1
|
Liao J, Chen B, Zhu Z, Du C, Gao S, Zhao G, Zhao P, Wang Y, Wang A, Schwartz Z, Song L, Hong J, Wagstaff W, Haydon RC, Luu HH, Fan J, Reid RR, He TC, Shi L, Hu N, Huang W. Long noncoding RNA (lncRNA) H19: An essential developmental regulator with expanding roles in cancer, stem cell differentiation, and metabolic diseases. Genes Dis 2023; 10:1351-1366. [PMID: 37397543 PMCID: PMC10311118 DOI: 10.1016/j.gendis.2023.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/07/2023] [Accepted: 02/08/2023] [Indexed: 07/04/2023] Open
Abstract
Recent advances in deep sequencing technologies have revealed that, while less than 2% of the human genome is transcribed into mRNA for protein synthesis, over 80% of the genome is transcribed, leading to the production of large amounts of noncoding RNAs (ncRNAs). It has been shown that ncRNAs, especially long non-coding RNAs (lncRNAs), may play crucial regulatory roles in gene expression. As one of the first isolated and reported lncRNAs, H19 has gained much attention due to its essential roles in regulating many physiological and/or pathological processes including embryogenesis, development, tumorigenesis, osteogenesis, and metabolism. Mechanistically, H19 mediates diverse regulatory functions by serving as competing endogenous RNAs (CeRNAs), Igf2/H19 imprinted tandem gene, modular scaffold, cooperating with H19 antisense, and acting directly with other mRNAs or lncRNAs. Here, we summarized the current understanding of H19 in embryogenesis and development, cancer development and progression, mesenchymal stem cell lineage-specific differentiation, and metabolic diseases. We discussed the potential regulatory mechanisms underlying H19's functions in those processes although more in-depth studies are warranted to delineate the exact molecular, cellular, epigenetic, and genomic regulatory mechanisms underlying the physiological and pathological roles of H19. Ultimately, these lines of investigation may lead to the development of novel therapeutics for human diseases by exploiting H19 functions.
Collapse
Affiliation(s)
- Junyi Liao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bowen Chen
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhenglin Zhu
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Chengcheng Du
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Shengqiang Gao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- The Medical Scientist Training Program, The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ning Hu
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wei Huang
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
2
|
Zhang X, Luo M, Zhang J, Guo B, Singh S, Lin X, Xiong H, Ju S, Wang L, Zhou Y, Zhou J. The role of lncRNA H19 in tumorigenesis and drug resistance of human Cancers. Front Genet 2022; 13:1005522. [PMID: 36246634 PMCID: PMC9555214 DOI: 10.3389/fgene.2022.1005522] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Systemic therapy is one of the most significant cancer treatments. However, drug resistance often appears and has become the primary cause of cancer therapy failure. Regulation of drug target, drug metabolism and drug efflux, cell death escape (apoptosis, autophagy, et al.), epigenetic changes, and many other variables are complicatedly involved in the mechanisms of drug resistance. In various types of cancers, long non-coding RNA H19 (lncRNA H19) has been shown to play critical roles in tumor development, proliferation, metastasis, and multiple drug resistance as well. The efficacy of chemotherapy, endocrine therapy, and targeted therapy are all influenced by the expression of H19, especially in breast cancer, liver cancer, lung cancer and colorectal cancer. Here, we summarize the relationship between lncRNA H19 and tumorigenesis, and illustrate the drug resistance mechanisms caused by lncRNA H19 as well. This review may provide more therapeutic potential targets for future cancer treatments.
Collapse
Affiliation(s)
- Xun Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Mingpeng Luo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiahang Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Bize Guo
- Zhejiang University School of Medicine, Hangzhou, China
| | - Shreya Singh
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xixi Lin
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Hanchu Xiong
- Zhejiang University School of Medicine, Hangzhou, China
| | - Siwei Ju
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Linbo Wang
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- *Correspondence: Linbo Wang, ; Yulu Zhou, ; Jichun Zhou,
| | - Yulu Zhou
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- *Correspondence: Linbo Wang, ; Yulu Zhou, ; Jichun Zhou,
| | - Jichun Zhou
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- *Correspondence: Linbo Wang, ; Yulu Zhou, ; Jichun Zhou,
| |
Collapse
|
3
|
Naz F, Tariq I, Ali S, Somaida A, Preis E, Bakowsky U. The Role of Long Non-Coding RNAs (lncRNAs) in Female Oriented Cancers. Cancers (Basel) 2021; 13:6102. [PMID: 34885213 PMCID: PMC8656502 DOI: 10.3390/cancers13236102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/14/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Recent advances in molecular biology have discovered the mysterious role of long non-coding RNAs (lncRNAs) as potential biomarkers for cancer diagnosis and targets for advanced cancer therapy. Studies have shown that lncRNAs take part in the incidence and development of cancers in humans. However, previously they were considered as mere RNA noise or transcription byproducts lacking any biological function. In this article, we present a summary of the progress on ascertaining the biological functions of five lncRNAs (HOTAIR, NEAT1, H19, MALAT1, and MEG3) in female-oriented cancers, including breast and gynecological cancers, with the perspective of carcinogenesis, cancer proliferation, and metastasis. We provide the current state of knowledge from the past five years of the literature to discuss the clinical importance of such lncRNAs as therapeutic targets or early diagnostic biomarkers. We reviewed the consequences, either oncogenic or tumor-suppressing features, of their aberrant expression in female-oriented cancers. We tried to explain the established mechanism by which they regulate cancer proliferation and metastasis by competing with miRNAs and other mechanisms involved via regulating genes and signaling pathways. In addition, we revealed the association between stated lncRNAs and chemo-resistance or radio-resistance and their potential clinical applications and future perspectives.
Collapse
Affiliation(s)
- Faiza Naz
- Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore 54000, Pakistan;
| | - Imran Tariq
- Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore 54000, Pakistan;
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
| | - Sajid Ali
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
- Angström Laboratory, Department of Chemistry, Uppsala University, 75123 Uppsala, Sweden
| | - Ahmed Somaida
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
| |
Collapse
|
4
|
Harsono AB, Hidayat YM, Winarno GNA, Nisa AS, Alkaff FF. A Case of Rapid Transformation from Hydatidiform Mole to Invasive Mole: The Importance of β-hCG (Human Chorionic Gonadotropin) Serum Levels in Follow-Up Evaluation. AMERICAN JOURNAL OF CASE REPORTS 2021; 22:e931156. [PMID: 34127641 PMCID: PMC8216494 DOI: 10.12659/ajcr.931156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/11/2021] [Accepted: 04/23/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Gestational trophoblastic disease (GTD) is a spectrum of disorders consisting of premalignant (ie, complete [CHM] and partial hydatidiform moles [PHM]) and malignant conditions (ie, invasive moles, choriocarcinoma, placental site trophoblastic tumors, and epithelioid trophoblastic tumor). If GTD persists after initial treatment and has persistent elevated beta human chorionic gonadotropin (ß-hCG), it is referred to as post-molar gestational trophoblastic neoplasia (pGTN). To date, there is no detailed information regarding how fast invasive moles can develop from CHM. However, the risk of developing any pGTN from CHM is rare within 1 month and is greatest in the first 12 months after evacuation, with most cases presenting within 6 months. CASE REPORT We present a case of a 46-year-old primigravida woman with rapid transformation of an invasive mole. In the beginning, the patient had a chief concern of a uterus size greater than the gestational dates. Laboratory evaluation showed high ß-hCG serum level (>300 000 mIU/mL), and ultrasonography evaluation revealed a hydatidiform mole. Suction evacuation and curettage procedures were then performed. Pathology evaluation afterwards revealed a complete hydatidiform mole without any sign of malignancy. Twenty-two days afterwards, the patient came to the emergency room with vaginal bleeding. ß-hCG serum level was high (53 969 mIU/mL), and ultrasonography examination showed the presence of fluid filling the uterine cavity. The patient was then diagnosed with GTN, and hysterectomy was chosen as the treatment of choice. After the surgery, her ß-hCG serum level gradually reverted back to normal. CONCLUSIONS Invasive moles can develop less than 1 month after suction evacuation and curettage procedure for CHM. Serial ß-hCG serum level evaluation according to the guideline should be performed to prevent late diagnosis, which could lead to the development of metastasis and worsen the prognosis.
