1
|
He T, Chen K, Zhou Q, Cai H, Yang H. Immune repertoire profiling in myasthenia gravis. Immunol Cell Biol 2024; 102:891-906. [PMID: 39396830 DOI: 10.1111/imcb.12825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/26/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Myasthenia gravis (MG) is the most frequent immune-mediated neurological disorder, characterized by fluctuating muscle weakness. Specific recognition of self-antigens by T-cell receptors (TCRs) and B-cell receptors (BCRs), coupled with T-B cell interactions, activates B cells to produce autoantibodies, which are critical for the initiation and perpetuation of MG. The immune repertoire comprises all functionally diverse T and B cells at a specific time point in an individual, reflecting the essence of immune selectivity. By sequencing the nucleotide sequences of TCRs and BCRs, it is possible to track individual T- and B-cell clones. This review delves into the generation of autoreactive TCRs and BCRs in MG and comprehensively examines the applications of immune repertoire sequencing in understanding disease pathogenesis, developing diagnostic and prognostic markers and informing targeted therapies. We also discuss the current limitations and future potential of this approach.
Collapse
MESH Headings
- Myasthenia Gravis/immunology
- Humans
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- B-Lymphocytes/immunology
- Autoantibodies/immunology
- Animals
- Autoantigens/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Ting He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Kangzhi Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Haobing Cai
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Kaminski HJ, Sikorski P, Coronel SI, Kusner LL. Myasthenia gravis: the future is here. J Clin Invest 2024; 134:e179742. [PMID: 39105625 DOI: 10.1172/jci179742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] Open
Abstract
Myasthenia gravis (MG) stands as a prototypical antibody-mediated autoimmune disease: it is dependent on T cells and characterized by the presence of autoantibodies targeting proteins located on the postsynaptic surface of skeletal muscle, known as the neuromuscular junction. Patients with MG exhibit a spectrum of weakness, ranging from limited ocular muscle involvement to life-threatening respiratory failure. Recent decades have witnessed substantial progress in understanding the underlying pathophysiology, leading to the delineation of distinct subcategories within MG, including MG linked to AChR or MuSK antibodies as well as age-based distinction, thymoma-associated, and immune checkpoint inhibitor-induced MG. This heightened understanding has paved the way for the development of more precise and targeted therapeutic interventions. Notably, the FDA has recently approved therapeutic inhibitors of complement and the IgG receptor FcRn, a testament to our improved comprehension of autoantibody effector mechanisms in MG. In this Review, we delve into the various subgroups of MG, stratified by age, autoantibody type, and histology of the thymus with neoplasms. Furthermore, we explore both current and potential emerging therapeutic strategies, shedding light on the evolving landscape of MG treatment.
Collapse
Affiliation(s)
| | | | | | - Linda L Kusner
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| |
Collapse
|
3
|
Vanoli F, Mantegazza R. Antibody Therapies in Autoimmune Neuromuscular Junction Disorders: Approach to Myasthenic Crisis and Chronic Management. Neurotherapeutics 2022; 19:897-910. [PMID: 35165857 PMCID: PMC9294078 DOI: 10.1007/s13311-022-01181-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2022] [Indexed: 02/06/2023] Open
Abstract
Myasthenia gravis (MG) is a neurological autoimmune disorder characterized by muscle weakness and fatigue. It is a B cell-mediated disease caused by pathogenic antibodies directed against various components of the neuromuscular junction (NMJ). Despite the wide range of adverse effects, current treatment is still based on non-specific immunosuppression, particularly on long-term steroid usage. The increasing knowledge regarding the pathogenic mechanisms of MG has however allowed to create more target-specific therapies. A very attractive therapeutic approach is currently offered by monoclonal antibodies (mAbs), given their ability to specifically and effectively target different immunopathological pathways, such as the complement cascade, B cell-related cluster of differentiation (CD) proteins, and the human neonatal Fc receptor (FcRn). Up to now, eculizumab, a C5-directed mAb, has been approved for the treatment of generalized MG (gMG) and efgartigimod, a FcRn inhibitor, has just been approved by the U.S. Food and Drug Administration for the treatment of anti-acetylcholine receptor (AChR) antibody positive gMG. Other mAbs are currently under investigation with encouraging preliminary results, further enriching the new range of therapeutic possibilities for MG. This review article provides an overview of the present status of mAb-based therapies for MG, which offer an exciting promise for better outcomes by setting the basis of a precision medicine approach.
