1
|
Taghipour-Mirakmahaleh R, Morin F, Zhang Y, Bourhoven L, Béland LC, Zhou Q, Jaworski J, Park A, Dominguez JM, Corbeil J, Flanagan EP, Marignier R, Larochelle C, Kerfoot S, Vallières L. Turncoat antibodies unmasked in a model of autoimmune demyelination: from biology to therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.623846. [PMID: 39677612 PMCID: PMC11642901 DOI: 10.1101/2024.12.03.623846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Autoantibodies contribute to many autoimmune diseases, yet there is no approved therapy to neutralize them selectively. A popular mouse model, experimental autoimmune encephalomyelitis (EAE), could serve to develop such a therapy, provided we can better understand the nature and importance of the autoantibodies involved. Here we report the discovery of autoantibody-secreting extrafollicular plasmablasts in EAE induced with specific myelin oligodendrocyte glycoprotein (MOG) antigens. Single-cell RNA sequencing reveals that these cells produce non-affinity-matured IgG antibodies. These include pathogenic antibodies competing for shared binding space on MOG's extracellular domain. Interestingly, the synthetic anti-MOG antibody 8-18C5 can prevent the binding of pathogenic antibodies from either EAE mice or people with MOG antibody disease (MOGAD). Moreover, an 8-18C5 variant carrying the NNAS mutation, which inactivates its effector functions, can reduce EAE severity and promote functional recovery. In brief, this study provides not only a comprehensive characterization of the humoral response in EAE models, but also a proof of concept for a novel therapy to antagonize pathogenic anti-MOG antibodies.
Collapse
Affiliation(s)
| | - Françoise Morin
- Neuroscience Unit, University Hospital Center of Quebec – Laval University, Quebec City, Quebec, Canada
| | - Yu Zhang
- Neuroscience Unit, University Hospital Center of Quebec – Laval University, Quebec City, Quebec, Canada
| | - Louis Bourhoven
- Neuroscience Unit, University Hospital Center of Quebec – Laval University, Quebec City, Quebec, Canada
| | - Louis-Charles Béland
- Neuroscience Unit, University Hospital Center of Quebec – Laval University, Quebec City, Quebec, Canada
| | - Qun Zhou
- Large Molecule Research, Sanofi, Cambridge, MA, USA
| | | | - Anna Park
- Large Molecule Research, Sanofi, Cambridge, MA, USA
| | - Juan Manuel Dominguez
- Infection and Immunity Unit, Big Data Research Center, University Hospital Center of Quebec – Laval University, Quebec City, Quebec, Canada
| | - Jacques Corbeil
- Infection and Immunity Unit, Big Data Research Center, University Hospital Center of Quebec – Laval University, Quebec City, Quebec, Canada
| | - Eoin P. Flanagan
- Departments of Neurology and Laboratory Medicine and Pathology, and Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Romain Marignier
- Service de Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, Hôpital Neurologique Pierre Wertheimer, Bron, France
| | - Catherine Larochelle
- Neuroimmunology Research Laboratory, University of Montreal Hospital Research Center, Montreal, Quebec, Canada
| | - Steven Kerfoot
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Luc Vallières
- Neuroscience Unit, University Hospital Center of Quebec – Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
2
|
Uzawa A, Oertel FC, Mori M, Paul F, Kuwabara S. NMOSD and MOGAD: an evolving disease spectrum. Nat Rev Neurol 2024; 20:602-619. [PMID: 39271964 DOI: 10.1038/s41582-024-01014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/15/2024]
Abstract
Neuromyelitis optica (NMO) spectrum disorder (NMOSD) is a relapsing inflammatory disease of the CNS, characterized by the presence of serum aquaporin 4 (AQP4) autoantibodies (AQP4-IgGs) and core clinical manifestations such as optic neuritis, myelitis, and brain or brainstem syndromes. Some people exhibit clinical characteristics of NMOSD but test negative for AQP4-IgG, and a subset of these individuals are now recognized to have serum autoantibodies against myelin oligodendrocyte glycoprotein (MOG) - a condition termed MOG antibody-associated disease (MOGAD). Therefore, the concept of NMOSD is changing, with a disease spectrum emerging that includes AQP4-IgG-seropositive NMOSD, MOGAD and double-seronegative NMOSD. MOGAD shares features with NMOSD, including optic neuritis and myelitis, but has distinct pathophysiology, clinical profiles, neuroimaging findings (including acute disseminated encephalomyelitis and/or cortical encephalitis) and biomarkers. AQP4-IgG-seronegative NMOSD seems to be a heterogeneous condition and requires further study. MOGAD can manifest as either a monophasic or a relapsing disease, whereas NMOSD is usually relapsing. This Review summarizes the history and current concepts of NMOSD and MOGAD, comparing epidemiology, clinical features, neuroimaging, pathology and immunology. In addition, we discuss new monoclonal antibody therapies for AQP4-IgG-seropositive NMOSD that target complement, B cells or IL-6 receptors, which might be applied to MOGAD in the near future.
Collapse
Affiliation(s)
- Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Frederike Cosima Oertel
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center Berlin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité-Universiaätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Friedemann Paul
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center Berlin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité-Universiaätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
3
|
Mehmood A, Song S, Du X, Yan H, Wang X, Guo L, Li B. mRNA expression profile reveals differentially expressed genes in splenocytes of experimental autoimmune encephalomyelitis model. Int J Exp Pathol 2023; 104:247-257. [PMID: 37427716 PMCID: PMC10500171 DOI: 10.1111/iep.12488] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/04/2023] [Accepted: 06/18/2023] [Indexed: 07/11/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a mouse model that can be used to investigate aetiology, pathogenesis, and treatment approaches for multiple sclerosis (MS). A novel integrated bioinformatics approach was used to understand the involvement of differentially expressed genes (DEGs) in the spleen of EAE mice through data mining of existing microarray and RNA-seq datasets. We screened differentially expressed mRNAs using mRNA expression profile data of EAE spleens taken from Gene Expression Omnibus (GEO). Functional and pathway enrichment analyses of DEGs were performed by Database for Annotation, Visualization, and Integrated Discovery (DAVID). Subsequently, the DEGs-encoded protein-protein interaction (PPI) network was constructed. The 784 DEGs in GSE99300 A.SW PP-EAE mice spleen mRNA profiles, 859 DEGs in GSE151701 EAE mice spleen mRNA profiles, and 646 DEGs in GSE99300 SJL/J PP-EAE mice spleen mRNA profiles were explored. Functional enrichment of 55 common DEGs among 3 sub-datasets revealed several immune-related terms, such as neutrophil extravasation, leucocyte migration, antimicrobial humoral immune response mediated by an antimicrobial peptide, toll-like receptor 4 bindings, IL-17 signalling pathway, and TGF-beta signalling pathway. In the screening of 10 hub genes, including MPO, ELANE, CTSG, LTF, LCN2, SELP, CAMP, S100A9, ITGA2B, and PRTN3, and in choosing and validating the 5 DEGs, including ANK1, MBOAT2, SLC25A21, SLC43A1, and SOX6, the results showed that SLC43A1 and SOX6 were significantly decreased in EAE mice spleen. Thus this study offers a list of genes expressed in the spleen that might play a key role in the pathogenesis of EAE.
Collapse
Affiliation(s)
- Arshad Mehmood
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Laboratory of Neurology of Hebei ProvinceShijiazhuangHebeiChina
| | - Shuang Song
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Laboratory of Neurology of Hebei ProvinceShijiazhuangHebeiChina
| | - Xiaochen Du
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Laboratory of Neurology of Hebei ProvinceShijiazhuangHebeiChina
| | - Hongjing Yan
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Laboratory of Neurology of Hebei ProvinceShijiazhuangHebeiChina
| | - Xuan Wang
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Laboratory of Neurology of Hebei ProvinceShijiazhuangHebeiChina
| | - Li Guo
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Laboratory of Neurology of Hebei ProvinceShijiazhuangHebeiChina
| | - Bin Li
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Laboratory of Neurology of Hebei ProvinceShijiazhuangHebeiChina
| |
Collapse
|
4
|
Coles AJ. Chasing MOG antibodies down … assays and lumbar punctures. Brain 2023; 146:3559-3560. [PMID: 37656888 DOI: 10.1093/brain/awad271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023] Open
|
5
|
Chen W, Li Q, Wang T, Fan L, Gao L, Huang Z, Lin Y, Xue Q, Liu G, Su Y, Zhang Y. Overlapping syndrome of anti-N-methyl-D-aspartate receptor encephalitis and anti-myelin oligodendrocyte glycoprotein inflammatory demyelinating diseases: A distinct clinical entity? Mult Scler Relat Disord 2021; 52:103020. [PMID: 34034214 DOI: 10.1016/j.msard.2021.103020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/25/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The co-existence of anti-N-methyl-D-aspartate receptor encephalitis (NMDARe) and anti-myelin oligodendrocyte glycoprotein (MOG) antibody disease has sparsely been reported, which needs to be investigated. METHOD Among the patients with NMDARe in Xuanwu Hospital, MOG antibody disease and NMDARe overlapping syndrome (MNOS) were retrospectively identified. We combined our data with those from previously reported cases to characterize this new entity. RESULT There were 45 patients with MNOS with a median onset age of 20. A total of 97.8% of the patients had symptoms of encephalitis; 68.9% of the patients had symptoms of demyelination, including optic neuritis (ON) (37.9%), longitudinally extensive transverse myelitis (LETM) (31.0%) and acute disseminated encephalomyelitis (ADEM) (27.6%). Abnormal signals on magnetic resonance imaging (MRI) usually involved cortical (46.7%), subcortical (31.1%) and basal ganglia (26.7%) lesions, as well as infratentorial (48.9%) and spinal cord (28.9%) lesions. No tumours were found. A total of 62.2% of the patients relapsed, with recurrence rates of 66.7% and 50.0% for those treated with first-line therapy alone and in combination with second-line immunotherapy, respectively. The pathological changes from the biopsy indicated immune-mediated inflammatory demyelination. Although some patients may have residual deficits, 93.3% of the patients became functionally independent. CONCLUSION The possibility of MNOS should be considered when patients diagnosed with anti-NMDARe simultaneously or sequentially develop ON, LETM or ADEM. MNOS occurred without tumour association, and inflammatory demyelination may be the pathological change. Steroids combined with second-line immunotherapy can help to reduce high recurrence rates, and most patients will have substantial recovery.