Collapse
Affiliation(s)
- Ali Budi Harsono
- Department of Obstetrics and Gynecology, Faculty of Medicine, UniversitasPadjadjaran-Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | - Yudi Mulyana Hidayat
- Department of Obstetrics and Gynecology, Faculty of Medicine, UniversitasPadjadjaran-Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | - Gatot Nyarumenteng A. Winarno
- Department of Obstetrics and Gynecology, Faculty of Medicine, UniversitasPadjadjaran-Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | - Aisyah Shofiatun Nisa
- Department of Obstetrics and Gynecology, Faculty of Medicine, UniversitasPadjadjaran-Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | - Firas Farisi Alkaff
- Division of Pharmacology and Therapy, Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
5
|
Safaei S, Tahmasebi-Birgani M, Bijanzadeh M, Seyedian SM. Increased Expression Level of Long Noncoding RNA H19 in Plasma of Patients with Myocardial Infarction. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2020; 9:122-129. [PMID: 32934949 PMCID: PMC7489114 DOI: 10.22088/ijmcm.bums.9.2.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/19/2020] [Indexed: 11/06/2022]
Abstract
Long noncoding RNAs (lncRNAs) are lengthy noncoding transcripts which are actively involved in crucial cellular pathways. Tissue-specific expression of lncRNAs besides its secretion into the body fluids, has made lncRNAs in attention as biomarkers of the diseases. According to the role of lncRNAs, especially H19 in cardiac regeneration, it is not surprising if their altered expression levels lead to cardiac diseases. In the present study, the relative expression of H19 was compared in the plasma of atherosclerotic myocardial infarction and control individuals by real time-PCR, and data were normalized using GAPDH. The association of plasma level of lipid and homocystine with H19 expression was also considered. The potential of H19 to discriminate the case from control was studied using the ROC analysis. We found that the plasma level of H19 transcript significantly increased in the plasma of patients in comparison with the control group. Additionally, the relative expression level of H19 was directly associated with the plasma homocystine level. The relative expression of H19 at threshold of 0.3 showed 70% sensitivity and 94% specificity to discriminate cases from controls. This study revealed that the expression level of H19 may be considered as a biomarker of myocardial infarction, although further studies are needed to generalize this finding.
Collapse
Affiliation(s)
- Shokouh Safaei
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Tahmasebi-Birgani
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahdi Bijanzadeh
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Masoud Seyedian
- Department of Cardiology, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cardiovascular Disease Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Abu N, Hon KW, Jeyaraman S, Jamal R. Long noncoding RNAs as biotargets in cisplatin-based drug resistance. Future Oncol 2018; 14:3085-3095. [PMID: 30468082 DOI: 10.2217/fon-2018-0303] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Since its discovery, cisplatin has become the key drug in chemotherapy for cancers. Nevertheless, chemoresistance in cancers has become an impediment in using cisplatin for cancer treatment. The resistance toward cisplatin is multifaceted as it involves multiple cellular pathways. Ever since the knowledge of long noncoding RNAs as modulators of various molecular pathways came to light, the interest in the biological function of lncRNAs as biomarkers has increased dramatically. Numerous studies have reported the link between the dysregulation of lncRNAs and drug resistance in cancers. More importantly, several lncRNAs were found to be vital in regulating cisplatin resistance. Therefore, this review summarizes the recent efforts in linking between cisplatin resistance and different types of lncRNAs.
Collapse
Affiliation(s)
- Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Jalan Yaacob Latiff, Cheras 56000, Kuala Lumpur, Malaysia
| | - Kha Wai Hon
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Jalan Yaacob Latiff, Cheras 56000, Kuala Lumpur, Malaysia
| | - Shivapriya Jeyaraman
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Jalan Yaacob Latiff, Cheras 56000, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Jalan Yaacob Latiff, Cheras 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
CUDR promotes liver cancer stem cell growth through upregulating TERT and C-Myc. Oncotarget 2016; 6:40775-98. [PMID: 26513297 PMCID: PMC4747368 DOI: 10.18632/oncotarget.5805] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/20/2015] [Indexed: 01/01/2023] Open
Abstract
Cancer up-regulated drug resistant (CUDR) is a novel non-coding RNA gene. Herein, we demonstrate excessive CUDR cooperates with excessive CyclinD1 or PTEN depletion to accelerate liver cancer stem cells growth and liver stem cell malignant transformation in vitro and in vivo. Mechanistically, we reveal the decrease of PTEN in cells may lead to increase binding capacity of CUDR to CyclinD1. Therefore, CUDR-CyclinD1 complex loads onto the long noncoding RNA H19 promoter region that may lead to reduce the DNA methylation on H19 promoter region and then to enhance the H19 expression. Strikingly, the overexpression of H19 increases the binding of TERT to TERC and reduces the interplay between TERT with TERRA, thus enhancing the cell telomerase activity and extending the telomere length. On the other hand, insulator CTCF recruits the CUDR-CyclinD1 complx to form the composite CUDR-CyclinD1-insulator CTCF complex which occupancied on the C-myc gene promoter region, increasing the outcome of oncogene C-myc. Ultimately, excessive TERT and C-myc lead to liver cancer stem cell and hepatocyte-like stem cell malignant proliferation. To understand the novel functions of long noncoding RNA CUDR will help in the development of new liver cancer therapeutic and diagnostic approaches.
Collapse
|
8
|
miR675 upregulates long noncoding RNA H19 through activating EGR1 in human liver cancer. Oncotarget 2016; 6:31958-84. [PMID: 26376677 PMCID: PMC4741653 DOI: 10.18632/oncotarget.5579] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/20/2015] [Indexed: 12/29/2022] Open
Abstract
microRNAs (miRNAs) are short non-coding RNAs that are involved in post-transcriptional regulation of gene expression in multicellular organisms by affecting both the stability and translation of mRNAs. miR675, embedded in H19's first exon, had been linked to the development of human cancers. Herein, we demonstrate miR675 overexpression promotes and silencing miR675 attenuated liver cancer cell growth in vitro and in vivo. Mechanistically, miR675 inhibits the heterochromatin1 isoform HP1α expression in human liver cancer cells which causes a dramatically decrease of the total histone H3 lysine 9 trimethylation (H3K9me3) , histone H3 lysine 27 trimethylation (H3K27me3) and a increase of histone H3 lysine 27 acetylation(H3K27Ac).Notably, a significant reduction of the H3K9me3 and H3K27me3 and the increment of H3K27Ac occupancy on the promoter region of EGR1 triggers EGR1 transcription, translation, sumoylation and activation which upregulates lincRNA H19. Strikingly, H19 may induce and activate tumor-specific pyruvate kinase M2 (PKM2) which is essential for the Warburg effect in its dimer and for gene expression in its teramer during tumorigenesis. Our results imply that miR675 is involved in the epigenetic regulation of H3K9me3, H3k27me3 and H3K27Ac for gene expression and function during hepatocarcinogenesis (e.g.C-myc,Pim1,Ras,CyclinD1,RB1).These findings sheds light on the significance of miR675-HP1α-EGR1-H19-PKM2 cascade signaling pathway in liver cancer.
Collapse
|
9
|
Gao L, Liu Y, Wen Y, Wu W. LncRNA H19-mediated mouse cleft palate induced by all-trans retinoic acid. Hum Exp Toxicol 2016; 36:395-401. [DOI: 10.1177/0960327116651121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Long noncoding RNAs (lncRNAs) are the new class of transcripts and pervasively transcribed in the genome, which have been found to play important functional roles in many tissues and organs. LncRNAs can interact with target gene to exert their functions. However, the function and mechanism of lncRNA in cleft palate (CP) development remain elusive. Here, we investigated the role of lncRNA H19 and its target gene insulin-like growth factor 2 (IGF2) in CP of mice. All-trans retinoic acid (atRA) is a well-known teratogenic effecter of CP. After establishment of the CP mouse model using atRA in vivo, we found that the rate of CP in mice was 100%. The tail lengths of fetuses in atRA-treated mice were shorter than those of control mice from embryonic day (E)12 to E17. The expression of lncRNA H19 and IGF2 were embryo age-related differences between atRNA-treated and control mice. In addition, the the relationship between lncRNA H19 and IGF2 were negative correlation in the critical period of developmental palate. These findings suggest that lncRNA H19 mediate atRA-induced CP in mice.