Collapse
Affiliation(s)
- Fiammetta Vanoli
- Neuroimmunology and Neuromuscular Disease Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Renato Mantegazza
- Neuroimmunology and Neuromuscular Disease Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| |
Collapse
|
4
|
Liu X, Ma Q, Qiu L, Ou C, Lin Z, Lu Y, Huang H, Chen P, Huang Z, Liu W. Quantitative features and clinical significance of two subpopulations of AChR-specific CD4+ T cells in patients with myasthenia gravis. Clin Immunol 2020; 216:108462. [PMID: 32437925 DOI: 10.1016/j.clim.2020.108462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022]
Abstract
Acetylcholine receptor (AChR)-specific CD4+ T cells play a driving role in myasthenia gravis (MG) by regulating the production of autoantibodies. However, the quantitative features of AChR-specific T cells and their clinical significance in MG are unclear. In this study, we adopted standard and cultured enzyme-linked immunosorbent spot (ELISPOT) assays to quantify subpopulations of AChR-specific CD4+ T cells in MG patients, and evaluate their correlation with clinical characteristics. The results showed that Th1- and Th17-AChR-specific CD4+ T cells were detectable by standard and cultured ELISPOT assay respectively, with higher levels observed in MG patients comparing with healthy controls. The number of Th17-AChR-specific CD4+ T cells was positively correlated with anti-AChR antibody titer and quantitative MG score and may have latent capacity to reflect responses to immunosuppressants. These results highlight the differences in quantitative features of AChR-specific CD4+ T cells and imply Th17-AChR-specific CD4+ T cells can serve as a biomarker in MG.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Qian Ma
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Li Qiu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Changyi Ou
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Zhongqiang Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Yaru Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Huan Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Pei Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Zhidong Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Weibin Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China.
| |
Collapse
|
5
|
Heterogeneity and shifts in distribution of muscle weakness in myasthenia gravis. Neuromuscul Disord 2019; 29:664-670. [PMID: 31488385 DOI: 10.1016/j.nmd.2019.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/06/2019] [Accepted: 07/19/2019] [Indexed: 01/26/2023]
Abstract
The distribution of muscle weakness in myasthenia gravis (MG) patients with acetylcholine receptor (AChR) antibodies is highly variable. As muscle groups respond differently to therapeutic interventions, it is important to acknowledge this variability. We analysed the distribution of muscle weakness in 225 AChR MG patients over time. On the basis of combinations of muscle weakness, seven phenotypes were defined: 'ocular' (O), 'bulbar' (B), 'neck/limbs/respiratory' (NLR), or a combination (O+B, O+NLR, B+NLR and O+B+NLR). MG remained restricted to ocular weakness in 5%, whereas 7% never had ocular weakness. At last follow-up, ocular or bulbar weakness had resolved more frequently than NLR weakness (40%, 38% and 25%; p = 0.003, respectively). Patients with O, B or OB phenotype at baseline had a higher age at onset and were more frequently male than patients with NLR, ONLR, BNLR or OBNLR phenotype (52.7 ± 17.5 vs. 44.0 ± 18.9; p = 0.007 and 64% vs. 37%; p = 0.002, respectively). MG patients have heterogeneous distributions of muscle weakness and frequently shift between phenotypes. The phenotypic variations found in AChR MG suggest that also other factors aside from the AChR antibody mediated immune response are of importance in determining the disease expression in MG.
Collapse
|
6
|
Sharma S, Malmeström C, Lindberg C, Meisel S, Schön K, Verolin M, Lycke NY. A Sensitive Method for Detecting Peptide-specific CD4 + T Cell Responses in Peripheral Blood from Patients with Myasthenia Gravis. Front Immunol 2017; 8:1370. [PMID: 29114250 PMCID: PMC5660702 DOI: 10.3389/fimmu.2017.01370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/05/2017] [Indexed: 01/04/2023] Open
Abstract
Myasthenia gravis (MG) is an autoimmune neurological disorder typified by skeletal muscle fatigue and most often production of autoantibodies against the nicotinic acetylcholine receptor (AChR). The present study was undertaken to assess the extent of AChR-peptide recognition in MG patients using co-culturing (DC:TC) of autologous monocyte-derived dendritic cells (moDCs) and highly enriched CD4+ T cells from the blood as compared to the traditional whole peripheral blood mononuclear cell (PBMC) cultures. We found that the DC:TC cultures were highly superior to the PBMC cultures for detection of reactivity toward HLA-DQ/DR-restricted AChR-peptides. In fact, whereas DC:TC cultures identified recognition in all MG patients the PBMC cultures failed to detect responsiveness in around 40% of the patients. Furthermore, reactivity to multiple peptides was evident in DC:TC cultures, while PBMC cultures mostly exhibited reactivity to a single peptide. No healthy control (HC) CD4+ T cells responded to the peptides in either culture system. Interestingly, whereas spontaneous production of IFNγ and IL-17 was observed in the DC:TC cultures from MG patients, recall responses to peptides enhanced IL-10 production in 9/13 MG patients, while little increase in IFNγ and IL-17 was seen. HCs did not produce cytokines to peptide stimulations. We conclude that the DC: TC culture system is significantly more sensitive and better identifies the extent of responsiveness in MG patients to AChR-peptides than traditional PBMC cultures.