Collapse
Affiliation(s)
- Weibi Chen
- Department of Neurology, Xuanwu Hospital Capital Medical University, China
| | - Qian Li
- Department of Neurology, Xuanwu Hospital Capital Medical University, China; Department of Neurology, Haihe Clinical College of Tianjin Medical University, China
| | - Ting Wang
- Department of Neurology, Xuanwu Hospital Capital Medical University, China; Department of Neurology, Songyuan Central Hospital, China
| | - Linlin Fan
- Department of Neurology, Xuanwu Hospital Capital Medical University, China
| | - Lehong Gao
- Department of Neurology, Xuanwu Hospital Capital Medical University, China
| | - Zhaoyang Huang
- Department of Neurology, Xuanwu Hospital Capital Medical University, China
| | - Yicong Lin
- Department of Neurology, Xuanwu Hospital Capital Medical University, China
| | - Qin Xue
- Department of Neurology, Xuanwu Hospital Capital Medical University, China
| | - Gang Liu
- Department of Neurology, Xuanwu Hospital Capital Medical University, China
| | - Yingying Su
- Department of Neurology, Xuanwu Hospital Capital Medical University, China
| | - Yan Zhang
- Department of Neurology, Xuanwu Hospital Capital Medical University, China.
| |
Collapse
|
6
|
Lee DSW, Rojas OL, Gommerman JL. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat Rev Drug Discov 2021; 20:179-199. [PMID: 33324003 PMCID: PMC7737718 DOI: 10.1038/s41573-020-00092-2] [Citation(s) in RCA: 334] [Impact Index Per Article: 111.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 01/30/2023]
Abstract
In the past 15 years, B cells have been rediscovered to be not merely bystanders but rather active participants in autoimmune aetiology. This has been fuelled in part by the clinical success of B cell depletion therapies (BCDTs). Originally conceived as a method of eliminating cancerous B cells, BCDTs such as those targeting CD20, CD19 and BAFF are now used to treat autoimmune diseases, including systemic lupus erythematosus and multiple sclerosis. The use of BCDTs in autoimmune disease has led to some surprises. For example, although antibody-secreting plasma cells are thought to have a negative pathogenic role in autoimmune disease, BCDT, even when it controls the disease, has limited impact on these cells and on antibody levels. In this Review, we update our understanding of B cell biology, review the results of clinical trials using BCDT in autoimmune indications, discuss hypotheses for the mechanism of action of BCDT and speculate on evolving strategies for targeting B cells beyond depletion.
Collapse
Affiliation(s)
- Dennis S W Lee
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Olga L Rojas
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
7
|
Libbey JE, Fujinami RS. Viral mouse models used to study multiple sclerosis: past and present. Arch Virol 2021; 166:1015-1033. [PMID: 33582855 PMCID: PMC7882042 DOI: 10.1007/s00705-021-04968-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/06/2020] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is a common inflammatory demyelinating disease of the central nervous system. Although the etiology of MS is unknown, genetics and environmental factors, such as infections, play a role. Viral infections of mice have been used as model systems to study this demyelinating disease of humans. Three viruses that have long been studied in this capacity are Theiler’s murine encephalomyelitis virus, mouse hepatitis virus, and Semliki Forest virus. This review describes the viruses themselves, the infection process, the disease caused by infection and its accompanying pathology, and the model systems and their usefulness in studying MS.
Collapse
Affiliation(s)
- J E Libbey
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT, 84112, USA
| | - R S Fujinami
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
8
|
Marchionatti A, Woodhall M, Waters PJ, Sato DK. Detection of MOG-IgG by cell-based assay: moving from discovery to clinical practice. Neurol Sci 2020; 42:73-80. [PMID: 33063216 DOI: 10.1007/s10072-020-04828-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/12/2020] [Indexed: 01/05/2023]
Abstract
Myelin oligodendrocyte glycoprotein (MOG) is a unique CNS-specific mammalian protein that is expressed on the surface of compact myelin and oligodendrocyte cell bodies. MOG is an accessible target for autoantibodies, associated with immune-mediated demyelination in the central nervous system. The identification of MOG reactive immunoglobulin G antibodies (MOG-IgG) helps to distinguish a subgroup of patients from multiple sclerosis and other CNS disorders, reducing the risk of clinical misdiagnosis. The development of the cell-based assays (CBA) improved the detection of clinically meaningful MOG-IgG binding to conformational MOG expressed in the cell membrane surface. In this review, we describe factors that impact on the results of CBA, such as MOG conformation, protein glycosylation, addition of fluorescent tags, serum dilution, secondary antibodies, and data interpretation.
Collapse
Affiliation(s)
- Amanda Marchionatti
- Neuroinflammation and Neuroimmunology Lab, Brain Institute of Rio Grande do Sul, Porto Alegre, Brazil.,School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Mark Woodhall
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Patrick Joseph Waters
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Douglas Kazutoshi Sato
- Neuroinflammation and Neuroimmunology Lab, Brain Institute of Rio Grande do Sul, Porto Alegre, Brazil. .,School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
| |
Collapse
|
9
|
Cell-based assays for the detection of MOG antibodies: a comparative study. J Neurol 2020; 267:3555-3564. [PMID: 32623596 DOI: 10.1007/s00415-020-10024-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The detection of antibodies to myelin oligodendrocyte glycoprotein (MOG) is fundamental for the identification of MOG antibody-associated disorders (MOGAD), and the differential diagnosis of acquired demyelinating syndromes of the CNS, among which multiple sclerosis (MS). We compared the diagnostic performance of four cell-based assays (CBAs) for their detection. METHODS Consecutive sera from 204 patients with 'possible MOGAD' (55), MS (112), and other neurological disorders (OND, 37) were tested for MOG-IgG with a live-CBA with anti-heavy-and-light chain secondary-antibody (LCBA-IgGH+L), and a live-CBA for IgG1 (LCBA-IgG1). A subgroup of 71 patients was additionally tested with a live-CBA with anti-Fcγ secondary-antibody (LCBA-IgGFcγ), and a commercial fixed-CBA with anti-Fcγ secondary-antibody (FCBA-IgGFcγ). RESULTS: Fifty-seven/204 patients (27.9%) were MOG-IgG-positive. Sensitivity was 89.1% (CI:77.8-95.9) and specificity 93.3% (CI:88.0-96.7) for LCBA-IgGH+L, and 74.6% (CI:61.0-85.3) and 100% (CI:97.6-100) for LCBA-IgG1. Eighteen of 57 (31%) samples showed discrepant results (all negative on LCBA-IgG1); of these, three with 'possible MOGAD' showed high-titer MOG-IgG (≥ 1:640), and positivity for MOG-IgG2, whereas 15/18 had low-titer MOG-IgG (1:160/1:320) and mixed diagnoses (5 'possible MOGAD', 6 MS, 4 OND). In the subgroup analysis, sensitivity was 92.3% (CI:79.1-98.4) and specificity 97.0% (CI:83.8-99.9) for LCBA-IgGFcγ, and 87.2% (CI:72.6-95.7) and 97.0% (CI:83.8-99.9) for FCBA-IgGFcγ. CONCLUSIONS LCBA-IgG1 showed the highest specificity but can miss MOG-IgG2 reactivities, whose meaning warrants further investigations. Titration of samples tested with LCBA-IgGH+L/ IgGFcγ is important for meaningful interpretation of the results. In the subgroup analysis, LCBA-IgGFcγ yielded the highest accuracy, and FCBA-IgGFcγ good specificity, but it was at risk of false-negative results.
