1
|
Emerging roles of lamins and DNA damage repair mechanisms in ovarian cancer. Biochem Soc Trans 2020; 48:2317-2333. [DOI: 10.1042/bst20200713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Lamins are type V intermediate filament proteins which are ubiquitously present in all metazoan cells providing a platform for binding of chromatin and related proteins, thereby serving a wide range of nuclear functions including DNA damage repair. Altered expression of lamins in different subtypes of cancer is evident from researches worldwide. But whether cancer is a consequence of this change or this change is a consequence of cancer is a matter of future investigation. However changes in the expression levels of lamins is reported to have direct or indirect association with cancer progression or have regulatory roles in common neoplastic symptoms like higher nuclear deformability, increased genomic instability and reduced susceptibility to DNA damaging agents. It has already been proved that loss of A type lamin positively regulates cathepsin L, eventually leading to degradation of several DNA damage repair proteins, hence impairing DNA damage repair pathways and increasing genomic instability. It is established in ovarian cancer, that the extent of alteration in nuclear morphology can determine the degree of genetic changes and thus can be utilized to detect low to high form of serous carcinoma. In this review, we have focused on ovarian cancer which is largely caused by genomic alterations in the DNA damage response pathways utilizing proteins like RAD51, BRCA1, 53BP1 which are regulated by lamins. We have elucidated the current understanding of lamin expression in ovarian cancer and its implications in the regulation of DNA damage response pathways that ultimately result in telomere deformation and genomic instability.
Collapse
|
2
|
Mirza-Aghazadeh-Attari M, Ostadian C, Saei AA, Mihanfar A, Darband SG, Sadighparvar S, Kaviani M, Samadi Kafil H, Yousefi B, Majidinia M. DNA damage response and repair in ovarian cancer: Potential targets for therapeutic strategies. DNA Repair (Amst) 2019; 80:59-84. [PMID: 31279973 DOI: 10.1016/j.dnarep.2019.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/01/2019] [Accepted: 06/15/2019] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is among the most lethal gynecologic malignancies with a poor survival prognosis. The current therapeutic strategies involve surgery and chemotherapy. Research is now focused on novel agents especially those targeting DNA damage response (DDR) pathways. Understanding the DDR process in ovarian cancer necessitates having a detailed knowledge on a series of signaling mediators at the cellular and molecular levels. The complexity of the DDR process in ovarian cancer and how this process works in metastatic conditions is comprehensively reviewed. For evaluating the efficacy of therapeutic agents targeting DNA damage in ovarian cancer, we will discuss the components of this system including DDR sensors, DDR transducers, DDR mediators, and DDR effectors. The constituent pathways include DNA repair machinery, cell cycle checkpoints, and apoptotic pathways. We also will assess the potential of active mediators involved in the DDR process such as therapeutic and prognostic candidates that may facilitate future studies.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Caspian Ostadian
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saber Ghazizadeh Darband
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | | | - Bahman Yousefi
- Molecular MedicineResearch Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
3
|
Hugen N, Simons M, Halilović A, van der Post RS, Bogers AJ, Marijnissen-van Zanten MA, de Wilt JH, Nagtegaal ID. The molecular background of mucinous carcinoma beyond MUC2. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2014; 1:3-17. [PMID: 27499889 PMCID: PMC4858120 DOI: 10.1002/cjp2.1] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/12/2014] [Indexed: 12/16/2022]
Abstract
The increasing interest of the oncology community in tumour classification and prediction of outcome to targeted therapies has put emphasis on an improved identification of tumour types. Colorectal mucinous adenocarcinoma (MC) is a subtype that is characterized by the presence of abundant extracellular mucin that comprises at least 50% of the tumour volume and is found in 10–15% of colorectal cancer patients. MC development is poorly understood, however, the distinct clinical and pathological presentation of MC suggests a deviant development and molecular background. In this review we identify common molecular and genetic alterations in colorectal MC. MC is characterized by a high rate of MUC2 expression. Mutation rates in the therapeutically important RAS/RAF/MAPK and PI3K/AKT pathways are significantly higher in MC compared with non‐mucinous adenocarcinoma. Furthermore, mucinous adenocarcinoma shows higher rates of microsatellite instability and is more frequently of the CpG island methylator phenotype. Although the majority of MCs arise from the large intestine, this subtype also develops in other organs, such as the stomach, pancreas, biliary tract, ovary, breast and lung. We compared findings from colorectal MC with tumour characteristics of MCs from other organs. In these organs, MCs show different mutation rates in the RAS/RAF/MAPK and PI3K/AKT pathways as well, but a common mucinous pathway cannot be identified. Identification of conditions and molecular aberrations that are associated with MC generates insight into the aetiology of this subtype and improves understanding of resistance to therapies.