Collapse
Affiliation(s)
- Sapna Sharma
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Clas Malmeström
- Laboratory for Clinical Immunology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Sarah Meisel
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Nils Yngve Lycke
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Cao Y, Amezquita RA, Kleinstein SH, Stathopoulos P, Nowak RJ, O'Connor KC. Autoreactive T Cells from Patients with Myasthenia Gravis Are Characterized by Elevated IL-17, IFN-γ, and GM-CSF and Diminished IL-10 Production. THE JOURNAL OF IMMUNOLOGY 2016; 196:2075-84. [PMID: 26826242 DOI: 10.4049/jimmunol.1501339] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 12/27/2015] [Indexed: 12/29/2022]
Abstract
Myasthenia gravis (MG) is a prototypical autoimmune disease that is among the few for which the target Ag and the pathogenic autoantibodies are clearly defined. The pathology of the disease is affected by autoantibodies directed toward the acetylcholine receptor (AChR). Mature, Ag-experienced B cells rely on the action of Th cells to produce these pathogenic Abs. The phenotype of the MG Ag-reactive T cell compartment is not well defined; thus, we sought to determine whether such cells exhibit both a proinflammatory and a pathogenic phenotype. A novel T cell library assay that affords multiparameter interrogation of rare Ag-reactive CD4(+) T cells was applied. Proliferation and cytokine production in response to both AChR and control Ags were measured from 3120 T cell libraries derived from 11 MG patients and paired healthy control subjects. The frequency of CCR6(+) memory T cells from MG patients proliferating in response to AChR-derived peptides was significantly higher than that of healthy control subjects. Production of both IFN-γ and IL-17, in response to AChR, was also restricted to the CCR6(+) memory T cell compartment in the MG cohort, indicating a proinflammatory phenotype. These T cells also included an elevated expression of GM-CSF and absence of IL-10 expression, indicating a proinflammatory and pathogenic phenotype. This component of the autoimmune response in MG is of particular importance when considering the durability of MG treatment strategies that eliminate B cells, because the autoreactive T cells could renew autoimmunity in the reconstituted B cell compartment with ensuing clinical manifestations.
Collapse
Affiliation(s)
- Yonghao Cao
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511;
| | - Robert A Amezquita
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511
| | - Steven H Kleinstein
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511; Department of Pathology, Yale School of Medicine, New Haven, CT 06511; and Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511
| | | | - Richard J Nowak
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511
| | - Kevin C O'Connor
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511;
| |
Collapse
|
8
|
Modulation of B cell regulatory molecules CD22 and CD72 in myasthenia gravis and multiple sclerosis. Inflammation 2014. [PMID: 23184497 DOI: 10.1007/s10753-012-9573-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
B cell activation mediated by cluster of differentiation (CD) molecules plays an important role in B cell-related autoimmune diseases. CD22 and CD72 have been demonstrated to act as B cell inhibitory receptors in many autoimmune diseases. Activated B cells are involved in the pathogenesis of myasthenia gravis (MG) by secretion of anti-acetylcholine receptor (AchR) antibodies. However, the roles of CD22 and CD72 on B cells of MG are unknown. In this study, we detected the expression of CD22 and CD72 on B cells of MG, compared to multiple sclerosis (MS) patient controls and healthy controls by flow cytometry and quantitative real-time polymerase transcription chain reaction. Our data demonstrated that aberrant expression of CD72 exists on B cells of MG and MS patients and expression level of CD72 molecule has a significantly negative correlation with anti-AchR antibody levels in MG, which suggests that CD72 may be involved in the pathogenesis of MG and MS. There were no significant differences between study patients (MG, ocular MG, generalized MG, and MS) and healthy controls.
Collapse
|
9
|
Yi JS, Guidon A, Sparks S, Osborne R, Juel VC, Massey JM, Sanders DB, Weinhold KJ, Guptill JT. Characterization of CD4 and CD8 T cell responses in MuSK myasthenia gravis. J Autoimmun 2013; 52:130-8. [PMID: 24378287 DOI: 10.1016/j.jaut.2013.12.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 12/08/2013] [Indexed: 01/22/2023]
Abstract
Muscle specific tyrosine kinase myasthenia gravis (MuSK MG) is a form of autoimmune MG that predominantly affects women and has unique clinical features, including prominent bulbar weakness, muscle atrophy, and excellent response to therapeutic plasma exchange. Patients with MuSK MG have predominantly IgG4 autoantibodies directed against MuSK on the postsynaptic muscle membrane. Lymphocyte functionality has not been reported in this condition. The goal of this study was to characterize T cell responses in patients with MuSK MG. Intracellular production of IFN-gamma, TNF-alpha, IL-2, IL-17, and IL-21 by CD4+ and CD8+ T cells was measured by polychromatic flow cytometry in peripheral blood samples from 11 Musk MG patients and 10 healthy controls. Only one MuSK MG patient was not receiving immunosuppressive therapy. Regulatory T cells (Treg) were also included in our analysis to determine if changes in T cell function were due to altered Treg frequencies. CD8+ T cells from MuSK MG patients had higher frequencies of polyfunctional responses than controls, and CD4+ T cells had higher IL-2, TNF-alpha, and IL-17. MuSK MG patients had a higher percentage of CD4+ T cells producing combinations of IFN-gamma/IL-2/TNF-gamma, TNF-alpha/IL-2, and IFN-gamma/TNF-alpha. Interestingly, Treg numbers and CD39 expression were not different from control values. MuSK MG patients had increased frequencies of Th1 and Th17 cytokines and were primed for polyfunctional proinflammatory responses that cannot be explained by a defect in CD39 expression or Treg number.