Collapse
|
10
|
Abstract
Anti-myelin oligodendrocyte glycoprotein (MOG) antibodies (MOG-Abs) were first detected by immunoblot and enzyme-linked immunosorbent assay nearly 30 years ago, but their association with multiple sclerosis (MS) was not specific. Use of cell-based assays with native MOG as the substrate enabled identification of a group of MOG-Ab-positive patients with demyelinating phenotypes. Initially, MOG-Abs were reported in children with acute disseminated encephalomyelitis (ADEM). Further studies identified MOG-Abs in adults and children with ADEM, seizures, encephalitis, anti-aquaporin-4-antibody (AQP4-Ab)-seronegative neuromyelitis optica spectrum disorder (NMOSD) and related syndromes (optic neuritis, myelitis and brainstem encephalitis), but rarely in MS. This shift in our understanding of the diagnostic assays has re-invigorated the examination of MOG-Abs and their role in autoimmune and demyelinating disorders of the CNS. The clinical phenotypes, disease courses and responses to treatment that are associated with MOG-Abs are currently being defined. MOG-Ab-associated disease is different to AQP4-Ab-positive NMOSD and MS. This Review provides an overview of the current knowledge of MOG, the metrics of MOG-Ab assays and the clinical associations identified. We collate the data on antibody pathogenicity and the mechanisms that are thought to underlie this. We also highlight differences between MOG-Ab-associated disease, NMOSD and MS, and describe our current understanding on how best to treat MOG-Ab-associated disease.
Collapse
|
11
|
B cells in autoimmune and neurodegenerative central nervous system diseases. Nat Rev Neurosci 2019; 20:728-745. [DOI: 10.1038/s41583-019-0233-2] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 12/16/2022]
|
12
|
Fang L, Kang X, Wang Z, Wang S, Wang J, Zhou Y, Chen C, Sun X, Yan Y, Kermode AG, Peng L, Qiu W. Myelin Oligodendrocyte Glycoprotein-IgG Contributes to Oligodendrocytopathy in the Presence of Complement, Distinct from Astrocytopathy Induced by AQP4-IgG. Neurosci Bull 2019; 35:853-866. [PMID: 31041694 DOI: 10.1007/s12264-019-00375-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
Immunoglobulin G against myelin oligodendrocyte glycoprotein (MOG-IgG) is detectable in neuromyelitis optica spectrum disorder (NMOSD) without aquaporin-4 IgG (AQP4-IgG), but its pathogenicity remains unclear. In this study, we explored the pathogenic mechanisms of MOG-IgG in vitro and in vivo and compared them with those of AQP4-IgG. MOG-IgG-positive serum induced complement activation and cell death in human embryonic kidney (HEK)-293T cells transfected with human MOG. In C57BL/6 mice and Sprague-Dawley rats, MOG-IgG only caused lesions in the presence of complement. Interestingly, AQP4-IgG induced astroglial damage, while MOG-IgG mainly caused myelin loss. MOG-IgG also induced astrocyte damage in mouse brains in the presence of complement. Importantly, we also observed ultrastructural changes induced by MOG-IgG and AQP4-IgG. These findings suggest that MOG-IgG directly mediates cell death by activating complement in vitro and producing NMOSD-like lesions in vivo. AQP4-IgG directly targets astrocytes, while MOG-IgG mainly damages oligodendrocytes.
Collapse
Affiliation(s)
- Ling Fang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| | - Xinmei Kang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| | - Zhen Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Shisi Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| | - Jingqi Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| | - Yifan Zhou
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| | - Chen Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| | - Xiaobo Sun
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| | - Yaping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Allan G Kermode
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
- Department of Neurology, Centre for Neuromuscular and Neurological Disorders, Queen Elizabeth II Medical Centre, Sir Charles Gairdner Hospital, University of Western Australia, Perth, WA, 6009, Australia
| | - Lisheng Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China.
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China.
| |
Collapse
|
13
|
Affiliation(s)
- Izumi Kawachi
- Department of Neurology; Brain Research Institute; Niigata University; Niigata Japan
| |
Collapse
|
14
|
Anti-MOG antibody: The history, clinical phenotype, and pathogenicity of a serum biomarker for demyelination. Autoimmun Rev 2016; 15:307-24. [DOI: 10.1016/j.autrev.2015.12.004] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/11/2015] [Indexed: 11/19/2022]
|
15
|
Hohlfeld R, Dornmair K, Meinl E, Wekerle H. The search for the target antigens of multiple sclerosis, part 2: CD8+ T cells, B cells, and antibodies in the focus of reverse-translational research. Lancet Neurol 2015; 15:317-31. [PMID: 26724102 DOI: 10.1016/s1474-4422(15)00313-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 10/13/2015] [Accepted: 10/22/2015] [Indexed: 01/16/2023]
Abstract
Interest in CD8+ T cells and B cells was initially inspired by observations in multiple sclerosis rather than in animal models: CD8+ T cells predominate in multiple sclerosis lesions, oligoclonal immunoglobulin bands in CSF have long been recognised as diagnostic and prognostic markers, and anti-B-cell therapies showed considerable efficacy in multiple sclerosis. Taking a reverse-translational approach, findings from human T-cell receptor (TCR) and B-cell receptor (BCR) repertoire studies provided strong evidence for antigen-driven clonal expansion in the brain and CSF. New methods allow the reconstruction of human TCRs and antibodies from tissue-infiltrating immune cells, which can be used for the unbiased screening of antigen libraries. Myelin oligodendrocyte glycoprotein (MOG) has received renewed attention as an antibody target in childhood multiple sclerosis and in a small subgroup of adult patients with multiple sclerosis. Furthermore, there is growing evidence that a separate condition in adults exists, tentatively called MOG-antibody-associated encephalomyelitis, which has clinical features that overlap with neuromyelitis optica spectrum disorder and multiple sclerosis. Although CD8+ T cells and B cells are thought to have a pathogenic role in some subgroups of patients, their target antigens have yet to be identified.
Collapse
Affiliation(s)
- Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Campus Martinsried-Grosshadern, Ludwig-Maximilians University, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Campus Martinsried-Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Campus Martinsried-Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | - Hartmut Wekerle
- HERTIE Senior Professor Group Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Germany
| |
Collapse
|
16
|
Riedhammer C, Weissert R. Antigen Presentation, Autoantigens, and Immune Regulation in Multiple Sclerosis and Other Autoimmune Diseases. Front Immunol 2015; 6:322. [PMID: 26136751 PMCID: PMC4470263 DOI: 10.3389/fimmu.2015.00322] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022] Open
Abstract
Antigen presentation is in the center of the immune system, both in host defense against pathogens, but also when the system is unbalanced and autoimmune diseases like multiple sclerosis (MS) develop. It is not just by chance that a major histocompatibility complex gene is the major genetic susceptibility locus in MS; a feature that MS shares with other autoimmune diseases. The exact etiology of the disease, however, has not been fully understood yet. T cells are regarded as the major players in the disease, but most probably a complex interplay of altered central and peripheral tolerance mechanisms, T-cell and B-cell functions, characteristics of putative autoantigens, and a possible interference of environmental factors like microorganisms are at work. In this review, new data on all these different aspects of antigen presentation and their role in MS will be discussed, probable autoantigens will be summarized, and comparisons to other autoimmune diseases will be drawn.
Collapse
Affiliation(s)
- Christine Riedhammer
- Neuroimmunology, Department of Neurology, University of Regensburg , Regensburg , Germany
| | - Robert Weissert
- Neuroimmunology, Department of Neurology, University of Regensburg , Regensburg , Germany
| |
Collapse
|
17
|
Correale J, Farez MF, Ysrraelit MC. Role of prolactin in B cell regulation in multiple sclerosis. J Neuroimmunol 2014; 269:76-86. [DOI: 10.1016/j.jneuroim.2014.02.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 01/22/2023]
|
18
|
Trippe J, Steinke K, Orth A, Faustmann PM, Hollmann M, Haase CG. Autoantibodies to glutamate receptor antigens in multiple sclerosis and Rasmussen's encephalitis. Neuroimmunomodulation 2014; 21:189-94. [PMID: 24504116 DOI: 10.1159/000356519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/16/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Glutamate and its specific ionotropic receptors, including N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors, are supposed to play an important role in neurodegeneration as well as neuronal regeneration. Although autoantibodies (aab) to glutamate receptors (GluR) have been identified in several neurologic diseases, including paraneoplastic encephalitis and Rasmussen's encephalitis (RE) with an increasing prevalence, the presence and role of anti-GluR aab in multiple sclerosis (MS) have not been studied yet. OBJECTIVES AND METHODS In this study, we tested the serum samples of 56 subjects, including patients with relapsing-remitting MS (n = 25), patients with RE (n = 8), and healthy donors (HD; n = 23), for anti-GluR aab by immunoblot analysis of a panel of recombinantly expressed GluR proteins, including GluN1, GluN2C, GluA3, GluK2, and GluD2. RESULTS aab were mainly found directed against GluN1 and, except for one aab positive to GluK2 in 1 MS patient and 2 HD controls positive for GluA3, no other anti-GluR aab were detected. In the sera of RE patients, no anti-GluR aab were found. In patients with MS, 8 of the 25 sera (32%) tested positive for GluN1. Compared to the HD (6/23; 26%), this difference was not statistically significant (p = 0.28). CONCLUSIONS Our study showed that if anti-GluR aab were detectable in HD and MS patients, they were mainly directed against GluN1 (in particular to oligomeric protein complexes) and were not found in RE. Those antibodies may have low titers and low affinities and might be considered an immune epiphenomenon. Hence, further studies will have to clarify their potential role as a surrogate marker for the extent of neuronal destruction or regeneration, respectively.
