slices. Whole cell patch-clamp recordings were obtained from Bergmann glia in rat cerebellar slices to characterize carrier-mediated GABA influx and efflux. GABA induced inward currents at -70 mV that could be pharmacologically separated into GABA(A) receptor and GAT currents. In the presence of GABA(A/B/C) receptor blockers, mean GABA-induced currents measured -48 pA at -70 mV, were inwardly rectifying between -70 and +50 mV, were inhibited by external Na(+) removal, and were diminished by reduction of external Cl(-). Nontransportable blockers of GAT-1 (SKF89976-A and NNC-711) and a transportable blocker of all the GAT subtypes (nipecotic acid) reversibly reduced GABA-induced transport currents by 68 and 100%, respectively. A blocker of BGT-1 (betaine) had no effect. SKF89976-A and NNC-711 also suppressed baseline inward currents that likely result from tonic GAT activation by background GABA. The substrate agonists, nipecotic acid and beta-alanine but not betaine, induced voltage- and Na(+)-dependent currents. With Na(+) and GABA inside the patch pipette or intracellular GABA perfusion during the recording, SKF89976-A blocked baseline outward currents that activated at -60 mV and increased with more depolarized potentials. This carrier-mediated GABA efflux induced a local accumulation of extracellular GABA detected by GABA(A) receptor activation on the recorded cell. Overall, these results indicate that Bergmann glia express GAT-1 that are activated by ambient GABA. In addition, GAT-1 in glia can work in reverse and release sufficient GABA to activate nearby GABA receptors.
Collapse
Affiliation(s)
- L Barakat
- Department of Neurosurgery, Yale University, New Haven, Connecticut 06520-8082, USA
| | | |
Collapse
|
21
|
Mittaud P, Labourdette G, Zingg H, Guenot-Di Scala D. Neurons modulate oxytocin receptor expression in rat cultured astrocytes: involvement of TGF-beta and membrane components. Glia 2002; 37:169-77. [PMID: 11754214 DOI: 10.1002/glia.10029] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We examined the effect of neurons on oxytocin (OT) receptors (OTR) and OTR gene expression in cultured astrocytes. The addition of neuron-conditioned medium induced an increase of both OTR binding and OTR mRNA level. This effect was enhanced after the medium was boiled or acidified. As it is known that transforming growth factor-beta (TGF-beta) can be released from carrier proteins by acid or heat, TGF-beta1 and 2 were tested and found to induce an increase of OTR binding. Furthermore, TGF-beta antibody abolished the stimulatory effect of normal or acidified neuron-conditioned medium. Neurons added to cultured astrocytes without contact mimicked the stimulatory effect of the conditioned medium. In contrast, neurons added with contact, induced a decrease in OTR binding and an increase of mRNA level, whereas neuronal membranes induced a decrease of both OTR binding and mRNA levels. In conclusion, the present data demonstrate that in vitro, neurons are able to modulate astrocytic OTR expression at the level of both protein and mRNA. They stimulate this expression through their release of TGF-beta and inhibit it by the action of unknown membrane components.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Astrocytes/cytology
- Astrocytes/drug effects
- Astrocytes/metabolism
- Binding Sites/drug effects
- Binding Sites/physiology
- Binding, Competitive/drug effects
- Binding, Competitive/physiology
- Cell Communication/drug effects
- Cell Communication/physiology
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cells, Cultured
- Contact Inhibition/drug effects
- Contact Inhibition/physiology
- Culture Media, Conditioned/pharmacology
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Hypothalamus/cytology
- Hypothalamus/metabolism
- Microglia/cytology
- Microglia/drug effects
- Microglia/metabolism
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Oligodendroglia/cytology
- Oligodendroglia/drug effects
- Oligodendroglia/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Receptors, Oxytocin/drug effects
- Receptors, Oxytocin/genetics
- Receptors, Oxytocin/metabolism
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Peggy Mittaud
- Laboratoire de Neurophysiologie Cellulaire et Intégrée, Strasbourg Cedex, France
| | | | | | | |
Collapse
|
22
|
Frahm C, Draguhn A. GAD and GABA transporter (GAT-1) mRNA expression in the developing rat hippocampus. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 132:1-13. [PMID: 11744102 DOI: 10.1016/s0165-3806(01)00288-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Synaptic inhibition in the mammalian central nervous system is mostly mediated by GABA (gamma-aminobutyric acid). Inhibitory interneurons can be identified by staining for glutamate decarboxylase (GAD), the key enzyme which produces the transmitter. After release, GABA is removed from the extracellular space by specific transporters which are localized at the presynaptic endings of interneurons, in adjacent glial processes and, possibly, also in the postsynaptic target cell membranes. The GABAergic system undergoes profound functional and structural changes during the first 2 weeks of postnatal development, including migration of interneurons and changes in the level of expression and subcellular distribution of GABA transporters. We therefore analyzed the distribution of mRNA coding for GAD and GAT-1 (the main neuronal GABA transporter) in the developing rat hippocampus. Our data show that both transcripts are present in putative interneurons from the first postnatal day and exhibit a largely similar distribution throughout postnatal ontogenesis, with some specific differences in certain hippocampal subfields. Quantification of stained somata confirmed the postnatal redistribution of putative interneurons in the area dentata from dendritic layers towards the hilus. We also found a general staining of principal cell layers for both probes, which differs with postnatal age and between GAD and GAT-1 mRNA. Together, our data reveal a profound reorganization of the GABAergic system in the rat hippocampus during the first weeks of postnatal development.