Collapse
Affiliation(s)
- J S Yi
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, 204 SORF (Bldg. 41), 915 S. LaSalle Street, Box 2926, Durham, NC 27710, USA
| | - A Guidon
- Neuromuscular Division, Department of Neurology, Duke University Medical Center, DUMC Box 3403, Durham, NC 27710, USA
| | - S Sparks
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, 204 SORF (Bldg. 41), 915 S. LaSalle Street, Box 2926, Durham, NC 27710, USA
| | - R Osborne
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, 204 SORF (Bldg. 41), 915 S. LaSalle Street, Box 2926, Durham, NC 27710, USA
| | - V C Juel
- Neuromuscular Division, Department of Neurology, Duke University Medical Center, DUMC Box 3403, Durham, NC 27710, USA
| | - J M Massey
- Neuromuscular Division, Department of Neurology, Duke University Medical Center, DUMC Box 3403, Durham, NC 27710, USA
| | - D B Sanders
- Neuromuscular Division, Department of Neurology, Duke University Medical Center, DUMC Box 3403, Durham, NC 27710, USA
| | - K J Weinhold
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, 204 SORF (Bldg. 41), 915 S. LaSalle Street, Box 2926, Durham, NC 27710, USA
| | - J T Guptill
- Neuromuscular Division, Department of Neurology, Duke University Medical Center, DUMC Box 3403, Durham, NC 27710, USA.
| |
Collapse
|
10
|
Liu R, Xu H, Wang G, Li J, Gou L, Zhang L, Miao J, Li Z. Extraocular muscle characteristics related to myasthenia gravis susceptibility. PLoS One 2013; 8:e55611. [PMID: 23409007 PMCID: PMC3568149 DOI: 10.1371/journal.pone.0055611] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 01/02/2013] [Indexed: 11/30/2022] Open
Abstract
Background The pathogenesis of extraocular muscle (EOM) weakness in myasthenia gravis might involve a mechanism specific to the EOM. The aim of this study was to investigate characteristics of the EOM related to its susceptibility to myasthenia gravis. Methods Female F344 rats and female Sprague-Dawley rats were assigned to experimental and control groups. The experimental group received injection with Ringer solution containing monoclonal antibody against the acetylcholine receptor (AChR), mAb35 (0.25 mg/kg), to induce experimental autoimmune myasthenia gravis, and the control group received injection with Ringer solution alone. Three muscles were analyzed: EOM, diaphragm, and tibialis anterior. Tissues were examined by light microscopy, fluorescence histochemistry, and transmission electron microscopy. Western blot analysis was used to assess marker expression and ELISA analysis was used to quantify creatine kinase levels. Microarray assay was conducted to detect differentially expressed genes. Results In the experimental group, the EOM showed a simpler neuromuscular junction (NMJ) structure compared to the other muscles; the NMJ had fewer synaptic folds, showed a lesser amount of AChR, and the endplate was wider compared to the other muscles. Results of microarray assay showed differential expression of 54 genes in the EOM between the experimental and control groups. Conclusion Various EOM characteristics appear to be related to the increased susceptibility of the EOM and the mechanism of EOM weakness in myasthenia gravis.
Collapse
Affiliation(s)
- Rui Liu
- Department of Geratology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, P. R. China
| | - Hanpeng Xu
- LONI, Department of Neurology, UCLA, Los Angeles, California, United States of America
| | - Guiping Wang
- Department of Neurosurgery, 208th Hospital of PLA, Changchun, Jilin Province, P. R. China
| | - Jie Li
- Department of Endocrinology, 451 Hospital of PLA,Xi'an, Shaanxi Province, P. R. China
| | - Lin Gou
- LONI, Department of Neurology, UCLA, Los Angeles, California, United States of America
| | - Lihua Zhang
- Department of Geratology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, P. R. China
| | - Jianting Miao
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, P. R. China
- * E-mail: (ZL); (JM)
| | - Zhuyi Li
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, P. R. China
- * E-mail: (ZL); (JM)
| |
Collapse
|
11
|
Wu X, Tuzun E, Li J, Xiao T, Saini SS, Qi H, Allman W, Christadoss P. Ocular and generalized myasthenia gravis induced by human acetylcholine receptor γ subunit immunization. Muscle Nerve 2012; 45:209-16. [DOI: 10.1002/mus.22273] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Deitiker PR, Oshima M, Smith RG, Mosier DR, Atassi MZ. Subtle differences in HLA DQ haplotype-associated presentation of AChR α-chain peptides may suffice to mediate myasthenia gravis. Autoimmunity 2009; 39:277-88. [PMID: 16891216 DOI: 10.1080/08916930600738581] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The HLA DQA1 and DQB1 alleles were determined on a set of 24 myasthenia gravis patients that had previously been examined for their T-cell proliferative responses to the 18 overlapping peptides representing the extracellular domain of hAChR alpha-chain. Patient responses according to assumed cis or trans haplotypes were significantly higher in most cases relative to normal controls. Comparisons of in vitro peptide-stimulated T-cell responses of patient pairs which had DQA1:DQB1 in common displayed responses in tighter distribution relative to comparisons in which patient pairs did not share the same DQA1:DQB1 haplotype. Similar haplotypes, such as DQA1*0102:DQB1*0602 and DQA1*0102:DQB1*0604, tended to exhibit similar responses and were grouped according to this similarity. Modified F-test and Student's T-test analyses on DQ isoform bearing groups revealed that high responses to peptide alpha34-49 were associated with A1*0102:B1*0602/0604, A1*0301:B1*0302 and A1*0401/0303:B1*0301. Peptide alpha146-162 showed higher responses in A1*0301:B1*0302 group and moderate responses in A1*0401/0303:B1*0301 groups. Differences in the age of disease onset relative to DQ haplotypes were also observed. Groups of A1*0301:B1*0302, A1*0501:B1*0201 and A1*0102:B1*0604 showed earlier ages of disease onset relative to those of A1*0102:B1*0602 or A1*0505:B1*0301.