Collapse
Affiliation(s)
- L Gao
- School of Public Health, Xinxiang Medical College, Xinxiang, Henan, People’s Republic of China
- College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Y Liu
- School of Pharmacy, Xinxiang Medical College, Xinxiang, Henan, People’s Republic of China
| | - Y Wen
- School of Public Health, Xinxiang Medical College, Xinxiang, Henan, People’s Republic of China
| | - W Wu
- School of Public Health, Xinxiang Medical College, Xinxiang, Henan, People’s Republic of China
| |
Collapse
|
10
|
Taucher V, Mangge H, Haybaeck J. Non-coding RNAs in pancreatic cancer: challenges and opportunities for clinical application. Cell Oncol (Dordr) 2016; 39:295-318. [DOI: 10.1007/s13402-016-0275-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2016] [Indexed: 01/17/2023] Open
|
11
|
Zheng LL, Li JH, Wu J, Sun WJ, Liu S, Wang ZL, Zhou H, Yang JH, Qu LH. deepBase v2.0: identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data. Nucleic Acids Res 2015; 44:D196-202. [PMID: 26590255 PMCID: PMC4702900 DOI: 10.1093/nar/gkv1273] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023] Open
Abstract
Small non-coding RNAs (e.g. miRNAs) and long non-coding RNAs (e.g. lincRNAs and circRNAs) are emerging as key regulators of various cellular processes. However, only a very small fraction of these enigmatic RNAs have been well functionally characterized. In this study, we describe deepBase v2.0 (http://biocenter.sysu.edu.cn/deepBase/), an updated platform, to decode evolution, expression patterns and functions of diverse ncRNAs across 19 species. deepBase v2.0 has been updated to provide the most comprehensive collection of ncRNA-derived small RNAs generated from 588 sRNA-Seq datasets. Moreover, we developed a pipeline named lncSeeker to identify 176 680 high-confidence lncRNAs from 14 species. Temporal and spatial expression patterns of various ncRNAs were profiled. We identified approximately 24 280 primate-specific, 5193 rodent-specific lncRNAs, and 55 highly conserved lncRNA orthologs between human and zebrafish. We annotated 14 867 human circRNAs, 1260 of which are orthologous to mouse circRNAs. By combining expression profiles and functional genomic annotations, we developed lncFunction web-server to predict the function of lncRNAs based on protein-lncRNA co-expression networks. This study is expected to provide considerable resources to facilitate future experimental studies and to uncover ncRNA functions.
Collapse
Affiliation(s)
- Ling-Ling Zheng
- RNA Information Center, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jun-Hao Li
- RNA Information Center, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jie Wu
- RNA Information Center, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Wen-Ju Sun
- RNA Information Center, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Shun Liu
- RNA Information Center, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Ze-Lin Wang
- RNA Information Center, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Hui Zhou
- RNA Information Center, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jian-Hua Yang
- RNA Information Center, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Liang-Hu Qu
- RNA Information Center, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
12
|
Vitiello M, Tuccoli A, Poliseno L. Long non-coding RNAs in cancer: implications for personalized therapy. Cell Oncol (Dordr) 2014; 38:17-28. [PMID: 25113790 DOI: 10.1007/s13402-014-0180-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2014] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs, pseudogenes and circRNAs) have recently come into light as powerful players in cancer pathogenesis and it is becoming increasingly clear that they have the potential of greatly contributing to the spread and success of personalized cancer medicine. In this concise review, we briefly introduce these three classes of long non-coding RNAs. We then discuss their applications as diagnostic and prognostic biomarkers. Finally, we describe their appeal as targets and as drugs, while pointing out the limitations that still lie ahead of their definitive entry into clinical practice.
Collapse
Affiliation(s)
- Marianna Vitiello
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori c/o IFC-CNR, via Moruzzi 1, 56124, Pisa, Italy
| | | | | |
Collapse
|
13
|
Qi P, Xu MD, Ni SJ, Shen XH, Wei P, Huang D, Tan C, Sheng WQ, Zhou XY, Du X. Down-regulation of ncRAN, a long non-coding RNA, contributes to colorectal cancer cell migration and invasion and predicts poor overall survival for colorectal cancer patients. Mol Carcinog 2014; 54:742-50. [PMID: 24519959 DOI: 10.1002/mc.22137] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 01/07/2014] [Accepted: 01/14/2014] [Indexed: 01/09/2023]
Abstract
Accumulating evidence has indicated that long non-coding RNAs (lncRNAs) play critical roles in regulating cellular processes, such as cell growth and apoptosis, as well as cancer progression and metastasis. ncRAN (non-coding RNA expressed in aggressive neuroblastoma) was previously shown to be dramatically up-regulated and associated with poor prognosis in human neuroblastoma. This lncRNA also plays an important role in bladder cancer growth and invasion. Colorectal cancer (CRC) progression typically follows a complex cascade from primary malignancy to distant metastasis, but whether the aberrant expression of ncRAN in CRC is associated with malignancy, metastasis or prognosis remains unknown. In this study, we demonstrated that ncRAN expression is significantly down-regulated in tumor tissue and CRC cell lines compared with adjacent normal tissue and a normal intestinal mucous cell line. Reduced expression of ncRAN was detected in poorly differentiated or undifferentiated tumors and in tumors with liver metastases. Kaplan-Meier analysis indicated that patients with lower ncRAN expression have a worse overall survival. Moreover, multivariate analysis revealed that decreased expression of ncRAN is an independent predictor of overall survival. Our experimental data indicated that ncRAN mediates the in vitro migration and invasion of CRC cells. Together, these results suggest that ncRAN might represent a novel prognostic indicator, a biomarker for the early detection of metastasis and a target for gene therapy in CRC.
Collapse
Affiliation(s)
- Peng Qi
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Mi-Die Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Shu-Juan Ni
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Xiao-Han Shen
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Ping Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Dan Huang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Cong Tan
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Wei-Qi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Xiao-Yan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Xiang Du
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
14
|
The miRNA-mediated cross-talk between transcripts provides a novel layer of posttranscriptional regulation. ADVANCES IN GENETICS 2014; 85:149-99. [PMID: 24880735 DOI: 10.1016/b978-0-12-800271-1.00003-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Endogenously expressed transcripts that are posttranscriptionally regulated by the same microRNAs (miRNAs) will, in principle, compete for the binding of their shared small noncoding RNA regulators and modulate each other's abundance. Recently, the levels of some coding as well as noncoding transcripts have indeed been found to be regulated in this way. Transcripts that engage in such regulatory interactions are referred to as competitive endogenous RNAs (ceRNAs). This novel layer of posttranscriptional regulation has been shown to contribute to diverse aspects of organismal and cellular biology, despite the number of functionally characterized ceRNAs being as yet relatively low. Importantly, increasing evidence suggests that the dysregulation of some ceRNA interactions is associated with disease etiology, most preeminently with cancer. Here we review how posttranscriptional regulation by miRNAs contributes to the cross-talk between transcripts and review examples of known ceRNAs by highlighting the features underlying their interactions and what might be their biological relevance.
Collapse
|
15
|
Chan LH, Wang W, Yeung W, Deng Y, Yuan P, Mak KK. Hedgehog signaling induces osteosarcoma development through Yap1 and H19 overexpression. Oncogene 2013; 33:4857-66. [PMID: 24141783 DOI: 10.1038/onc.2013.433] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/06/2013] [Accepted: 09/13/2013] [Indexed: 02/06/2023]
Abstract
Osteosarcoma is one of the most common bone tumors. However, the genetic basis for its pathogenesis remains elusive. Here, we investigated the roles of Hedgehog (Hh) signaling in osteosarcoma development. Genetically-engineered mice with ubiquitous upregulated Hh signaling specifically in mature osteoblasts develop focal bone overgrowth, which greatly resembles the early stage of osteosarcoma. However, these mice die within three months, which prohibits further analysis of tumor progression. We therefore generated a mouse model with partial upregulated Hh signaling in mature osteoblasts and crossed it into a p53 heterozygous background to potentiate tumor development. We found that these mutant mice developed malignant osteosarcoma with high penetrance. Isolated primary tumor cells were mainly osteoblastic and highly proliferative with many characteristics of human osteosarcomas. Allograft transplantation into immunocompromised mice displayed high tumorigenic potential. More importantly, both human and mouse tumor tissues express high level of yes-associated protein 1 (Yap1), a potent oncogene that is amplified in various cancers. We show that inhibition of Hh signaling reduces Yap1 expression and knockdown of Yap1 significantly inhibits tumor progression. Moreover, long non-coding RNA H19 is aberrantly expressed and induced by upregulated Hh signaling and Yap1 overexpression. Our results demonstrate that aberrant Hh signaling in mature osteoblasts is responsible for the pathogenesis of osteoblastic osteosarcoma through Yap1 and H19 overexpression.