Collapse
Affiliation(s)
- C Frahm
- Johannes-Müller-Institut für Physiologie der Charité, Humboldt-Universität, Tucholskystr. 2, 10117 Berlin, Germany.
| | | |
Collapse
|
23
|
Gadea A, López-Colomé AM. Glial transporters for glutamate, glycine, and GABA: II. GABA transporters. J Neurosci Res 2001; 63:461-8. [PMID: 11241581 DOI: 10.1002/jnr.1040] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The termination of chemical neurotransmission in the central nervous system (CNS) involves the rapid removal of neurotransmitter from synapses. This is fulfilled by specific transport systems in neurons and glia, including those for gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the brain. Glial cells express the cloned Na(+)/Cl(-)-dependent, high-affinity GABA transporters (GATs) GAT1, GAT2, and GAT3, as well as the low-affinity transporter BGT1. In situ hybridization and immunocytochemistry have revealed that each transporter shows distinct regional distribution in the brain and the retina. The neuronal vs. glial localization of the different transporters is not clear-cut, and variations according to species, neighboring excitatory synapses, and developmental stage have been reported. The localization, stoichiometry, and regulation of glial GATs are outlined, and the participation of these structures in development, osmoregulation, and neuroprotection are discussed. A decrease in GABAergic neurotransmission has been implicated in the pathophysiology of several CNS disorders, particularly in epilepsy. Since drugs which selectively inhibit glial but not neuronal GABA uptake exert anticonvulsant activity, clearly the establishment of the molecular mechanisms controlling GATs in glial cells will be an aid in the chemical treatment of several CNS-related diseases.
Collapse
Affiliation(s)
- A Gadea
- Instituto de Fisiología Celular, Departamento de Neurociencias, UNAM, México, D.F., México
| | | |
Collapse
|
24
|
Hsiao SH, West JR, Mahoney JC, Frye GD. Postnatal ethanol exposure blunts upregulation of GABAA receptor currents in Purkinje neurons. Brain Res 1999; 832:124-35. [PMID: 10375658 DOI: 10.1016/s0006-8993(99)01480-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recently, we found that early postnatal ethanol exposure inhibits the maturation of GABAA receptors (GABAARs) in developing medial septum/diagonal band (MS/DB) neurons, suggesting that these receptors may represent a target for ethanol related to fetal alcohol syndrome (FAS). To determine whether GABAARs on other neurons are also sensitive to a postnatal ethanol insult, postnatal day (PD) 4-9, rat pups were artificially reared and exposed to ethanol (4.5 g kg-1 day-1, 10.2% v/v). The pharmacological profile of acutely dissociated cerebellar Purkinje cell GABAARs from untreated, artificially reared controls and ethanol-treated animals was examined with conventional whole-cell patch clamp recordings during PD 12-16 (juveniles) and PD 25-35 (young adults). For untreated animals, GABA (0.3-100 microM) consistently induced inward Cl- currents in a concentration-dependent manner showing an age-related increase in maximum response without change in EC50 or slope value. Acute ethanol (100 mM) consistently inhibited 3 microM GABA currents (10-20%); positive modulators, pentobarbital (10 microM), midazolam (1 microM) and loreclezole (10 microM), consistently potentiated; the negative modulator, Zn2+ (30 microM), inhibited GABA currents across both juvenile and young adult groups. Loreclezole potentiation increased while Zn2+ inhibition decreased with age in untreated Purkinje neurons. Postnatal ethanol exposure (PD 4-9) decreased GABAAR maximum current density in young adult Purkinje cells but not in juvenile neurons. However, sensitivity to allosteric modulators did not change after ethanol. These data are consistent with the hypothesis that postnatal ethanol exposure during the brain growth spurt can disturb GABAAR development across the brain, although the mechanism(s) underlying this action remains to be determined.
Collapse
Affiliation(s)
- S H Hsiao
- Department of Medical Pharmacology and Toxicology, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | | | | | | |
Collapse
|