Collapse
Affiliation(s)
- Philip R Deitiker
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
The presence of antibodies (Abs) in hemophilia A patients can potentially influence the therapeutic qualities of factor VIII (fVIII) administration. Much work has been focused on the presence of inhibitory antibodies, whereas the quantitation of noninhibitory anti-fVIII antibodies has been largely undetermined. Our objective was to develop a sensitive and specific fluorescence-based immunoassay (FLI) for the quantitation of anti-fVIIIAbs in human plasma. Affinity-purified human anti-fVIIIAb, isolated from a hemophilia A subject, was used as a calibrator with a detectability limit of 40 (+/-1.5) pM. The calibrator and the human plasma anti-fVIIIAb were captured on recombinant fVIII (rfVIII)- coupled microspheres and probed with mouse anti-human Ig-R-phycoerythrin. Plasma samples from 150 healthy donors and 39 inhibitor-negative hemophilia A subjects were compared with 4 inhibitor-positive hemophilia A plasma samples with inhibitor titers of 1 BU/mL (94.6 +/- 0.8 nM), 11 BU/mL (214.3 +/- 7.1 nM), 106 BU/mL (2209.4 +/- 84.9 nM), 140 BU/mL (2417.7 +/- 3.8 nM) as measured by the Nijmegen method. We also describe the validation of a mouse anti-human fVIIIAb as a surrogate calibrator. Four healthy individuals (3%) showed detectable anti-fVIIIAb in the range of 0.6 to 6.2 nM, whereas 13 (33%) of the 39 inhibitor-free hemophilia A subjects were positive for anti-fVIIIAb in the range of 0.5 to 20 nM. The method may be useful for therapeutic management of hemophilia A patients.
Collapse
|
14
|
Conti-Fine BM, Milani M, Wang W. CD4+T Cells and Cytokines in the Pathogenesis of Acquired Myasthenia Gravis. Ann N Y Acad Sci 2008; 1132:193-209. [DOI: 10.1196/annals.1405.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
|
16
|
Abstract
BACKGROUND Although myasthenia gravis (MG) is often considered the best-understood autoimmune disorder and effective treatments have controlled life-threatening complications, the pathogenesis of ocular myasthenia (OM) remains enigmatic, and its clinical consequences offer therapeutic challenges. REVIEW SUMMARY About half of patients with MG present with visual complaints of droopy eyelids or double vision, and many will remain with purely ocular muscle weakness without generalized weakness, defined as OM. OM may be confused with disorders of the brainstem, ocular motor nerves, and eye muscles. Frustrating for the clinician, confirmatory tests such as the edrophonium test, serum acetylcholine receptor antibodies, and standard electrodiagnostic evaluations may fail to positively identify the clinical suspicion of OM. Patients may derive relief from nonpharmacologic interventions and cholinesterase inhibitors, but most will desire better symptom control with corticosteroids or need other immunosuppression. Early corticosteroid therapy may reduce the probability of generalization of the disease. The reasons for ocular muscle involvement by OM include physiologic and cellular properties of the ocular motor system and the unique immunology of OM, which, when better understood, will lead to novel treatments. CONCLUSIONS OM is a challenging disorder for the clinician and scientist, with both learning from the other for the betterment of the patient. The future requires answers to why the ocular muscles are so frequently involved by MG, whether the generalization of the disease may be limited by early corticosteroid treatment, and what treatment options may be developed which will improve symptoms without long-term complications.
Collapse
Affiliation(s)
- Linda L Kusner
- Department of Neurology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | | | | |
Collapse
|
17
|
Abstract
Myasthenia gravis (MG) is an autoimmune syndrome caused by the failure of neuromuscular transmission, which results from the binding of autoantibodies to proteins involved in signaling at the neuromuscular junction (NMJ). These proteins include the nicotinic AChR or, less frequently, a muscle-specific tyrosine kinase (MuSK) involved in AChR clustering. Much is known about the mechanisms that maintain self tolerance and modulate anti-AChR Ab synthesis, AChR clustering, and AChR function as well as those that cause neuromuscular transmission failure upon Ab binding. This insight has led to the development of improved diagnostic methods and to the design of specific immunosuppressive or immunomodulatory treatments.