Collapse
Affiliation(s)
- L H Chan
- Key Laboratories for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - W Wang
- Key Laboratories for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - W Yeung
- Key Laboratories for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Y Deng
- Key Laboratories for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - P Yuan
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR
| | - K K Mak
- 1] Key Laboratories for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR [2] Stem Cell and Regeneration Thematic Research Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR [3] CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
16
|
MicroRNAs and long non-coding RNAs: prospects in diagnostics and therapy of cancer. Radiol Oncol 2013; 47:311-8. [PMID: 24294175 PMCID: PMC3814275 DOI: 10.2478/raon-2013-0062] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 08/20/2013] [Indexed: 12/11/2022] Open
Abstract
Background Non-coding RNAs (ncRNAs) are key regulatory molecules in cellular processes, and are potential biomarkers in many diseases. Currently, microRNAs and long non-coding RNAs are being pursued as diagnostic and prognostic biomarkers, and as therapeutic tools in cancer, since their expression profiling is able to distinguish different cancer types and classify their sub-types. Conclusions There are numerous studies confirming involvement of ncRNAs in cancer initiation, development and progression, but have only been recently identified as new diagnostic and prognostic tools. This can be beneficial in future medical cancer treatment options, since ncRNAs are natural antisense interactors included in regulation of many genes connected to survival and proliferation. Research is directed in development of useful markers for diagnosis and prognosis in cancer and in developing new RNA-based cancer therapies, of which some are already in clinical trials.
Collapse
|
17
|
Wake N, Takao T, Asanoma K, Kato H. Establishment of a new diagnostic method for hydropic villi by using TSSC3 antibody. J Obstet Gynaecol Res 2013; 39:1230-5. [PMID: 23803005 DOI: 10.1111/jog.12100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/12/2013] [Indexed: 12/01/2022]
Abstract
A total of 297 samples of hydropic villi were classified according to DNA polymorphisms as androgenetic moles, dispermic triploids, or biparental diploids. A subset of 267 appropriate samples was included in the study. Most of the macroscopically diagnosed complete mole cases were genetically androgenetic in origin. The partial mole cases consisted of 30 androgenetic moles and 12 dispermic triploids. For the 59 cases macroscopically categorized as hydropic abortion, the genetic analysis revealed 38 androgenetic moles, seven dispermic triploids and 14 biparental diploids. These results showed that a new diagnostic method was required for the management of patients with hydropic villi. We identified the TSSC imprint gene of which expression was shown in normal and partial mole villi but was silenced in complete mole villi. Immunohistochemistry using the TSSC3 antibody demonstrated its efficacy as the differential diagnostic method. TSSC3 play an important role in the differentiation from trophoblast stem cells to progenitors and/or labyrinth trophoblast through the TSSC3/PI3K/Akt/Mash2 signaling pathway.
Collapse
Affiliation(s)
- Norio Wake
- Research Center for Environment and Developmental Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | |
Collapse
|
18
|
Kim T, Reitmair A. Non-Coding RNAs: Functional Aspects and Diagnostic Utility in Oncology. Int J Mol Sci 2013; 14:4934-68. [PMID: 23455466 PMCID: PMC3634484 DOI: 10.3390/ijms14034934] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/09/2013] [Accepted: 02/18/2013] [Indexed: 02/06/2023] Open
Abstract
Noncoding RNAs (ncRNAs) have been found to have roles in a large variety of biological processes. Recent studies indicate that ncRNAs are far more abundant and important than initially imagined, holding great promise for use in diagnostic, prognostic, and therapeutic applications. Within ncRNAs, microRNAs (miRNAs) are the most widely studied and characterized. They have been implicated in initiation and progression of a variety of human malignancies, including major pathologies such as cancers, arthritis, neurodegenerative disorders, and cardiovascular diseases. Their surprising stability in serum and other bodily fluids led to their rapid ascent as a novel class of biomarkers. For example, several properties of stable miRNAs, and perhaps other classes of ncRNAs, make them good candidate biomarkers for early cancer detection and for determining which preneoplastic lesions are likely to progress to cancer. Of particular interest is the identification of biomarker signatures, which may include traditional protein-based biomarkers, to improve risk assessment, detection, and prognosis. Here, we offer a comprehensive review of the ncRNA biomarker literature and discuss state-of-the-art technologies for their detection. Furthermore, we address the challenges present in miRNA detection and quantification, and outline future perspectives for development of next-generation biodetection assays employing multicolor alternating-laser excitation (ALEX) fluorescence spectroscopy.
Collapse
Affiliation(s)
- Taiho Kim
- Nesher Technologies, Inc., 2100 W. 3rd St. Los Angeles, CA 90057, USA.
| | | |
Collapse
|
19
|
Long non-coding RNA in cancer. Int J Mol Sci 2013; 14:4655-69. [PMID: 23443164 PMCID: PMC3634483 DOI: 10.3390/ijms14034655] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/03/2013] [Accepted: 01/31/2013] [Indexed: 12/31/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are pervasively transcribed in the genome and are emerging as new players in tumorigenesis due to their various functions in transcriptional, posttranscriptional and epigenetic mechanisms of gene regulation. LncRNAs are deregulated in a number of cancers, demonstrating both oncogenic and tumor suppressive roles, thus suggesting their aberrant expression may be a substantial contributor in cancer development. In this review, we will summarize their emerging role in human cancer and discuss their perspectives in diagnostics as potential biomarkers.
Collapse
|
20
|
Abstract
The conventional view of gene regulation in biology has centered around protein-coding genes via the central dogma of DNA-->mRNA-->protein. The discovery of thousands of long non-coding RNAs (lncRNAs) has certainly changed our view of the complexity of mammalian genomes and transcriptomes, as well as many other aspects of biology including transcriptional and posttranscriptional regulation of gene expression. Accumulating reports of misregulated lncRNA expression across numerous cancer types suggest that aberrant lncRNA expression may be a major contributor to tumorigenesis. Here, we summarize recent data about the biological characteristics of lncRNAs in cancer pathways. These include examples with a wide range of molecular mechanisms involved in gene regulation. We also consider the medical implications, and discuss how lncRNAs can be used for cancer diagnosis and prognosis, and serve as potential therapeutic targets. As more examples of regulation by lncRNA are uncovered, one might predict that the large transcripts will eventually rival small RNAs and proteins in their versatility as regulators of genetic information.
Collapse
|
21
|
Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas. Mol Cancer 2011; 10:38. [PMID: 21489289 PMCID: PMC3098824 DOI: 10.1186/1476-4598-10-38] [Citation(s) in RCA: 1330] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 04/13/2011] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as new players in the cancer paradigm demonstrating potential roles in both oncogenic and tumor suppressive pathways. These novel genes are frequently aberrantly expressed in a variety of human cancers, however the biological functions of the vast majority remain unknown. Recently, evidence has begun to accumulate describing the molecular mechanisms by which these RNA species function, providing insight into the functional roles they may play in tumorigenesis. In this review, we highlight the emerging functional role of lncRNAs in human cancer.