Collapse
Affiliation(s)
- Juergen Trippe
- Department of Receptor Biochemistry, Ruhr University Bochum, Bochum, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Mayer MC, Breithaupt C, Reindl M, Schanda K, Rostásy K, Berger T, Dale RC, Brilot F, Olsson T, Jenne D, Pröbstel AK, Dornmair K, Wekerle H, Hohlfeld R, Banwell B, Bar-Or A, Meinl E. Distinction and temporal stability of conformational epitopes on myelin oligodendrocyte glycoprotein recognized by patients with different inflammatory central nervous system diseases. THE JOURNAL OF IMMUNOLOGY 2013; 191:3594-604. [PMID: 24014878 DOI: 10.4049/jimmunol.1301296] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autoantibodies targeting conformationally intact myelin oligodendrocyte glycoprotein (MOG) are found in different inflammatory diseases of the CNS, but their antigenic epitopes have not been mapped. We expressed mutants of MOG on human HeLa cells and analyzed sera from 111 patients (104 children, 7 adults) who recognized cell-bound human MOG, but had different diseases, including acute disseminated encephalomyelitis (ADEM), one episode of transverse myelitis or optic neuritis, multiple sclerosis (MS), anti-aquaporin-4 (AQP4)-negative neuromyelitis optica (NMO), and chronic relapsing inflammatory optic neuritis (CRION). We obtained insight into the recognition of epitopes in 98 patients. All epitopes identified were located at loops connecting the β strands of MOG. The most frequently recognized MOG epitope was revealed by the P42S mutation positioned in the CC'-loop. Overall, we distinguished seven epitope patterns, including the one mainly recognized by mouse mAbs. In half of the patients, the anti-MOG response was directed to a single epitope. The epitope specificity was not linked to certain disease entities. Longitudinal analysis of 11 patients for up to 5 y indicated constant epitope recognition without evidence for intramolecular epitope spreading. Patients who rapidly lost their anti-MOG IgG still generated a long-lasting IgG response to vaccines, indicating that their loss of anti-MOG reactivity did not reflect a general lack of capacity for long-standing IgG responses. The majority of human anti-MOG Abs did not recognize rodent MOG, which has implications for animal studies. Our findings might assist in future detection of potential mimotopes and pave the way to Ag-specific depletion.
Collapse
Affiliation(s)
- Marie C Mayer
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bansal P, Khan T, Bussmeyer U, Challa DK, Swiercz R, Velmurugan R, Ober RJ, Ward ES. The Encephalitogenic, Human Myelin Oligodendrocyte Glycoprotein–Induced Antibody Repertoire Is Directed toward Multiple Epitopes in C57BL/6-Immunized Mice. THE JOURNAL OF IMMUNOLOGY 2013; 191:1091-101. [DOI: 10.4049/jimmunol.1300019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Lindner M, Ng JKM, Hochmeister S, Meinl E, Linington C. Neurofascin 186 specific autoantibodies induce axonal injury and exacerbate disease severity in experimental autoimmune encephalomyelitis. Exp Neurol 2013; 247:259-66. [PMID: 23688679 DOI: 10.1016/j.expneurol.2013.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/24/2013] [Accepted: 05/08/2013] [Indexed: 12/23/2022]
Abstract
Axonal injury is considered the major cause of chronic disability in multiple sclerosis (MS) patients, however the mechanisms behind remain still unclear. Recently, it was demonstrated that autoantibodies against Neurofascin, a cell adhesion molecule within the adult nervous system, can contribute to the development of axonal pathology in some patients. We compared the ability of the two different isoforms of Neurofascin, Nfasc155 and Nfasc186, to induce a pathogenic antibody response in the Dark Agouti (DA) rat. Animals were immunized with recombinant proteins prior to induction of experimental autoimmune encephalomyelitis (EAE) by adoptive transfer of activated MOG-specific T cells. Only Nfasc186 induced an axopathic autoantibody response in vivo, despite extensive cross reactivity between the two isoforms as shown by ELISA and flow cytometry. In this case, using transfected cell lines failed to differentiate between pathogenic and non-pathogenic responses. These findings have important implications with respect to the usage of cell based assays as an approach to detect pathologically relevant autoantibodies in clinical samples.
Collapse
Affiliation(s)
- Maren Lindner
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | | | | | | | | |
Collapse
|
22
|
Mayer MC, Meinl E. Glycoproteins as targets of autoantibodies in CNS inflammation: MOG and more. Ther Adv Neurol Disord 2013; 5:147-59. [PMID: 22590479 DOI: 10.1177/1756285611433772] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
B cells and antibodies constitute an important element in different inflammatory diseases of the central nervous system (CNS). Autoantibodies can serve as a biomarker to identify disease subgroups and may in addition contribute to the pathogenic process. One candidate autoantigen for multiple sclerosis (MS) is myelin oligodendrocyte glycoprotein (MOG). MOG is localized at the outermost surface of myelin in the CNS and has been the focus of extensive research for more than 30 years. Its role as an important autoantigen for T cells and as a target of demyelinating autoantibodies has been established in several variants of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The literature regarding antibodies to MOG in MS patients is confusing and contradictory. Recent studies, however, have described high levels of antibodies to conformationally correct MOG in pediatric acquired demyelination, both acute disseminated encephalomyelitis (ADEM) and MS. In adult MS, such antibodies are rarely found and then only at low levels. In this review, we summarize key findings from animal models and patient studies, discuss challenges in detecting anti-MOG antibodies in patients and present recent approaches to identifying new autoantigens in MS.
Collapse
Affiliation(s)
- Marie Cathrin Mayer
- Max Planck Institute of Neurobiology, Department of Neuroimmunology, Martinsried, Germany and Institute of Clinical Neuroimmunology, Ludwig-Maximilians-University, Munich, Germany
| | | |
Collapse
|
23
|
Identifying autoantigens in demyelinating diseases: valuable clues to diagnosis and treatment? Curr Opin Neurol 2012; 25:231-8. [PMID: 22487571 DOI: 10.1097/wco.0b013e3283533a64] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Identification of autoantigens in demyelinating diseases is essential for the understanding of the pathogenesis. Immune responses against these antigens could be used as biomarkers for diagnosis, prognosis and treatment responses. Knowledge of antigen-specific immune responses in individual patients is also a prerequisite for antigen-based therapies. RECENT FINDINGS A proportion of patients with demyelinating disease have antibodies to aquaporin 4 (AQP4) or myelin oligodendrocyte glycoprotein (MOG). Patients with anti-AQP4 have the distinct clinical presentation of neuromyelitis optica (NMO), and these patients often also harbour other autoimmune responses. In contrast, anti-MOG is seen in patients with different disease entities such as childhood multiple sclerosis (MS), acute demyelinating encephalomyelitis (ADEM), anti-AQP4 negative NMO, and optic neuritis, but hardly in adult MS. A number of new candidate autoantigens have been identified and await validation. Antigen-based therapies are mainly aimed at tolerizing T-cell responses against myelin basic protein (MBP) and have shown only modest or no clinical benefit so far. SUMMARY Currently, only few patients with demyelinating diseases can be characterized based on their autoantibody profile. The most prominent antigens in this respect are MOG and AQP4. Further research has to focus on the validation of newly discovered antigens as biomarkers.
Collapse
|
24
|
Mayer MC, Hohlfeld R, Meinl E. Viability of autoantibody-targets: How to tackle pathogenetic heterogeneity as an obstacle for treatment of multiple sclerosis. J Neurol Sci 2012; 319:2-7. [DOI: 10.1016/j.jns.2012.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 12/20/2022]
|
25
|
Affiliation(s)
- Sarah Lawrie
- Neuroimmunology Unit; Montreal Neurological Institute; McGill University; Montreal; QC; Canada
| | | |
Collapse
|
26
|
Elliott C, Lindner M, Arthur A, Brennan K, Jarius S, Hussey J, Chan A, Stroet A, Olsson T, Willison H, Barnett SC, Meinl E, Linington C. Functional identification of pathogenic autoantibody responses in patients with multiple sclerosis. ACTA ACUST UNITED AC 2012; 135:1819-33. [PMID: 22561643 PMCID: PMC3359756 DOI: 10.1093/brain/aws105] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pathological and clinical studies implicate antibody-dependent mechanisms in the immunopathogenesis of multiple sclerosis. We tested this hypothesis directly by investigating the ability of patient-derived immunoglobulins to mediate demyelination and axonal injury in vitro. Using a myelinating culture system, we developed a sensitive and reproducible bioassay to detect and quantify these effects and applied this to investigate the pathogenic potential of immunoglobulin G preparations obtained from patients with multiple sclerosis (n = 37), other neurological diseases (n = 10) and healthy control donors (n = 13). This identified complement-dependent demyelinating immunoglobulin G responses in approximately 30% of patients with multiple sclerosis, which in two cases was accompanied by significant complement-dependent antibody mediated axonal loss. No pathogenic immunoglobulin G responses were detected in patients with other neurological disease or healthy controls, indicating that the presence of these demyelinating/axopathic autoantibodies is specific for a subset of patients with multiple sclerosis. Immunofluorescence microscopy revealed immunoglobulin G preparations with demyelinating activity contained antibodies that specifically decorated the surface of myelinating oligodendrocytes and their contiguous myelin sheaths. No other binding was observed indicating that the response is restricted to autoantigens expressed by terminally differentiated myelinating oligodendrocytes. In conclusion, our study identifies axopathic and/or demyelinating autoantibody responses in a subset of patients with multiple sclerosis. This observation underlines the mechanistic heterogeneity of multiple sclerosis and provides a rational explanation why some patients benefit from antibody depleting treatments.