Collapse
Affiliation(s)
- Bianca M Conti-Fine
- Department of Biochemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
18
|
Oshima M, Deitiker PR, Mosier DR, Smith RG, Atassi MZ. Responses in vitro of peripheral blood lymphocytes from patients with myasthenia gravis to stimulation with human acetylcholine receptor α-chain peptides: Analysis in relation to age, thymic abnormality, and ethnicity. Hum Immunol 2005; 66:32-42. [PMID: 15620460 DOI: 10.1016/j.humimm.2004.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 09/28/2004] [Accepted: 09/29/2004] [Indexed: 11/20/2022]
Abstract
Peripheral blood lymphocytes (PBLs) were isolated from 24 patients with myasthenia gravis of three ethnic groups (Caucasian, African American, and Hispanic) and ten healthy individuals. We determined the in vitro proliferative responses of the PBL samples to each of 18 overlapping synthetic peptides corresponding to the entire main extracellular domain (residues 1-210) of the alpha-subunit of human acetylcholine receptor. The profiles of the T-cell responses (expressed in stimulation index [SI]) to the peptides varied among the 24 patient samples. There was a significant difference in the overall patient responses relative to controls toward 17 of 18 peptides. T cells from the patients gave responses greater than control mean SI + 4 standard deviation (Z(SI) > 4) to 2 approximately 9 peptides/sample. Six peptides, alpha 23-38, alpha 34-49, alpha 78-93, alpha 122-138, alpha 146-162, and alpha 182-198, were recognized with Z > 4 level by 42% to 58% of the patients' PBLs. The grouped patient responses, divided according to age, thymic diagnosis, or ethnicity, were compared with controls and with each other. Significant differences were observed between early- and late-onset cases in recognition of residues alpha 34-49 (p = 0.015) and alpha 78-93 (p = 0.053), and in recognition of residues alpha 12-27, alpha 56-71, alpha 134-150, and alpha 146-162 (0.0072 < p < 0.064) when two ethnic groups were compared with each other.
Collapse
Affiliation(s)
- Minako Oshima
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
19
|
Sun Y, Qiao J, Lu CZ, Zhao CB, Zhu XM, Xiao BG. Increase of circulating CD4+CD25+ T cells in myasthenia gravis patients with stability and thymectomy. Clin Immunol 2004; 112:284-9. [PMID: 15308122 DOI: 10.1016/j.clim.2004.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 04/19/2004] [Indexed: 01/21/2023]
Abstract
BACKGROUND CD4(+)CD25(+) regulatory T cells are key controllers of peripheral immunological self-tolerance and suppress various autoimmune diseases in animal models, but few studies have been done to define their roles in myasthenia gravis (MG) so far. OBJECTIVE To investigate frequencies and dynamic changes of blood CD4(+)CD25(+) T cells from MG patients. METHODS The peripheral blood CD4(+)CD25(+) T cells of 29 MG patients and 23 healthy controls were detected by three-color flow cytometry. RESULTS Myasthenic patients with symptomatically uncontrollable disease showed slightly lower percentages of CD4(+)CD25(+) T cells (mean = 3.79 +/- 1.40%; P = 0.12), whereas MG patients with clinically stable disease had significantly increased CD4(+)CD25(+) T cells (mean = 8.45 +/- 1.96%, P = 0.0001), as compared with healthy controls (mean = 4.53 +/- 0.96%). In addition, thymectomized MG patients had significantly higher percentages of CD4(+)CD25(+) T cells (mean = 8.44 +/- 2.39%), as compared with both non-thymectomized MG patients (mean = 5.88 +/- 2.89%, P = 0.038) and healthy controls (P = 0.003). CONCLUSIONS Our observations indicate that increased percentages of CD4(+)CD25(+) T cells in MG patients may be related to disease stability and that thymectomy in patients with MG resulted in augmented CD4(+)CD25(+) T cells.
Collapse
Affiliation(s)
- Yi Sun
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | | | | | | | | | | |
Collapse
|
20
|
Kusuhara T, Nakajima M, Imamura A. Ocular myasthenia gravis associated with euthyroid ophthalmopathy. Muscle Nerve 2003; 28:764-6. [PMID: 14639594 DOI: 10.1002/mus.10471] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We report a 71-year-old woman with concomitant ocular myasthenia gravis and euthyroid Graves' ophthalmopathy. Unilateral ophthalmoplegia, including ptosis, initially was responsive to edrophonium and corticosteroids, except for diplopia on upward gaze, but refractory swelling of the inferior rectus muscle and proptosis followed. Autoantibodies to acetylcholine and thyrotropin receptors were detected. Her ophthalmopathy abated after orbital irradiation in combination with systemic steroids. There may be an immunological basis for the association of ocular myasthenia gravis with euthyroid Graves' ophthalmopathy.
Collapse
Affiliation(s)
- Tomohiko Kusuhara
- Department of Neurology, Fukuoka University School of Medicine, 7-45-1 Nanakuma Johnan-ku, Fukuoka 814-0180, Japan
| | | | | |
Collapse
|
21
|
Hu GL, Okita DK, Diethelm-Okita BM, Conti-Fine BM. Recognition of coagulation factor VIII by CD4+ T cells of healthy humans. J Thromb Haemost 2003; 1:2159-66. [PMID: 14521599 DOI: 10.1046/j.1538-7836.2003.00366.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hemophilia A patients treated with coagulation factor (F)VIII may develop an anti-FVIII immune response. Anti-FVIII antibodies may occur also in healthy subjects. To understand the extent to which an immune response to FVIII occurs in healthy subjects, we investigated the proliferative response of blood CD4+ T cells from 90 blood donors to FVIII and to pools of overlapping synthetic peptides spanning the sequences of individual FVIII domains (A1-A3, C1-C2). Most subjects responded to FVIII and several FVIII domains. Men had stronger responses to FVIII than women, and older subjects than younger subjects. The domain-induced responses were weaker than the FVIII-induced responses, yet their intensity in individual subjects correlated with that of the response to FVIII. We examined whether Th1 and/or Th2 cells responded to FVIII in 68 subjects, by determining the CD4+ T cells that secreted interferon-gamma (IFN-gamma) or interleukin (IL)-5 after stimulation with FVIII: 25 subjects had FVIII-specific IFN-gamma-secreting cells, and seven of them had also FVIII-specific IL-5-secreting cells. None had only IL-5-secreting cells. Thus, a CD4+ T cell response to FVIII, which first involves Th1 cells, is common among subjects with a normal procoagulant function.