Collapse
Affiliation(s)
- Ewan A Gibb
- British Columbia Cancer Agency Research Centre, Vancouver, Canada.
| | | | | |
Collapse
|
22
|
Blomberg LA, Schreier L, Li RW. Characteristics of peri-implantation porcine concepti population and maternal milieu influence the transcriptome profile. Mol Reprod Dev 2011; 77:978-89. [PMID: 21104768 DOI: 10.1002/mrd.21253] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Asynchrony of trophectoderm elongation, gestational days 11-12, is evident in porcine concepti, and rapid progression through this phase has been associated with conceptus competency. The goal of the current study was to determine the extent of transcriptomic responses of concepti to developmental delay and their physiological implications. Gestational day 11 concepti with the same morphology, ovoid and 7-8 mm, were isolated and designated as control or developmentally delayed if collected from a homogenous ovoid conceptus population or heterogeneous conceptus population (ovoid to filamentous), respectively. Total RNA prepared from four distinct control and four distinct developmentally delayed concepti, was analyzed using an Agilent high-density custom porcine microarray. Two hundred nine transcripts were found differentially expressed between normal and developmentally delayed concepti. Functional analysis of these genes indicated that a significant number of the genes regulate signal transduction/transcription, organismal development, metabolism, and cell adhesion and can be modulated by transforming growth factor β1 (TGFβ1). Ten genes were selected for real-time PCR validation of differential expression based on a known role in steroid synthesis, endometrium receptivity, and modulation of trophoblast differentiation/growth or interaction with TGFβ1. As in the microarray, all except one, achaete-scute complex homolog 2, were preferentially up-regulated in delayed concepti. Overall, findings suggested that despite similar morphology, the transcriptome of developmentally delayed concepti is distinct from control counterparts. Also highlighted were ways by which the conceptus' microenvironment might be affected and developmental factors that may be of interest to interrogate further to determine if, and how, they affect embryo competency/elongation.
Collapse
|
23
|
Abstract
Genomic imprinting is an epigenetic marking of genes in the parental germline that ensures the stable transmission of monoallelic gene expression patterns in a parent-of-origin-specific manner. Epigenetic marking systems are thus able to regulate gene activity independently of the underlying DNA sequence. Several imprinted gene products regulate cell proliferation and fetal growth; loss of their imprinted state, which effectively alters their dosage, might promote or suppress tumourigenic processes. Conversely, global epigenetic changes that underlie tumourigenesis might affect imprinted gene expression. Here, we review imprinted genes with regard to their roles in epigenetic predisposition to cancer, and discuss acquired epigenetic changes (DNA methylation, histone modifications and chromatin conformation) either as a result of cancer or as an early event in neoplasia. We also address recent work showing the potential role of noncoding RNA in modifying chromatin and affecting imprinted gene expression, and summarise the effects of loss of imprinting in cancer with regard to the roles that imprinted genes play in regulating growth signalling cascades. Finally, we speculate on the clinical applications of epigenetic drugs in cancer.
Collapse
|
24
|
Cheung ANY, Zhang HJ, Xue WC, Siu MKY. Pathogenesis of choriocarcinoma: clinical, genetic and stem cell perspectives. Future Oncol 2009; 5:217-31. [PMID: 19284380 DOI: 10.2217/14796694.5.2.217] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Choriocarcinoma is a unique malignant neoplasm composed of mononuclear cytotrophoblasts and multinucleated syncytiotrophoblasts that produce human chorionic gonadotrophin. Choriocarcinoma can occur after a pregnancy, as a component of germ cell tumors, or in association with a poorly differentiated somatic carcinoma, each with distinct clinical features. Cytogenetic and molecular studies, predominantly on gestational choriocarcinoma, revealed the impact of oncogenes, tumor suppressor genes and imprinting genes on its pathogenesis. The role of stem cells in various types of choriocarcinoma has been studied recently. This review will discuss how such knowledge can enhance our understanding of the pathogenesis of choriocarcinoma, enable exploration of novel anti-choriocarcinoma targeted therapy and possibly improve our insight on embryological and placental development.
Collapse
Affiliation(s)
- Annie N Y Cheung
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China.
| | | | | | | |
Collapse
|
25
|
Duselis AR, Vrana PB. Assessment and disease comparisons of hybrid developmental defects. Hum Mol Genet 2007; 16:808-19. [PMID: 17339267 DOI: 10.1093/hmg/ddm025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rodents of the genus Peromyscus are among the most common North American mammals. Crosses between natural populations of two of these species, P. maniculatus (BW) and P. polionotus (PO), produce parent-of-origin effects on growth and development. BW females mated to PO males produce growth-retarded offspring. In contrast, PO females mated to BW males produce overgrown but dysmorphic conceptuses. Variation in imprinted loci and control of genomic imprinting appear to underlie the hybrid effects. Prior morphological and genetic analyses have focused on placental and post-natal growth. Here, we assess the frequency and scope of embryonic defects. The most frequent outcome of the PO x BW cross is death prior to embryonic day 13. Conceptuses lacking an embryo proper are also observed as in gestational trophoblast disease. Among the common embryonic phenotypes described and tabulated are edema, blood vessel enlargement/hemorrhaging, macroglossia, retention of nucleated erythrocytes, placentomegaly. We investigate expression of loci known to be mis-regulated in human growth/placental disorders and/or mouse knockouts with similar phenotypes. These loci are Igf2, Cdkn1c, Grb10, Gpc3, Phlda2 and Rb1. All exhibited significant differences in either placental or embryonic expression levels at one or more of the three timepoints examined. The data underscore the importance of placental gene expression on embryonic defects. We suggest that the hybrid defects offer a novel system to understand how natural allelic combinations interact to produce disease phenotypes. We propose that such interactions and their resulting epimutations may similarly underlie the phenotypic and causal heterogeneity seen in many human diseases.
Collapse
Affiliation(s)
- Amanda R Duselis
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA 92799-1700, USA
| | | |
Collapse
|
26
|
Abstract
The application of high throughput expression profiling and other advanced molecular biology laboratory techniques has revolutionised the management of cancers and is gaining attention in the field of gynaecological cancers. Such new approaches may help to improve our understanding of carcinogenesis and facilitate screening and early detection of gynaecological cancers and their precursors. Individualised prediction of patients' responses to therapy and design of personalised molecular targeted therapy is also possible. The studies of various molecular targets involved in the various signal pathways related to carcinogenesis are particularly relevant to such applications. At the moment, the application of detection and genotyping of human papillomavirus in management of cervical cancer is one of the most well established appliances of molecular targets in gynaecological cancers. Methylation, telomerase and clonality studies are also potentially useful, especially in assisting diagnosis of difficult clinical scenarios. This post-genomic era of clinical medicine will continue to make a significant impact in routine pathology practice. The contribution of pathologists is indispensable in analysis involving tissue microarray. On the other hand, both pathologists and bedside clinicians should be aware of the limitation of these molecular targets. Interpretation must be integrated with clinical and histopathological context to avoid misleading judgement. The importance of quality assurance of all such molecular techniques and their ethical implications cannot be over-emphasised.
Collapse
Affiliation(s)
- Annie N Y Cheung
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China.
| |
Collapse
|
27
|
Duselis AR, Obergfell C, Mack JA, O'Neill MJ, Nguyen QK, O'Neill RJ, Vrana PB. Changes in cell cycle and extracellular matrix gene expression during placental development in deer mouse (Peromyscus) hybrids. Reprod Fertil Dev 2007; 19:695-708. [PMID: 17601418 DOI: 10.1071/rd07015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Accepted: 05/06/2007] [Indexed: 12/20/2022] Open
Abstract
Crosses between two species of the rodent genus Peromyscus produce defects in both growth and development. The defects are pronounced in the hybrid placentas. Peromyscuys maniculatus (strain BW) females mated to P. polionotus (strain PO) males produce placentas half the size of the parental species, as well as growth-retarded embryos. In contrast, PO females mated to BW males result in defective conceptuses that display embryonic and placental overgrowth. These ‘parent-of-origin’-dependent phenotypes are consistent with previous studies that demonstrated altered expression of imprinted genes and genetic linkage of the overgrowth phenotypes to imprinted domains. In the present study, we take a broader approach in assessing perturbations in hybrid placental gene expression through the use of Mus musculus cDNA microarrays. In verifying classes of genes identified in microarray screens differentially regulated during hybrid placental development, we focused on those influencing the cell cycle and extracellular matrix (ECM). Our work suggests that cell cycle regulators at the G1/S phase check-point are downregulated in the large hybrid placenta, whereas the small hybrid placenta is more variable. The ECM genes are typically downstream targets of cell cycle regulation and their misregulation is consistent with many of the dysmorphic phenotypes. Thus, these data suggest imbalances in proliferation and differentiation in hybrid placentation.