Collapse
Affiliation(s)
- Christina Elliott
- Institute of Immunology, Immunity and Infection, University of Glasgow, Glasgow, G12 8TA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lee DH, Linker RA. The role of myelin oligodendrocyte glycoprotein in autoimmune demyelination: a target for multiple sclerosis therapy? Expert Opin Ther Targets 2012; 16:451-62. [DOI: 10.1517/14728222.2012.677438] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Guardiani C, Marsili S, Marchetti S, Gambi C, Procacci P, Livi R. Conformational structure of the MOG-derived peptide 101-108 in solution. Biopolymers 2011; 96:245-51. [DOI: 10.1002/bip.21510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Carlo Guardiani
- Centro Interdipartimentale per lo Studio delle Dinamiche Complesse (CSDC), Universita di Firenze, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Jung J, Michalak M. Cell surface targeting of myelin oligodendrocyte glycoprotein (MOG) in the absence of endoplasmic reticulum molecular chaperones. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1105-10. [PMID: 21172390 DOI: 10.1016/j.bbamcr.2010.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 11/15/2022]
Abstract
Myelin oligodendrocyte glycoprotein (MOG) is a type I integral membrane glycoprotein that localizes to myelin sheaths in the central nervous system. MOG has important implications in multiple sclerosis, as pathogenic anti-MOG antibodies have been detected in the sera of multiple sclerosis patients. As a membrane protein, MOG achieves its native structure in the endoplasmic reticulum where its folding is expected to be controlled by endoplasmic reticulum chaperones. Calnexin, calreticulin, and ERp57 are essential components of the endoplasmic reticulum quality control where they assist in the proper folding of newly synthesized glycoproteins. In this study, we show that expression of MOG is not affected by the absence of the endoplasmic reticulum quality control proteins calnexin, calreticulin, or ERp57. We also show that calnexin forms complexes with MOG and these interactions might be glycan-independent. Importantly, we show that cell surface targeting of MOG is not disrupted in the absence of the endoplasmic reticulum chaperones. This article is part of a special issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Joanna Jung
- Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Canada T6G 2H7.
| | | |
Collapse
|
30
|
Mix E, Meyer-Rienecker H, Hartung HP, Zettl UK. Animal models of multiple sclerosis--potentials and limitations. Prog Neurobiol 2010; 92:386-404. [PMID: 20558237 PMCID: PMC7117060 DOI: 10.1016/j.pneurobio.2010.06.005] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/01/2010] [Accepted: 06/07/2010] [Indexed: 12/17/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is still the most widely accepted animal model of multiple sclerosis (MS). Different types of EAE have been developed in order to investigate pathogenetic, clinical and therapeutic aspects of the heterogenic human disease. Generally, investigations in EAE are more suitable for the analysis of immunogenetic elements (major histocompatibility complex restriction and candidate risk genes) and for the study of histopathological features (inflammation, demyelination and degeneration) of the disease than for screening of new treatments. Recent studies in new EAE models, especially in transgenic ones, have in connection with new analytical techniques such as microarray assays provided a deeper insight into the pathogenic cellular and molecular mechanisms of EAE and potentially of MS. For example, it was possible to better delineate the role of soluble pro-inflammatory (tumor necrosis factor-α, interferon-γ and interleukins 1, 12 and 23), anti-inflammatory (transforming growth factor-β and interleukins 4, 10, 27 and 35) and neurotrophic factors (ciliary neurotrophic factor and brain-derived neurotrophic factor). Also, the regulatory and effector functions of distinct immune cell subpopulations such as CD4+ Th1, Th2, Th3 and Th17 cells, CD4+FoxP3+ Treg cells, CD8+ Tc1 and Tc2, B cells and γδ+ T cells have been disclosed in more detail. The new insights may help to identify novel targets for the treatment of MS. However, translation of the experimental results into the clinical practice requires prudence and great caution.
Collapse
Key Words
- apc, antigen-presenting cell
- at-eae, adoptive transfer eae
- bbb, blood–brain barrier
- bdnf, brain-derived neurotrophic factor
- cd, cluster of differentiation
- cns, central nervous system
- cntf, ciliary neurotrophic factor
- eae, experimental autoimmune encephalomyelitis
- hla, human leukocyte antigen
- ig, immunoglobulin
- il, interleukin
- ifn, interferon
- ivig, intravenous immunoglobulin
- mab, monoclonal antibody
- mbp, myelin basic protein
- mhc, major histocompatibility complex
- mog, myelin oligodendrocyte glycoprotein
- mp, methylprednisolone
- mri, magnetic resonance imaging
- ms, multiple sclerosis
- nk, natural killer
- odc, oligodendrocyte
- qtl, quantitative trait locus
- plp, proteolipid protein
- tc, cytotoxic t cell
- tcr, t cell receptor
- tgf, transforming growth factor
- th cell, helper t cell
- tnf, tumor necrosis factor
- animal model
- autoimmunity
- experimental autoimmune encephalomyelitis
- immunogenetics
- immunomodulatory therapy
- multiple sclerosis
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Clinical Trials as Topic
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Gene Expression Profiling
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Microarray Analysis
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/physiopathology
- Multiple Sclerosis/therapy
Collapse
Affiliation(s)
- Eilhard Mix
- Department of Neurology, University of Rostock, Germany
| | | | - Hans-Peter Hartung
- Department of Neurology, Heinrich-Heine-University, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Uwe K. Zettl
- Department of Neurology, University of Rostock, Germany
| |
Collapse
|
31
|
Klawiter EC, Piccio L, Lyons JA, Mikesell R, O'Connor KC, Cross AH. Elevated intrathecal myelin oligodendrocyte glycoprotein antibodies in multiple sclerosis. ACTA ACUST UNITED AC 2010; 67:1102-8. [PMID: 20837855 DOI: 10.1001/archneurol.2010.197] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To evaluate antibodies to myelin oligodendrocyte glycoprotein (MOG) in the serum and cerebrospinal fluid (CSF) of patients with multiple sclerosis (MS) and control individuals. DESIGN Prospective case-control series. SETTING Academic referral center. PATIENTS Twenty-six controls with noninflammatory neurologic disease and 35 patients with MS donated serum and CSF for recombinant MOG (rMOG) antibody determination. MAIN OUTCOME MEASURES Serum and CSF rMOG antibody and albumin levels were used to calculate an rMOG index. Clinical disability, CSF markers, and magnetic resonance metrics were correlated with the rMOG index. RESULTS The rMOG index was elevated in MS patients compared with controls (P = .01). Patients with progressive MS exhibited elevated rMOG indexes compared with patients with relapsing-remitting MS (P = .04). The rMOG index was inferior to the IgG index in differentiating MS patients from controls. However, 7 of 16 patients with MS who had normal immunoglobulin G indexes had an elevated rMOG index. The rMOG index did not correlate with clinical disability, other CSF markers, or radiographic outcome measures. CONCLUSIONS The rMOG index, a marker of intrathecal MOG antibody production, may provide complementary information to routine CSF testing in the diagnosis of MS. Furthermore, intrathecal anti-MOG antibody production may be more pronounced in progressive than in relapsing forms of MS.
Collapse
Affiliation(s)
- Eric C Klawiter
- Department of Neurology, Washington University, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
32
|
Kap YS, van Driel N, Blezer E, Parren PWHI, Bleeker WK, Laman JD, Craigen JL, 't Hart BA. Late B cell depletion with a human anti-human CD20 IgG1κ monoclonal antibody halts the development of experimental autoimmune encephalomyelitis in marmosets. THE JOURNAL OF IMMUNOLOGY 2010; 185:3990-4003. [PMID: 20739677 DOI: 10.4049/jimmunol.1001393] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Depletion of CD20(+) B cells has been related to reduced clinical activity in relapsing-remitting multiple sclerosis. The underlying mechanism is not understood, because serum IgG levels were unaltered by the treatment. We report the effect of late B cell depletion on cellular and humoral immune mechanisms in a preclinical multiple sclerosis model (i.e., experimental autoimmune encephalomyelitis [EAE] in the common marmoset). We used a novel human anti-human CD20 IgG1κ mAb (HuMab 7D8) that cross-reacts with marmoset CD20. EAE was induced in 14 marmosets by immunization with recombinant human myelin oligodendrocyte glycoprotein (MOG) in CFA. After 21 d, B cells were depleted in seven monkeys by HuMab 7D8, and seven control monkeys received PBS. The Ab induced profound and long-lasting B cell depletion from PBMCs and lymphoid organs throughout the observation period of 106 d. Whereas all of the control monkeys developed clinically evident EAE, overt neurologic deficits were reduced substantially in three HuMab 7D8-treated monkeys, and four HuMab 7D8-treated monkeys remained completely asymptomatic. The effect of HuMab 7D8 was confirmed on magnetic resonance images, detecting only small lesions in HuMab 7D8-treated monkeys. The infusion of HuMab 7D8 arrested the progressive increase of anti-MOG IgG Abs. Although CD3(+) T cell numbers in lymphoid organs were increased, their proliferation and cytokine production were impaired significantly. Most notable were the substantially reduced mRNA levels of IL-7 and proinflammatory cytokines (IL-6, IL-17A, IFN-γ, and TNF-α). In conclusion, B cell depletion prevents the development of clinical and pathological signs of EAE, which is associated with impaired activation of MOG-reactive T cells in lymphoid organs.