Collapse
Affiliation(s)
- G-L Hu
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
22
|
Milani M, Ostlie N, Wang W, Conti-Fine BM. T Cells and Cytokines in the Pathogenesis of Acquired Myasthenia Gravis. Ann N Y Acad Sci 2003; 998:284-307. [PMID: 14592887 DOI: 10.1196/annals.1254.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although the symptoms of myasthenia gravis (MG) and experimental MG (EAMG) are caused by autoantibodies, CD4(+) T cells specific for the target antigen, the nicotinic acetylcholine receptor, and the cytokines they secrete, have an important role in these diseases. CD4(+) T cells have a pathogenic role, by permitting and facilitating the synthesis of high-affinity anti-AChR antibodies. Th1 CD4(+) cells are especially important because they drive the synthesis of anti-AChR complement-fixing IgG subclasses. Binding of those antibodies to the muscle AChR at the neuromuscular junction will trigger the complement-mediated destruction of the postsynaptic membrane. Thus, IL-12, a crucial cytokine for differentiation of Th1 cells, is necessary for development of EAMG. Th2 cells secrete different cytokines, with different effects on the pathogenesis of EAMG. Among them, IL-10, which is a potent growth and differentiation factor for B cells, facilitates the development of EAMG. In contrast, IL-4 appears to be involved in the differentiation of AChR-specific regulatory CD4(+) T cells, which can prevent the development of EAMG and its progression to a self-maintaining, chronic autoimmune disease. Studies on the AChR-specific CD4(+) cells commonly present in the blood of MG patients support a crucial role of CD4(+) T cells in the development of MG. Circumstantial evidence supports a pathogenic role of IL-10 also in human MG. On the other hand, there is no direct or circumstantial evidence yet indicating a role of IL-4 in the modulatory or immunosuppressive circuits in MG.
Collapse
MESH Headings
- Animals
- Antibodies/metabolism
- CD4-Positive T-Lymphocytes/metabolism
- Cytokines/classification
- Cytokines/immunology
- Cytokines/metabolism
- Disease Models, Animal
- Humans
- Immunization
- Mice
- Mice, SCID
- Mice, Transgenic
- Muscles/metabolism
- Muscles/physiopathology
- Muscles/transplantation
- Myasthenia Gravis/immunology
- Myasthenia Gravis/metabolism
- Myasthenia Gravis/pathology
- Myasthenia Gravis, Autoimmune, Experimental/etiology
- Myasthenia Gravis, Autoimmune, Experimental/genetics
- Myasthenia Gravis, Autoimmune, Experimental/metabolism
- Protein Subunits
- Receptors, Cholinergic/immunology
- T-Lymphocytes/classification
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Time Factors
Collapse
Affiliation(s)
- Monica Milani
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
23
|
Kaminski HJ, Li Z, Richmonds C, Ruff RL, Kusner L. Susceptibility of Ocular Tissues to Autoimmune Diseases. Ann N Y Acad Sci 2003; 998:362-74. [PMID: 14592898 DOI: 10.1196/annals.1254.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The orbital tissues may form a unique immunological environment, as evidenced by autoimmune disorders that specifically target orbital tissues, particularly myasthenia gravis (MG) and Graves' ophthalmopathy (GO). The reasons for the preferential susceptibility are likely to be multiple, based on the interplay of molecular and physiological properties of extraocular muscles (EOM), the unique requirements of the ocular motor system, and the specific autoimmune pathology. Of general importance, even a minor loss of EOM force generation will sufficiently misalign the visual axes to produce dramatic symptoms, and proprioceptive feedback is limited to overcome such a deficit. Particular to MG, EOM synapses appear susceptible to neuromuscular blockade, the autoimmune pathology differs between ocular and generalized MG patients, and the influence of complement regulatory factors may be less prominent in preventing damage at EOM neuromuscular junctions. GO pathogenesis is poorly understood, but shared epitopes of orbital fibroblasts, EOM, and thyroid could lead to specific autoimmune targeting of these tissues. The differential response of orbital fibroblasts to cytokines may be a key factor in disease development. Greater appreciation of the immunologic environment of orbital tissues may lead to therapies specifically designed for orbital autoimmune diseases.
Collapse
Affiliation(s)
- Henry J Kaminski
- Department of Neurology, Case Western Reserve University, University Hospitals of Cleveland, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, USA.
| | | | | | | | | |
Collapse
|
24
|
Kaminski HJ, Richmonds CR, Kusner LL, Mitsumoto H. Differential susceptibility of the ocular motor system to disease. Ann N Y Acad Sci 2002; 956:42-54. [PMID: 11960792 DOI: 10.1111/j.1749-6632.2002.tb02807.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This review summarizes an alternative approach to the understanding of neuromuscular disease. By contrasting disease susceptibility of extraocular muscle and ocular motor neurons, it is hoped that unique insights into disease mechanisms may be identified. Disorder of eye movements leads to dramatic symptoms for patients and the ocular motor system is relatively limited in its ability to compensate rapidly for such disruptions. However, more profound reasons exist as to why myasthenia gravis compromises neuromuscular transmission at ocular muscle synapses as well as why Graves' ophthalmopathy exists. In contrast, muscular dystrophies spare the eye muscles while devastating all other skeletal muscles; the same is true for motor neuron diseases. It is hoped that this review will encourage others to view the world of neuromuscular diseases as delineated into those that spare the ocular motor system and those that do not.