Collapse
Affiliation(s)
- Amanda R Duselis
- Department of Biological Chemistry, Sprague Hall 350, School of Medicine, University of California Irvine, Irvine, CA 92799-1700, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Kato H, Matsuda T, Hirakawa T, Ueda K, Inoue T, Miyanari Y, Asanoma K, Nakano H, Wake N. Differential Diagnosis Between Complete and Partial Mole by TSSC3 Antibody Completely Correlates to DNA Diagnosis. ACTA ACUST UNITED AC 2005; 14:164-9. [PMID: 16106198 DOI: 10.1097/01.pas.0000162757.91649.a3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Complete hydatidiform moles (CHMs) are a type of androgenetic fertilization without an ovum. Cases of CHM exhibit a generalized swelling of the villi and are known to be highly associated with persistent disease or carcinoma. In contrast, partial hydatidiform moles (PHMs) also show characteristic hydropic changes among the villi, but the incidence of secondary disease is relatively low. Because PHMs are fertilized by one ovum and two sperm and CHMs are fertilized by one or two sperm alone, we considered whether or not maternally imprinted genes might be useful for achieving a differential diagnosis. The validity of the imprinted genes in CHMs was assessed by implementation of a microarray technique. Among the genes examined, TSSC3, SLC22A1L, KCNQ1, and Decorin were shown to be down-regulated, and TSSC3 was the most markedly suppressed of these genes. In this study, 20 cases of CHM, the diagnosis of which was confirmed by DNA polymorphism, were investigated. In all of these cases, the expression of TSSC3 was completely absent, as determined by Western blot analysis. Conversely, 12 cases of PHM, also diagnosed by DNA polymorphism, were examined here; in all of these 12 cases, TSSC3 was found to be expressed normally. Immunohistochemical (IHC) analysis also produced the same results. The complete silencing of TSSC3 in cases of CHM will provide a novel, convenient strategy for the diagnosis of molar lesions in the placenta.
Collapse
Affiliation(s)
- Hidenori Kato
- Division of Molecular and Cell Therapeutics, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Oita, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Xue WC, Chan KYK, Feng HC, Chiu PM, Ngan HYS, Tsao SW, Cheung ANY. Promoter hypermethylation of multiple genes in hydatidiform mole and choriocarcinoma. J Mol Diagn 2005; 6:326-34. [PMID: 15507671 PMCID: PMC1867494 DOI: 10.1016/s1525-1578(10)60528-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The methylation status of genes in hydatidiform mole and choriocarcinoma and its significance is relatively unexplored. We investigated the methylation status of the promoter regions of six genes, p16, HIC-1, TIMP3, GSTP1, death-associated protein kinase (DAPK), and E-cadherin in 54 hydatidiform moles, five choriocarcinomas, and 10 first trimester placenta by methylation-specific polymerase chain reaction (PCR). Immunohistochemical expression of p16, TIMP3, and E-cadherin, and quantitative real-time RT-PCR of p16 was also performed. Among the six genes examined, the promoter region of four genes (E-cadherin, HIC-1, p16, TIMP3) in choriocarcinoma and three genes (E-cadherin, HIC-1, p16) in hydatidiform mole exhibited aberrant methylation whereas none was hypermethylated in normal placenta. There was a significant correlation between methylation and reduced expression of p16, E-cadherin, and TIMP3 (P < 0.001). Fifteen of the 54 patients with hydatidiform mole developed gestational trophoblastic neoplasia requiring chemotherapy. Promoter hypermethylation of p16 alone, or combined with E-cadherin, was significantly correlated to such development (P = 0.001, 0.0005, respectively). Hypermethylation of multiple genes, especially p16, might be related to the subsequent development of gestational trophoblastic neoplasia.
Collapse
Affiliation(s)
- Wei-Cheng Xue
- Department of Pathology, Hong Kong Jockey Club Clinical Research Centre, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Matsuda T, Wake N. Genetics and molecular markers in gestational trophoblastic disease with special reference to their clinical application. Best Pract Res Clin Obstet Gynaecol 2004; 17:827-36. [PMID: 14614883 DOI: 10.1016/s1521-6934(03)00096-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gestational trophoblastic disease (GTD) encompasses a diverse group of lesions with specific cytogenetic and molecular pathogenesis. Although cytogenetic studies have been extensively reported, the molecular pathogenesis is poorly understood. We will summarize some of the recent molecular observations and correlate them with the pathology of GTD. Complete mole is androgenetic in origin. Thus, if a monoallelic contribution can be shown in complete mole, this would render the gene susceptible to functional inactivation by 'one-hit' kinetics. Alternatively, uniparental transmission of genes that are subject to parental imprinting in humans would impair their regulation. Loss of NECC1 expression, biallelic deletions at the critical (7p12-7q11.23) region and enhanced H19 expression in choriocarcinoma would reflect the genetic features exhibited by the putative forerunner, complete mole. In addition to the unique genetic features shown in GTD, alterations in gene expression profiles accompanied by malignant conversion of trophoblasts would facilitate the development of choriocarcinogenesis from complete mole. With recent advances in molecular techniques, further work is still necessary to provide a better understanding and useful markers for persistent trophoblastic disease. These may provide useful prognostic indications that may guide the different diagnosis of GTD.
Collapse
Affiliation(s)
- Takao Matsuda
- Department of Reproductive Physiology and Gynecology, Medical Institute of Bioregulation, Kyushu University, Beppu, Oita, Japan.
| | | |
Collapse
|
31
|
Durand S, Angeletti S, Genti-Raimondi S. GTT1/StarD7, a Novel Phosphatidylcholine Transfer Protein-like Highly Expressed in Gestational Trophoblastic Tumour:. Placenta 2004; 25:37-44. [PMID: 15013637 DOI: 10.1016/s0143-4004(03)00214-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Revised: 07/25/2003] [Accepted: 07/29/2003] [Indexed: 11/24/2022]
Abstract
We report the cDNA cloning and characterization of GTT1/StarD7, a novel gestational trophoblastic tumour gene, initially identified by its up-regulated expression in the choriocarcinoma JEG-3 cell line with respect to their nonmalignant counterpart, complete hydatidiform mole and normal trophoblastic tissue. Using the differential display fragment as a probe we screened placenta and HeLa cDNA libraries and isolated a clone carrying a 3315 bp insert (accession number AF270647). This cDNA encodes a protein of 295 amino acid residues with a molecular weight of approximately 34.7 kDa and a pI of 5.79. Computer-mediated homology search revealed that the deduced amino acid sequence had similarity to phosphatidylcholine transfer protein (PCTP) with a conserved StAR-related lipid transfer (START) domain extending between the amino acids 66 to 250. The GTT1 gene contains at least 9 exons spread nearly 30 kb on chromosome 2p12-2p11.2. Northern blot assays of total RNA derived from normal early placenta (NEP), complete hydatidiform mole (CHM) and JEG-3 cell line revealed a 3.5 kb mRNA expressed exclusively in the JEG-3 cell line. However, semiquantitative RT-PCR analysis performed with the same RNA samples demonstrated GTT1 expression throughout all of them with the highest level in JEG-3 cell line. Examination of GTT1 mRNA expression by semiquantitative RT-PCR assays in a series of tumour cell lines indicated wide-spread GTT1 expression with predominance in both choriocarcinoma JEG-3 and JAR cells, colorectal adenocarcinoma HT29 and hepatocellular carcinoma HepG2 cells. In conclusion, the highly GTT1 expression profile in JEG-3 and JAR cell lines and its lipid binding domain suggest that GTT1 may play an important role in the phospholipid-mediated signalling of trophoblastic tumour cellular events.