Collapse
Affiliation(s)
- Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Meinl E, Derfuss T, Linington C. Identifying targets for autoantibodies in CNS inflammation: Strategies and achievements. ACTA ACUST UNITED AC 2010. [DOI: 10.1111/j.1759-1961.2009.00006.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Guardiani C, Marsili S, Procacci P, Livi R. Fragment 101-108 of myelin oligodendrocyte glycoprotein: a possible lead compound for multiple sclerosis. J Am Chem Soc 2009; 131:17176-84. [PMID: 19891505 DOI: 10.1021/ja905154j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multiple Sclerosis (MS) is a highly invalidating autoimmune disease of the central nervous system, leading to progressive paralysis and, sometimes, to premature death. One of the potential targets of the autoimmune reaction is the myelin protein MOG (Myelin Oligodendrocyte Glycoprotein). Since the 101-108 fragment of MOG plays a key role in the interaction with the MS-autoantibody 8-18C5, we performed an analysis of the equilibrium conformations of this peptide using the Replica Exchange Molecular Dynamics technique in conjunction with the Generalized Born continuum solvent model. Four variants of the peptide, stabilized by a disulfide bond, were also studied. We found that a significant fraction of the equilibrium population retains the original beta-hairpin conformation, and the amount of crystal-like conformations increases in the disulfide-closed analogues. When the equilibrium structures were used in docking simulations with the 8-18C5 autoantibody, we discovered the existence of a docking funnel whose bottom is populated by stable complexes where the peptide occupies the same region of space that was occupied in the crystal. It follows that the MOG 101-108 fragment represents a promising starting point for the design of a drug capable of blocking the 8-18C5 antibody. The molecule may also be used for the development of a diagnostic assay for multiple sclerosis.
Collapse
Affiliation(s)
- Carlo Guardiani
- Centro Interdipartimentale per lo Studio delle Dinamiche Complesse, Universita di Firenze, Italy.
| | | | | | | |
Collapse
|
35
|
McLaughlin KA, Chitnis T, Newcombe J, Franz B, Kennedy J, McArdel S, Kuhle J, Kappos L, Rostasy K, Pohl D, Gagne D, Ness JM, Tenembaum S, O'Connor KC, Viglietta V, Wong SJ, Tavakoli NP, de Seze J, Idrissova Z, Khoury SJ, Bar-Or A, Hafler DA, Banwell B, Wucherpfennig KW. Age-dependent B cell autoimmunity to a myelin surface antigen in pediatric multiple sclerosis. THE JOURNAL OF IMMUNOLOGY 2009; 183:4067-76. [PMID: 19687098 DOI: 10.4049/jimmunol.0801888] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Multiple sclerosis (MS) typically manifests in early to mid adulthood, but there is increasing recognition of pediatric-onset MS, aided by improvements in imaging techniques. The immunological mechanisms of disease are largely unexplored in pediatric-onset MS, in part because studies have historically focused on adult-onset disease. We investigated autoantibodies to myelin surface Ags in a large cohort of pediatric MS cases by flow cytometric labeling of transfectants that expressed different myelin proteins. Although Abs to native myelin oligodendrocyte glycoprotein (MOG) were uncommon among adult-onset patients, a subset of pediatric patients had serum Abs that brightly labeled the MOG transfectant. Abs to two other myelin surface Ags were largely absent. Affinity purification of MOG Abs as well as competition of binding with soluble MOG documented their binding specificity. Such affinity purified Abs labeled myelin and glial cells in human CNS white matter as well as myelinated axons in gray matter. The prevalence of such autoantibodies was highest among patients with a very early onset of MS: 38.7% of patients less than 10 years of age at disease onset had MOG Abs, compared with 14.7% of patients in the 10- to 18-year age group. B cell autoimmunity to this myelin surface Ag is therefore most common in patients with a very early onset of MS.
Collapse
Affiliation(s)
- Katherine A McLaughlin
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Multiple sclerosis (MS) is an autoimmune disease. The etiology and pathogenesis of MS remain unclear. At present, there are substantial evidences to support the hypothesis that genetics plays a crucial role. The people who have genetic predisposing genes easily develop immune-mediated disorder, probably in conjunction with environmental factors. The aim of this review is to describe recent observations regarding the immunologic pathogenesis of MS.
Collapse
|
37
|
Breithaupt C, Schäfer B, Pellkofer H, Huber R, Linington C, Jacob U. Demyelinating Myelin Oligodendrocyte Glycoprotein-Specific Autoantibody Response Is Focused on One Dominant Conformational Epitope Region in Rodents. THE JOURNAL OF IMMUNOLOGY 2008; 181:1255-63. [DOI: 10.4049/jimmunol.181.2.1255] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Abstract
This protocol details a method to actively induce experimental allergic encephalomyelitis (EAE), a widely used animal model for studies of multiple sclerosis. EAE is induced by stimulating T-cell-mediated immunity to myelin antigens. Active induction of EAE is accomplished by immunization with myelin antigens emulsified in adjuvant. This protocol focuses on induction of EAE in mice; however, the same principles apply to EAE induction in other species. EAE in rodents is manifested typically as ascending flaccid paralysis with inflammation targeting the spinal cord. However, more diverse clinical signs can occur in certain strain/antigen combinations in rodents and in other species, reflecting increased inflammation in the brain.
Collapse
Affiliation(s)
- Ingunn M Stromnes
- Department of Immunology, University of Washington, Box 357650, 1959 NE Pacific Street, Seattle, Washington 98195-7650, USA
| | | |
Collapse
|
39
|
Pittock SJ, Reindl M, Achenbach S, Berger T, Bruck W, Konig F, Morales Y, Lassmann H, Bryant S, Moore SB, Keegan BM, Lucchinetti CF. Myelin oligodendrocyte glycoprotein antibodies in pathologically proven multiple sclerosis: frequency, stability and clinicopathologic correlations. Mult Scler 2007; 13:7-16. [PMID: 17294606 DOI: 10.1177/1352458506072189] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Controversy exists regarding the pathogenic or predictive role of anti-myelin oligodendrocyte glycoprotein (MOG) antibodies in patients with multiple sclerosis (MS). Four immunopathological patterns (IP) have been recognized in early active MS lesions, suggesting heterogeneous pathogenic mechanisms. Whether MOG antibodies contribute to this pathological heterogeneity and potentially serve as biomarkers to identify specific pathological patterns is unknown. Here we report the frequencies of antibodies to human recombinant MOG (identified by Western blot and enzyme-linked immunoabsorbent assay (ELISA)) in patients with pathologically proven demyelinating disease, and investigate whether antibody status is associated with clinical course, HLA-DR2-genotype, IP or treatment response to plasmapheresis. The biopsy cohort consisted of 72 patients: 12 pattern I, 43 pattern II and 17 pattern III. No association was found between MOG antibody status and conversion to clinically definite MS, DR-2 status, IP or response to plasmapheresis. There was poor agreement between Western blot and ELISA (kappa = 0.07 for MOG IgM). Fluctuations in antibody seropositivity were seen for 3/4 patients tested serially by Western blot. This study does not support a pathologic pattern-specific role for MOG-antibodies. Variable MOG-antibody status on serial measurements, coupled with the lack of Western blot and ELISA correlations, raises concern regarding the use of MOG-antibody as an MS biomarker and underscores the need for methodological consensus.
Collapse
Affiliation(s)
- S J Pittock
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhou D, Srivastava R, Nessler S, Grummel V, Sommer N, Brück W, Hartung HP, Stadelmann C, Hemmer B. Identification of a pathogenic antibody response to native myelin oligodendrocyte glycoprotein in multiple sclerosis. Proc Natl Acad Sci U S A 2006; 103:19057-62. [PMID: 17142321 PMCID: PMC1748176 DOI: 10.1073/pnas.0607242103] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. Although the cause of MS is still uncertain, many findings point toward an ongoing autoimmune response to myelin antigens. Because of its location on the outer surface of the myelin sheath and its pathogenicity in the experimental autoimmune encephalomyelitis model, myelin oligodendrocyte glycoprotein (MOG) is one of the potential disease-causing self antigens in MS. However, the role of MOG in the pathogenesis of MS has remained controversial. In this study we addressed the occurrence of autoantibodies to native MOG and its implication for demyelination and axonal loss in MS. We applied a high-sensitivity bioassay, which allowed detecting autoantibodies that bind to the extracellular part of native MOG. Antibodies, mostly IgG, were found in sera that bound with high affinity to strictly conformational epitopes of the extracellular domain of MOG. IgG but not IgM antibody titers to native MOG were significantly higher in MS patients compared with different control groups with the highest prevalence in primary progressive MS patients. Serum autoantibodies to native MOG induced death of MOG-expressing target cells in vitro. Serum from MS patients with high anti-MOG antibody titers stained white matter myelin in rat brain and enhanced demyelination and axonal damage when transferred to autoimmune encephalomyelitis animals. Overall these findings suggest a pathogenic antibody response to native MOG in a subgroup of MS patients.