Collapse
Affiliation(s)
- Henry J Kaminski
- Department of Neurology, Case Western Reserve University, University Hospital of Cleveland, Cleveland, Ohio 44106, USA.
| | | | | | | |
Collapse
|
25
|
Monfardini C, Milani M, Ostlie N, Wang W, Karachunski PI, Okita DK, Lindstrom J, Conti-Fine BM. Adoptive protection from experimental myasthenia gravis with T cells from mice treated nasally with acetylcholine receptor epitopes. J Neuroimmunol 2002; 123:123-34. [PMID: 11880157 DOI: 10.1016/s0165-5728(01)00454-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nasal administration of synthetic CD4(+) epitopes of the acetylcholine receptor (AChR) prevents experimental myasthenia gravis (EMG) in C57Bl/6 mice, but not in IL4-deficient C57Bl/6 (IL4(-/-)) mice. Here we verify that nasal tolerance requires IL4, by showing that CD4(+) cells from C57Bl/6 mice treated nasally with a pool of AChR CD4(+) epitopes protected IL4(-/-) mice from EMG and caused a reduced production of anti-AChR antibody. CD4(+) cells from C57Bl/6 mice treated with unrelated peptides or sham-treated did not induce protection. CD4(+) cells from C57Bl/6 mice treated with just one AChR peptide protected IL4(-/-) mice from EMG without affecting antibody synthesis.
Collapse
Affiliation(s)
- Cristina Monfardini
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Myasthenia gravis (MG) is caused by autoantibodies against proteins at the neuromuscular junction. This autoimmune process leads to abnormal fatiguability and weakness of striated muscle. Ptosis and diplopia are among the most common manifestations of MG. The term "ocular MG" (OMG) as opposed to "generalised MG" (GMG) is used to define the clinical subtype of MG with isolated eye muscle weakness. Although OMG may appear to cause only moderate disability, it can significantly impair the patient's activities of daily living and progress to generalised myasthenia. Therefore, a clear management plan should be installed early in these patients. Since prospective treatment trials have not been performed, basic management strategies for OMG have to be deduced from retrospective studies, trials in GMG, and generally accepted clinical experience. Cholinesterase inhibitors are used in all types of MG, but are often less helpful in OMG. In the absence of thymoma, thymectomy is usually not considered in OMG, although a few studies have described histological abnormalities in thymuses from patients with OMG. Corticosteroids are of great short term benefit in most patients with OMG but potential adverse effects limit their long term use. Azathioprine is needed to reduce long term corticosteroid adverse effects, but this agent requires about 6 months to be effective. In summary, OMG has a good prognosis in most patients, with corticosteroids and azathioprine being the major treatment options. The challenges for the clinician are to recognise the condition despite the large number of differential diagnoses, to minimise the patient's symptoms using the therapies available and to carefully limit potentially hazardous therapeutic efforts, especially in mild or even uncertain cases.
Collapse
Affiliation(s)
- B Tackenberg
- Clinical Neuroimmunology Group, Department of Neurology, Philipps-University, Rudolf-Bultmann-Strasse 8, D-35033 Marburg, Germany
| | | | | | | |
Collapse
|
27
|
Navaneetham D, Penn AS, Howard JF, Conti-Fine BM. Human thymuses express incomplete sets of muscle acetylcholine receptor subunit transcripts that seldom include the delta subunit. Muscle Nerve 2001; 24:203-10. [PMID: 11180203 DOI: 10.1002/1097-4598(200102)24:2<203::aid-mus50>3.0.co;2-f] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In myasthenia gravis (MG) the muscle acetylcholine receptor (AChR) is the target of an immune response that might begin in the thymus. The thymus expresses binding sites for specific ligands of muscle AChR, a complex protein composed of alpha, beta, gamma (or epsilon) and delta subunits. The thymus expresses the AChR alpha subunit, but there is controversy regarding the expression in the thymus of the gamma, epsilon and delta subunits. We investigated the presence of messenger RNA (mRNA) for the different muscle AChR subunits in thymus tissue from 20 healthy subjects and 13 myasthenic patients. We detected mRNA for the alpha and epsilon subunits in all samples, for the beta subunit in all but one sample and for the gamma subunit in most samples although at lower levels than the epsilon subunit. Myasthenic thymuses expressed levels of gamma subunit mRNA similar to control thymuses but more abundant epsilon subunit mRNA. None of the myasthenic thymuses and only two control thymuses expressed detectable delta subunit mRNA. This supports the hypothesis that human thymus may express AChR proteins that do not include the delta subunit. Such receptors, which would have different antigenic structure than the muscle AChRs, might have a role in triggering the autoimmune response that causes MG.
Collapse
Affiliation(s)
- D Navaneetham
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 1479 Gortner Ave, St. Paul, Minnesota 55108, USA
| | | | | | | |
Collapse
|