Collapse
Affiliation(s)
- S Durand
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina
| | | | | |
Collapse
|
32
|
Kim SJ, Park SE, Lee C, Lee SY, Kim IH, An HJ, Oh YK. Altered imprinting, promoter usage, and expression of insulin-like growth factor-II gene in gestational trophoblastic diseases. Gynecol Oncol 2003; 88:411-8. [PMID: 12648595 DOI: 10.1016/s0090-8258(02)00143-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE We aimed to understand the involvement of imprinted genes in the pathogenesis of gestational trophoblastic diseases (GTD) such as hydatidiform mole (H-mole) and gestational trophoblastic tumors (GTT). METHODS An allelic-typing assay was performed using a PCR-RFLP-based method for identification of heterozygous informative cases. The usage of insulin-like growth factor-II (IGF2) promoters was examined by RT-PCR using promoter-specific primers. The mRNA expression of IGF2 and H19 was quantified using a densitometer. RESULTS The imprinting of IGF2 and H19 was maintained in all normal placenta tissues (n = 15) but relaxed in GTD (n = 47). Loss of imprinting (LOI) of IGF2 was in the order of GTT (57%) > complete H-mole (43%) > partial H-mole (25%). Similarly, LOI of H19 was in the order of GTT (40%) > complete H-mole (18%) > partial H-mole (0%). Promoter usage pattern of IGF2 changed with gestation stage of normal placentae and GTD. In normal placentae, the usage of promoter P1 was higher than that of P4 in the first trimester but lowered in the full term. H-mole and GTT predominantly used promoter P1 with relative silencing of promoter P4. Although normal early placenta and various GTD tissues showed the similar usage of IGF2 promoter P1, GTT tissues revealed the higher expression levels of IGF2 but a down-regulation of H19 relative to the normal early placentae. CONCLUSIONS These results suggest that LOI, deregulation of IGF2 promoters, and the altered expression levels of IGF2 and H19 genes might be associated with the progression of GTD.
Collapse
Affiliation(s)
- Sung Jo Kim
- Comprehensive Gynecologic Cancer Center, Pundang CHA General Hospital, Sungnam, Kyonggi-do, South Korea
| | | | | | | | | | | | | |
Collapse
|
33
|
Durand S, Abadie P, Angeletti S, Genti-Raimondi S. Identification of multiple differentially expressed messenger RNAs in normal and pathological trophoblast. Placenta 2003; 24:209-18. [PMID: 12566248 DOI: 10.1053/plac.2002.0885] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In an attempt to assess the molecular basis of phenotypic alterations present in the gestational trophoblastic diseases (GTDs) and to identify genes whose expression is specifically associated to these placental proliferative disorders we performed differential display techniques. Initially 19 candidate gene fragments were identified and differential expression was confirmed in eight of these fragments by Northern blot analysis. At the mRNA level ribosomal L26 (rL26), ribosomal L27 (rL27), a new Krüppel type zinc finger protein and TIS11d were preferentially expressed in normal early placenta (NEP) relative to complete hydatidiform mole (CHM), persistent gestational trophoblastic disease (PGTD) and choriocarcinoma JEG-3 cell line. In contrast, heterogeneous ribonucleoprotein A1 (hnRNPA1), the ferritin light chain mRNA, and the uncharacterized protein KIAA0992 were predominantly expressed in JEG-3 cell line. Finally, decorin, a prototype member of an expanding family of small leucine-rich proteoglycans, showed high expression in CHM. In addition we demonstrated by immunohistochemistry analysis that increased decorin mRNA in CHM reflected a genuine augmentation in average steady state mRNA levels within cells. Taken together, these findings provide several interesting candidates for regulation of tumorigenic expression as well as early placentation development, including those involved in protein synthesis (rL26 and rL27), metabolism (ferritin light chain), intercellular communication (decorin) and regulation of gene expression (Krüppel-like zinc finger, TIS11d and hnRNPA1). Information about such alterations in gene expression could be useful for elucidating the genetic events associated to gestational trophoblastic pathogenesis, developing new diagnostic markers, or determining novel therapeutic targets.
Collapse
Affiliation(s)
- S Durand
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ala Oeste, Ciudad Universitaria, Argentina
| | | | | | | |
Collapse
|
34
|
Asanoma K, Matsuda T, Kondo H, Kato K, Kishino T, Niikawa N, Wake N, Kato H. NECC1, a candidate choriocarcinoma suppressor gene that encodes a homeodomain consensus motif. Genomics 2003; 81:15-25. [PMID: 12573257 DOI: 10.1016/s0888-7543(02)00011-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We isolated a candidate choriocarcinoma suppressor gene from a PCR-based subtracted fragmentary cDNA library between normal placental villi and the choriocarcinoma cell line CC1. This gene comprises an open reading frame of 219 nt encoding 73 amino acids and contains a homeodomain as a consensus motif. This gene, designated NECC1 (not expressed in choriocarcinoma clone 1), is located on human chromosome 4q11-q12. NECC1 expression is ubiquitous in the brain, placenta, lung, smooth muscle, uterus, bladder, kidney, and spleen. Normal placental villi expressed NECC1, but all choriocarcinoma cell lines examined and most of the surgically removed choriocarcinoma tissue samples failed to express it. We transfected this gene into choriocarcinoma cell lines and observed remarkable alterations in cell morphology and suppression of in vivo tumorigenesis. Induction of CSH1 (chorionic somatomammotropin hormone 1) by NECC1 expression suggested differentiation of choriocarcinoma cells to syncytiotrophoblasts. Our results suggest that loss of NECC1 expression is involved in malignant conversion of placental trophoblasts.
Collapse
Affiliation(s)
- Kazuo Asanoma
- Division of Molecular and Cell Therapeutics, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, 4546 Tsurumihara, Beppu City, Oita 874-0838, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Grabmaier K, de Weijert M, Uemura H, Schalken J, Oosterwijk E. Renal cell carcinoma-associated G250 methylation and expression: in vivo and in vitro studies. Urology 2002; 60:357-62. [PMID: 12137853 DOI: 10.1016/s0090-4295(02)01711-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES In renal cell carcinoma (RCC) cell lines, expression of the RCC-associated antigen G250 correlates with hypomethylation of the investigated CpG dinucleotides in the G250 promoter region, despite the absence of a CpG island. To gain insight into the molecular mechanism leading to G250 expression in vivo, we ascertained whether this correlation between G250 gene expression and the methylation status of the G250 gene also existed in primary RCC and normal kidney tissue. METHODS G250 mRNA and protein expression was determined by reverse transcriptase-polymerase chain reaction, fluorescence activated cell sorting analysis, and immunohistochemistry in 15 RCC cell lines and 13 paired primary RCC/normal kidney tissue specimens. The methylation status of the G250 gene was determined by bisulfite genomic sequencing. RESULTS RCC cell lines revealed a clear correlation between G250 expression and hypomethylation. In contrast, no hypomethylation was observed in primary RCC compared with normal kidney tissue. The CpG dinucleotides investigated were generally completely methylated in RCC, as well as in normal kidney tissue. Furthermore, a primary culture of RCC tissue revealed increasing hypomethylation of the G250 gene in successive passages, suggesting that the G250 hypomethylation observed in vitro is tissue culture induced. CONCLUSIONS The methylation status of the G250 gene correlated with G250 expression in vitro but not in vivo.
Collapse
Affiliation(s)
- Karin Grabmaier
- Experimental Urology, Department of Urology, University Medical Center Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
36
|
Adriaenssens E, Lottin S, Berteaux N, Hornez L, Fauquette W, Fafeur V, Peyrat JP, Le Bourhis X, Hondermarck H, Coll J, Dugimont T, Curgy JJ. Cross-talk between mesenchyme and epithelium increases H19 gene expression during scattering and morphogenesis of epithelial cells. Exp Cell Res 2002; 275:215-29. [PMID: 11969291 DOI: 10.1006/excr.2002.5500] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The H19 gene is an imprinted gene expressed from the maternal allele. It is known to function as an RNA molecule. We previously reported that in breast adenocarcinoma, H19 is often overexpressed in stromal cells and preferentially located at the epithelium/stroma boundary, suggesting that epithelial/mesenchymal interactions can control H19 RNA expression. In some cases of breast adenocarcinoma with poor prognosis, H19 is overexpressed in epithelial cells. Therefore we examined whether mesenchymal factors can induce H19 expression in epithelial cells. Using quantitative RT-PCR and in situ hybridization, we found that when mammary epithelial cells were cultured in collagen gels, H19 expression was strongly up-regulated compared to when cells were cultured on plastic. Collagen gels allow three-dimensional growth of epithelial cells and morphogenetic responses to soluble factors. A conditioned medium from MRC-5 fibroblasts caused branching morphogenesis of HBL-100 cells and invasive growth of MDA-MB-231 cells, whereas MCF-7 cells were unresponsive. Induction of H19 expression correlated with morphological changes in HBL-100 and in MDA-MB-231 cells, whereas H19 expression was not induced in MCF-7 cells. Using a blocking antibody, HGF/SF was identified as the fibroblast-derived growth factor capable of inducing H19 expression and cell morphogenesis. We further demonstrated that H19 promoter activity was stimulated by various growth factors using transient transfection in MDCK epithelial cells. HGF/SF was more efficient than EGF or FGF-2 in transactivating the H19 promoter, whereas IGF-2, TGFbeta-1, and TNF-alpha were ineffective. This activation by HGF/SF was prevented by pharmacological inhibition of MAP kinase or of phospholipase C. We conclude that H19 is a target gene for HGF/SF, a known regulator of epithelial/mesenchymal interactions, and suggest that the up-regulation of H19 may be implicated in morphogenesis and/or migration of epithelial cells.