Collapse
Affiliation(s)
- Niek Hugen
- Department of Surgery Radboud University Medical Center Nijmegen The Netherlands
| | - Michiel Simons
- Department of Pathology Radboud University Medical Center Nijmegen The Netherlands
| | - Altuna Halilović
- Department of Pathology Radboud University Medical Center Nijmegen The Netherlands
| | | | - Anna J Bogers
- Department of Pathology Radboud University Medical Center Nijmegen The Netherlands
| | | | - Johannes Hw de Wilt
- Department of Surgery Radboud University Medical Center Nijmegen The Netherlands
| | - Iris D Nagtegaal
- Department of Pathology Radboud University Medical Center Nijmegen The Netherlands
| |
Collapse
|
4
|
Song H, Ramus SJ, Quaye L, DiCioccio RA, Tyrer J, Lomas E, Shadforth D, Hogdall E, Hogdall C, McGuire V, Whittemore AS, Easton DF, Ponder BAJ, Kjaer SK, Pharoah PDP, Gayther SA. Common variants in mismatch repair genes and risk of invasive ovarian cancer. Carcinogenesis 2006; 27:2235-42. [PMID: 16774946 DOI: 10.1093/carcin/bgl089] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mismatch repair (MMR) is important for repairing of nucleotide mismatches during DNA replication. Germline mutations in MMR genes are associated with hereditary non-polyposis colorectal cancer (HNPCC). Ovarian cancer occurs as part of the HNPCC phenotype, and so common variants in MMR genes are candidates for ovarian cancer susceptibility. We performed a large multicentre case-control study to investigate associations of common variations in MMR genes and ovarian cancer using a single nucleotide polymorphism (SNP) tagging approach. A total of 2570 controls and 1531 cases from three separate studies were genotyped for 44 tagging SNPs (stSNP) in seven MMR genes (MLH1, MLH3, MSH2, MSH3, MSH6, PMS1 and PMS2). Genotype frequencies were marginally different between cases and controls for PMS2 rs7797466 (P(2df) = 0.046) with a 1.17-fold (95% CI 1.03-1.33) increase in risk for each 'a' allele carried (P-trend = 0.013). Haplotype analysis of PMS2 also showed significant differences in frequencies between cases and controls (P(7df) = 0.005), with one haplotype accounting for most of the effect. There was also marginal evidence for a recessive protective effect with common homozygote as the baseline comparator for two SNPs--MSH6 rs3136245 (OR 0.67; 95% CI 0.46-0.98) and MSH3 rs6151662 (OR 0.28; 95% CI 0.08-0.91)--but the comparisons of genotype frequencies for these variants were not significant (P = 0.10 and 0.054). In conclusion, it is unlikely that common variants in MLH1, MLH3, PMS1, MSH2, MSH3 and MSH6 contribute significantly to ovarian cancer susceptibility. The observed association of PMS2 rs7797466 with ovarian cancer warrants confirmation in an independent study.
Collapse
Affiliation(s)
- Honglin Song
- CR-UK Department of Oncology, University of Cambridge Strangeways Research Laboratory, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Wang R, Titley JC, Lu YJ, Summersgill BM, Bridge JA, Fisher C, Shipley J. Loss of 13q14-q21 and gain of 5p14-pter in the progression of leiomyosarcoma. Mod Pathol 2003; 16:778-85. [PMID: 12920222 DOI: 10.1097/01.mp.0000083648.45923.2b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Leiomyosarcomas of soft tissues are an aggressive group of tumors with a high incidence of recurrence. Little is known about the molecular genetic changes associated with clinical outcome. Therefore, we studied 28 leiomyosarcoma samples of similar grade using comparative genomic hybridization and DNA flow cytometry and identified a difference in survival time associated with ploidy status and the number of chromosomal aberrations. The average survival time was shown to decrease with increase in chromosomal aberrations identified using comparative genomic hybridization. The average survival time was shorter in the near-tetraploid group than in the diploid and triploid group. Gain of 5p14-pter was significantly more common in near-tetraploid tumors. The survival time of patients with near-tetraploidy together with gain of 5p14-pter was reduced, and 50% died within the 1st year. Furthermore, loss of 13q14-q21 was significantly more frequent in the <5-year than in the >5-year survival group (P =.01). These results suggest that 13q14-q21 loss and 5p14-pter gain at diagnosis could be used to identify patients with leiomyosarcoma who are likely to have a shorter survival time and who might benefit from early treatment intensification.
Collapse
Affiliation(s)
- Rubin Wang
- Molecular Cytogenetics, Section of Molecular Carcinogenesis, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
6
|
Drake AC, Campbell H, Porteous MEM, Dunlop MG. The contribution of DNA mismatch repair gene defects to the burden of gynecological cancer. Int J Gynecol Cancer 2003; 13:262-77. [PMID: 12801255 DOI: 10.1046/j.1525-1438.2003.13194.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- A C Drake
- University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | |
Collapse
|
7
|
Ohwada M, Suzuki M, Kohno T, Saga Y, Takei Y, Jobo T, Kuramoto H, Sato I. Involvement of microsatellite instability in lymph node metastasis of endometrial carcinoma. CANCER GENETICS AND CYTOGENETICS 2002; 132:152-5. [PMID: 11850079 DOI: 10.1016/s0165-4608(01)00540-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We evaluated microsatellite instability (MSI) in primary lesions and lymph node metastatic lesions in 66 patients with endometrial carcinoma (FIGO stage IIIC) accompanied by lymph node metastasis. DNA was extracted from paraffin-embedded tissue of both the primary and lymph node metastatic lesions of endometrial carcinoma, and MSI was evaluated using microsatellite markers at five loci. Microsatellite instability was positive in the primary lesion in 27 patients (41%). All patients with MSI-positive primary lesions also showed MSI-positive in lymph node metastatic lesions. Of the other 39 patients with MSI-negative primary lesions, 4 showed MSI-positive in lymph node metastatic lesions. As the result of individual identification by polymerase chain reaction (PCR) using short tandem repeat loci in these 4 patients, PCR profiles of primary and metastatic lesions matched with those of normal controls in all 4 patients. Therefore, it was confirmed that both primary and metastatic lesions developed from the same individual. These results suggest that MSI is also involved in lymph node metastasis in the development and/or progression of endometrial carcinoma in some patients.
Collapse
Affiliation(s)
- Michitaka Ohwada
- Department of Obstetrics and Gynecology, Jichi Medical School, 3311-1 Yakushiji, Minamikawachi, Kawachi, 329-0498, Tochigi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|