Collapse
Affiliation(s)
- Dun Zhou
- *Department of Neurology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Rajneesh Srivastava
- *Department of Neurology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Stefan Nessler
- *Department of Neurology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Verena Grummel
- *Department of Neurology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Norbert Sommer
- Department of Neurology, Philipps University, 35033 Marburg, Germany; and
| | - Wolfgang Brück
- Institute of Neuropathology, Georg August University, 37099 Göttingen, Germany
| | - Hans-Peter Hartung
- *Department of Neurology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | | | - Bernhard Hemmer
- *Department of Neurology, Heinrich Heine University, 40225 Düsseldorf, Germany
- To whom correspondence should be addressed at:
Department of Neurology, Heinrich Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany. E-mail:
| |
Collapse
|
41
|
Reindl M, Khalil M, Berger T. Antibodies as biological markers for pathophysiological processes in MS. J Neuroimmunol 2006; 180:50-62. [PMID: 16934337 DOI: 10.1016/j.jneuroim.2006.06.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 06/20/2006] [Accepted: 06/23/2006] [Indexed: 11/19/2022]
Abstract
Multiple sclerosis (MS), the most important human inflammatory demyelinating disease of the central nervous system, is characterized by various clinical disease courses, inhomogeneous and unpredictable therapeutic effects, heterogenous genetic backgrounds and immunopathogenetic subtypes as demonstrated by neuropathology. Because of this heterogeneity of MS, a subtyping of our patients by genetical, clinical, neuroradiological, and neuroimmunological parameters will be necessary in the future. Therefore the importance of identifying biological markers for MS has evolved over the past years. Evidence for a possible role of antibodies as biological markers for MS comes from several studies indicating that intrathecal antibody production and the dominance of B cells are associated with a more progressive disease course. In this review we will give an overview on the current status and potential applicability of antibodies as biological markers for the diagnosis, classification, disease activity and prediction of clinical courses in MS. We will therefore summarize the findings on autoantibodies to myelin and nonmyelin antigens and on viral antigens in MS. We believe that antibodies serving as biomarkers will help to establish a differential therapeutic concept in MS, which will allow to treat individuals selectively according to their pathogenetic subtype and disease status.
Collapse
Affiliation(s)
- Markus Reindl
- Clinical Department of Neurology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| | | | | |
Collapse
|
42
|
Meinl E, Krumbholz M, Hohlfeld R. B lineage cells in the inflammatory central nervous system environment: Migration, maintenance, local antibody production, and therapeutic modulation. Ann Neurol 2006; 59:880-92. [PMID: 16718690 DOI: 10.1002/ana.20890] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
B cells have long played an enigmatic role in the scenario of multiple sclerosis pathogenesis. This review summarizes recent progress in our understanding of B-cell trafficking, survival, and differentiation in the central nervous system (CNS). We propose four possible routes of intrathecal immunoglobulin-producing cells. The inflammatory CNS provides a unique, B-cell-friendly environment, in which B lineage cells, notably long-lived plasma cells, can survive for many years, perhaps even for a lifetime. These new findings offer a plausible explanation for the notorious persistence and stability of cerebrospinal fluid oligoclonal bands. Furthermore, we highlight similarities and differences of intrathecal immunoglobulin production in multiple sclerosis patients and patients with other CNS inflammatory conditions. Finally, we outline the possibly double-edged effects of B cells and immunoglobulin in the CNS and discuss various therapeutic strategies for targeting the B-cell response.
Collapse
Affiliation(s)
- Edgar Meinl
- Department of Neuroimmunology, Max-Planck-Institute of Neurobiology, Martinsried, Munich, Germany.
| | | | | |
Collapse
|
43
|
Khalil M, Reindl M, Lutterotti A, Kuenz B, Ehling R, Gneiss C, Lackner P, Deisenhammer F, Berger T. Epitope specificity of serum antibodies directed against the extracellular domain of myelin oligodendrocyte glycoprotein: Influence of relapses and immunomodulatory treatments. J Neuroimmunol 2006; 174:147-56. [PMID: 16516980 DOI: 10.1016/j.jneuroim.2006.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 01/18/2006] [Accepted: 01/20/2006] [Indexed: 11/21/2022]
Abstract
Only few reports are available on the epitope specificity of anti-myelin oligodendrocyte glycoprotein (MOG) antibodies in multiple sclerosis (MS). In the present study we provide a precise characterization of the epitope specificity of serum antibodies directed against the extracellular domain of MOG, including IgG, IgM and IgA immunoglobulin isotypes in 28 relapsing remitting MS patients and report that linear epitopes amino-acid (aa) 37-48 and aa42-53 are immunodominant. Recently experienced relapses intensified the anti-MOG peptide antibody response. Immunomodulatory treatment with interferon-beta or glatiramer-acetate had no major impact on the anti-MOG peptide immunoreactivity after 1 year of therapy.
Collapse
Affiliation(s)
- Michael Khalil
- Clinical Department of Neurology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lalive PH, Menge T, Delarasse C, Della Gaspera B, Pham-Dinh D, Villoslada P, von Büdingen HC, Genain CP. Antibodies to native myelin oligodendrocyte glycoprotein are serologic markers of early inflammation in multiple sclerosis. Proc Natl Acad Sci U S A 2006; 103:2280-5. [PMID: 16461459 PMCID: PMC1413723 DOI: 10.1073/pnas.0510672103] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myelin oligodendrocyte glycoprotein (MOG) is an integral membrane protein expressed in CNS oligodendrocytes and outermost myelin lamellae. Anti-MOG Abs cause myelin destruction (demyelination) in animal models of multiple sclerosis (MS); however, such pathogenic Abs have not yet been characterized in humans. Here, a method that specifically detects IgG binding to human MOG in its native, membrane-embedded conformation on MOG-transfected mammalian cells was used to evaluate the significance of these auto Abs. Compared with healthy controls, native MOG-specific IgGs were most frequently found in serum of clinically isolated syndromes (P < 0.001) and relapsing-remitting MS (P < 0.01), only marginally in secondary progressive MS (P < 0.05), and not at all in primary progressive MS. We demonstrate that epitopes exposed in this cell-based assay are different from those exposed on the refolded, extracellular domain of human recombinant MOG tested by solid-phase ELISA. In marmoset monkeys induced to develop MS-like CNS inflammatory demyelination, IgG reactivity against the native membrane-bound MOG is always detected before clinical onset of disease (P < 0.0001), unlike that against other myelin constituents. We conclude that (i) epitopes displayed on native, glycosylated MOG expressed in vivo are early targets for pathogenic Abs; (ii) these Abs, which are not detected in solid-phase assays, might be the ones to play a pathogenic role in early MS with predominant inflammatory activity; and (iii) the cell-based assay provides a practical serologic marker for early detection of CNS autoimmune demyelination including its preclinical stage at least in the primate MS model.
Collapse
Affiliation(s)
- Patrice H. Lalive
- *Department of Neurology, University of California, San Francisco, CA 94143
| | - Til Menge
- *Department of Neurology, University of California, San Francisco, CA 94143
| | - Cecile Delarasse
- Institut National de la Santé et de la Recherche Médicale, U546, 105 Boulevard de l’Hôpital, 75013 Paris, France
| | - Bruno Della Gaspera
- Institut National de la Santé et de la Recherche Médicale, U546, 105 Boulevard de l’Hôpital, 75013 Paris, France
| | - Danielle Pham-Dinh
- Institut National de la Santé et de la Recherche Médicale, U546, 105 Boulevard de l’Hôpital, 75013 Paris, France
| | - Pablo Villoslada
- Department of Neurology, Clinica Universitaria de Navarra, Pio XII 36, 31008 Pamplona, NA, Spain; and
| | - H.-C. von Büdingen
- Department of Neurology, University Hospital, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | - Claude P. Genain
- *Department of Neurology, University of California, San Francisco, CA 94143
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Papadopoulos D, Pham-Dinh D, Reynolds R. Axon loss is responsible for chronic neurological deficit following inflammatory demyelination in the rat. Exp Neurol 2005; 197:373-85. [PMID: 16337942 DOI: 10.1016/j.expneurol.2005.10.033] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 08/02/2005] [Accepted: 10/09/2005] [Indexed: 10/25/2022]
Abstract
Axonal loss is now considered a consistent feature of MS pathology and evidence suggests that its accumulation may be the pathological correlate for the development of irreversible disability. In this study, we investigated the features of axonal loss in myelin autoimmunity and tested the hypothesis that loss of axons determines permanent neurological impairment in a model of inflammatory demyelination that closely mimics the pathology and course of MS. EAE was induced in DA rats by injection of recombinant mouse MOG with IFA. Animals that developed progressive EAE were killed at several time points after disease onset and animals that followed a chronic relapsing-remitting course of EAE were killed at approximately 4 months, exhibiting varying degrees of residual disability. Toluidine blue staining of semithin sections and immunohistochemistry for OX-42 were used to quantify demyelination, remyelination, inflammation and axonal loss in the spinal cord of MOG-EAE rats. In progressive EAE, the degree of axon loss, demyelination and inflammation all correlated significantly with clinical severity scores and a causative role for macrophages in the pathogenesis of axonal injury is suggested. However, in the chronic stage of relapsing-remitting EAE, in rats having suffered a variable number of relapses, only axonal loss correlated significantly with clinical severity scores. In addition, both axonal loss and clinical severity scores correlated with the number of relapses. These findings imply that secondary, or 'bystander', axonal loss is the main determinant of irreversible neurological disability in MOG-EAE and make the model a useful tool for the investigation of mechanisms of axonal loss and the evaluation of the benefits of neuroprotective therapies under conditions of antibody-mediated inflammatory demyelination.