Collapse
Affiliation(s)
- Eric Adriaenssens
- Laboratoire de Biologie du Développement, UPRES-EA 1033, Villeneuve d'Ascq Cedex, 59655, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Gestational trophoblastic disease (GTD) is a heterogeneous group of diseases characterized by abnormally proliferating trophoblastic tissues. This includes partial and complete hydatidiform moles, invasive mole, choriocarcinoma and placental site trophoblastic tumour. Cytogenetic studies revealed that hydatidiform moles contain either solely (as in complete moles) or an excess (as in partial moles) of paternal contribution to the genome. Genomic imprinting is believed to play a pivotal role in the pathogenesis of hydatidiform moles. However its precise role and mechanism remains poorly understood. Hydatidiform mole carries a potential of malignant transformation. Similar to other human cancers, malignant transformation in gestational trophoblastic tumours is likely a multistep process and involves multiple genetic alterations including activation of oncogenes and inactivation of tumour suppressor genes. In addition, expression of telomerase activity, altered expression of cell--cell adhesion molecules and abnormal expression of matrix metalloproteinases have also been reported in GTD. These represent disruption of the delicate balance and regulation of cellular processes including proliferation, differentiation, apoptosis and invasion. The significance of these alterations in the pathogenesis and malignant transformation of gestational trophoblastic diseases is reviewed in this paper.
Collapse
Affiliation(s)
- H W Li
- Department of Anatomy, Faculty of Medicine, The University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
38
|
Durand S, Dumur C, Flury A, Abadie P, Patrito L, Podhajcer O, Genti-Raimondi S. Altered mitochondrial gene expression in human gestational trophoblastic diseases. Placenta 2001; 22:220-6. [PMID: 11170827 DOI: 10.1053/plac.2000.0601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To assess the molecular basis of phenotypic alterations present in the gestational trophoblastic diseases (GTDs) and to identify genes whose expression is specifically associated with these placental proliferative disorders we performed differential display (DD) techniques. This strategy resulted in the isolation of four mitochondrial transcripts downregulated in benign, as well as in malignant, trophoblastic diseases encoding the cytochrome oxidase subunit I (COX I), the ATPase subunit 6, the 12S ribosomal RNA (12S rRNA) and the transfer RNA for phenylalanine (tRNA(Phe)). This expression pattern was confirmed by Northern blot in normal early placenta (NEP), complete hydatidiform mole (CHM), persistent gestational trophoblastic disease (PGTD) and the human choriocarcinoma derived cell line JEG-3. Quantification of mitochondrial DNA by dot blot indicated that these changes in expression were not associated with a significant alteration in the number of mitochondrial genome. In addition, a reduction in the mitochondrial transcription factor A (mtTFA) mRNA level was observed in benign as well as in malignant trophoblastic diseases in correlation with the decrease in the mitochondrial transcript levels. Furthermore, Western blot analysis for COX-I showed a close parallelism with the expression level of the cognate RNA. Taken together, these data demonstrate that a significant change in mitochondrial transcription is associated with the phenotypic alteration present in GTDs.
Collapse
MESH Headings
- Adenosine Triphosphatases/genetics
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Choriocarcinoma/genetics
- Cloning, Molecular
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/genetics
- Electron Transport Complex IV/genetics
- Female
- Gene Expression
- Humans
- Hydatidiform Mole/genetics
- Isoenzymes
- Membrane Proteins
- Molecular Sequence Data
- Pregnancy
- Prostaglandin-Endoperoxide Synthases
- RNA, Messenger/analysis
- RNA, Transfer, Phe/genetics
- Sequence Analysis, DNA
- Sequence Homology
- Trophoblastic Neoplasms/genetics
- Tumor Cells, Cultured
- Uterine Neoplasms/genetics
Collapse
Affiliation(s)
- S Durand
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ala Oeste, Ciudad Universitaria, 5000 Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
39
|
Ahmed MN, Kim K, Haddad B, Berchuck A, Qumsiyeh MB. Comparative genomic hybridization studies in hydatidiform moles and choriocarcinoma: amplification of 7q21-q31 and loss of 8p12-p21 in choriocarcinoma. CANCER GENETICS AND CYTOGENETICS 2000; 116:10-5. [PMID: 10616525 DOI: 10.1016/s0165-4608(99)00103-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Comparative genomic hybridization (CGH) was utilized to investigate genetic changes from archived cases of choriocarcinoma (n = 12) and hydatidiform moles (n = 7). Test DNA was extracted from paraffin-embedded tissues, amplified using total universal PCR, and co-hybridized with control DNA to normal metaphases. Comparative genomic hybridization findings showed chromosomal imbalances in 9 of 12 cases of choriocarcinoma. By contrast, all hydatidiform moles showed normal CGH profiles. Consistent findings in choriocarcinoma included deletion at 8p (5 cases) and amplification at 7q (4 cases). A tumor suppressor gene (e.g., N33) at 8p and/or a growth regulator at 7q could play a role in the initiation of choriocarcinoma and its progression. This is the first study showing specific alterations in choriocarcinomas by CGH, and illustrates the utility of this technique in elucidating genetic changes in gynecological tumors.
Collapse
Affiliation(s)
- M N Ahmed
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- B Tycko
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
41
|
Falls JG, Pulford DJ, Wylie AA, Jirtle RL. Genomic imprinting: implications for human disease. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:635-47. [PMID: 10079240 PMCID: PMC1866410 DOI: 10.1016/s0002-9440(10)65309-6] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/06/1999] [Indexed: 01/14/2023]
Abstract
Genomic imprinting refers to an epigenetic marking of genes that results in monoallelic expression. This parent-of-origin dependent phenomenon is a notable exception to the laws of Mendelian genetics. Imprinted genes are intricately involved in fetal and behavioral development. Consequently, abnormal expression of these genes results in numerous human genetic disorders including carcinogenesis. This paper reviews genomic imprinting and its role in human disease. Additional information about imprinted genes can be found on the Genomic Imprinting Website at http://www.geneimprint.com.
Collapse
Affiliation(s)
- J G Falls
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina27710, USA
| | | | | | | |
Collapse
|
42
|
Newlands ES, Paradinas FJ, Fisher RA. Recent advances in gestational trophoblastic disease. Hematol Oncol Clin North Am 1999; 13:225-44, x. [PMID: 10080078 DOI: 10.1016/s0889-8588(05)70162-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Advances in the last 20 years have led to a better understanding of the process of gestational trophoblastic disease (GTD), and consequently, to improved diagnosis, management, and prognosis. Patients with GTD should be registered at a trophoblastic disease center for follow-up, and those with persistent disease should receive chemotherapy, methotrexate, and folinic acid for low-risk disease, and EMACO (etoposide, actinomycin-D, methotrexate, vincristine, and cyclophosphamide) for high-risk disease, without loss of fertility. Most patients with relapsing or resistant disease can be treated effectively with surgery and/or cisplatin in EP/EMA (etoposide, platinum-etoposide, methotrexate, actinomycin-D) combination.
Collapse
Affiliation(s)
- E S Newlands
- Department of Cancer Medicine, Imperial College, Charing Cross Hospital, London, United Kingdom
| | | | | |
Collapse
|