Collapse
MESH Headings
- Animals
- Atrophy
- Axons/metabolism
- Axons/pathology
- CD11b Antigen/metabolism
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Female
- Multiple Sclerosis, Relapsing-Remitting/pathology
- Multiple Sclerosis, Relapsing-Remitting/physiopathology
- Myelin Proteins
- Myelin Sheath/metabolism
- Myelin Sheath/pathology
- Myelin-Associated Glycoprotein
- Myelin-Oligodendrocyte Glycoprotein
- Myelitis/etiology
- Myelitis/pathology
- Nerve Degeneration/metabolism
- Nerve Degeneration/pathology
- Nerve Degeneration/physiopathology
- Rats
- Spinal Cord/pathology
- Statistics as Topic
- Time Factors
Collapse
Affiliation(s)
- Dimitrios Papadopoulos
- Department of Cellular and Molecular Neuroscience, Division of Neuroscience, Imperial College Faculty of Medicine, Charing Cross Campus, Fulham Palace Road, London W6 8RF, UK
| | | | | |
Collapse
|
46
|
O'Connor KC, Appel H, Bregoli L, Call ME, Catz I, Chan JA, Moore NH, Warren KG, Wong SJ, Hafler DA, Wucherpfennig KW. Antibodies from inflamed central nervous system tissue recognize myelin oligodendrocyte glycoprotein. THE JOURNAL OF IMMUNOLOGY 2005; 175:1974-82. [PMID: 16034142 PMCID: PMC4515951 DOI: 10.4049/jimmunol.175.3.1974] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Autoantibodies to myelin oligodendrocyte glycoprotein (MOG) can induce demyelination and oligodendrocyte loss in models of multiple sclerosis (MS). Whether anti-MOG Abs play a similar role in patients with MS or inflammatory CNS diseases by epitope spreading is unclear. We have therefore examined whether autoantibodies that bind properly folded MOG protein are present in the CNS parenchyma of MS patients. IgG was purified from CNS tissue of 14 postmortem cases of MS and 8 control cases, including cases of encephalitis. Binding was assessed using two independent assays, a fluorescence-based solid-phase assay and a solution-phase RIA. MOG autoantibodies were identified in IgG purified from CNS tissue by solid-phase immunoassay in 7 of 14 cases with MS and 1 case of subacute sclerosing panencephalitis, but not in IgG from noninflamed control tissue. This finding was confirmed with a solution-phase RIA, which measures higher affinity autoantibodies. These data demonstrate that autoantibodies recognizing MOG are present in substantially higher concentrations in the CNS parenchyma compared with cerebrospinal fluid and serum in subjects with MS, indicating that local production/accumulation is an important aspect of autoantibody-mediated pathology in demyelinating CNS diseases. Moreover, chronic inflammatory CNS disease may induce autoantibodies by virtue of epitope spreading.
Collapse
Affiliation(s)
- Kevin C O'Connor
- Department of Neurology and Center for Neurologic Disease, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Marta CB, Oliver AR, Sweet RA, Pfeiffer SE, Ruddle NH. Pathogenic myelin oligodendrocyte glycoprotein antibodies recognize glycosylated epitopes and perturb oligodendrocyte physiology. Proc Natl Acad Sci U S A 2005; 102:13992-7. [PMID: 16172404 PMCID: PMC1236555 DOI: 10.1073/pnas.0504979102] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibodies to myelin components are routinely detected in multiple sclerosis patients. However, their presence in some control subjects has made it difficult to determine their contribution to disease pathogenesis. Immunization of C57BL/6 mice with either rat or human myelin oligodendrocyte glycoprotein (MOG) leads to experimental autoimmune encephalomyelitis (EAE) and comparable titers of anti-MOG antibodies as detected by ELISA. However, only immunization with human (but not rat) MOG results in a B cell-dependent EAE. In this study, we demonstrate that these pathogenic and nonpathogenic anti-MOG antibodies have a consistent array of differences in their recognition of antigenic determinants and biological effects. Specifically, substituting proline at position 42 with serine in human MOG (as in rat MOG) eliminates the B cell requirement for EAE. All MOG proteins analyzed induced high titers of anti-MOG (tested by ELISA), but only antisera from mice immunized with unmodified human MOG were encephalitogenic in primed B cell-deficient mice. Nonpathogenic IgGs bound recombinant mouse MOG and deglycosylated MOG in myelin (tested by Western blot), but only pathogenic IgGs bound glycosylated MOG. Only purified IgG to human MOG bound to live rodent oligodendrocytes in culture and, after cross-linking, induced repartitioning of MOG into lipid rafts, followed by dramatic changes in cell morphology. The data provide a strong link between in vivo and in vitro observations regarding demyelinating disease, further indicate a biochemical mechanism for anti-MOG-induced demyelination, and suggest in vitro tools for determining autoimmune antibody pathogenicity in multiple sclerosis patients.
Collapse
Affiliation(s)
- Cecilia B Marta
- Department of Neuroscience, University of Connecticut Medical School, Farmington, CT 06030-3401, USA
| | | | | | | | | |
Collapse
|
48
|
Hafler DA, Slavik JM, Anderson DE, O'Connor KC, De Jager P, Baecher-Allan C. Multiple sclerosis. Immunol Rev 2005; 204:208-31. [PMID: 15790361 DOI: 10.1111/j.0105-2896.2005.00240.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multiple sclerosis (MS) is a complex genetic disease associated with inflammation in the central nervous system (CNS) white matter and is thought to be mediated by autoimmune processes. Clonal expansion of B cells, their antibody products, and T cells, hallmarks of inflammation in the CNS, are found in MS. The association of the disease with major histocompatibility complex genes, the inflammatory white matter infiltrates, similarities with animal models, and the observation that MS can be treated with immunomodulatory and immunosuppressive therapies support the hypothesis that autoimmunity plays a major role in the disease pathology. This review discusses the immunopathology of MS with particular focus given to regulatory T cells and the role of B cells and antibodies, immunomodulatory therapeutics, and finally new directions in MS research, particularly new methods to define the molecular pathology of human disease with high-throughput examination of germline DNA haplotypes, RNA expression, and protein structures that will allow the generation of a new series of hypotheses that can be tested to develop better understandings and therapies for this disease.
Collapse
Affiliation(s)
- David A Hafler
- Laboratory of Molecular Immunology, Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
49
|
El Behi M, Dubucquoi S, Lefranc D, Zéphir H, De Seze J, Vermersch P, Prin L. New insights into cell responses involved in experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol Lett 2005; 96:11-26. [PMID: 15585303 DOI: 10.1016/j.imlet.2004.07.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 07/15/2004] [Indexed: 11/28/2022]
Abstract
Animal models of autoimmune diseases such as experimental autoimmune encephalomyelitis (EAE) are inflammatory demyelinating diseases which comprise a heterogeneous group of disorders that affect the peripheral and central nervous systems. EAE presents close similarities with multiple sclerosis (MS), a chronic inflammatory disease affecting central nervous system (CNS) white matter. Many studies have shown EAE to be a particularly useful animal model for the understanding of both the mechanisms of immune-mediated CNS pathology and the progressive clinical course of multiple sclerosis. Previous data has underlined the importance of CD4+ T cell involvement in mediating the autoimmune processes associated with the destruction of myelin and the role of the T helper 1 (Th1) pattern of cytokine secretion. However, EAE studies have also demonstrated that other cells involved in innate and/or adaptive immune responses may also play a critical role in the early and progressive events of the immune reaction leading to inflammation and CNS damage. In this review, we present such new data and discuss their potent implication for future new therapeutical approaches.
Collapse
Affiliation(s)
- Mohamed El Behi
- Laboratoire d'immunologie EA2686, Faculté de Médecine, 1, Place de Verdun, 59045 Lille Cedex, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Kerr DA, Calabresi PA. 2004 Pathogenesis of rare neuroimmunologic disorders, Hyatt Regency Inner Harbor, Baltimore, MD, August 19th 2004-August 20th 2004. J Neuroimmunol 2005; 159:3-11. [PMID: 15762022 DOI: 10.1016/j.jneuroim.2004.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Douglas A Kerr
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | |
Collapse
|