1
|
Rueckels M, Picard-Mareau M. Differential gene expression during recall of behaviorally conditioned immune enhancement in rats: a pilot study. F1000Res 2025; 11:1405. [PMID: 39834660 PMCID: PMC11745302 DOI: 10.12688/f1000research.123975.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Background Behaviorally conditioned immune functions are suggested to be regulated by bidirectional interactions between CNS and peripheral immune system via the hypothalamic-pituitary-adrenal (HPA) axis, sympathetic nervous system (SNS), and the parasympathetic nervous system (PNS). Since the current knowledge about biochemical pathways triggering conditioned immune enhancement is limited, the aim of this pilot study was gaining more insights into that. Methods Rats were conditioned with camphor smell and poly I:C injection, mimicking a viral infection. Following stimulus re-exposure, animals were sacrificed at different time points, and neural tissues along the HPA axis was analyzed with a rat genome array together with plasma protein using Luminex analysis. Results In the hypothalamus, we observed a strong upregulation of genes related to Wnt/β-catenin signaling (Otx2, Spp1, Fzd6, Zic1), monoaminergic transporter Slc18a2 and opioid-inhibitory G-protein Gpr88 as well as downregulation of dopaminergic receptors, vasoactive intestinal peptide Vip, and pro-melanin-concentrating hormone Pmch. In the pituitary, we recognized mostly upregulation of steroid synthesis in combination with GABAergic, cholinergic and opioid related neurotransmission, in adrenal glands, altered genes showed a pattern of activated metabolism plus upregulation of adrenoceptors Adrb3 and Adra1a. Data obtained from spleen showed a strong upregulation of immunomodulatory genes, chemo-/cytokines and glutamatergic/cholinergic neurotransmission related genes, as also confirmed by increased chemokine and ACTH levels in plasma. Conclusions Our data indicate that in addition to the classic HPA axis, there could be additional pathways as e.g. the cholinergic anti-inflammatory pathway (CAIP), connecting brain and immune system, modulating and finetuning communication between brain and immune system.
Collapse
Affiliation(s)
- Markus Rueckels
- Lisa-Kolk-Stiftung, Berg. Neukirchen, North Rhine Westphalia, 51381, Germany
| | | |
Collapse
|
2
|
Lu J, Wu W. Cholinergic modulation of the immune system - A novel therapeutic target for myocardial inflammation. Int Immunopharmacol 2021; 93:107391. [PMID: 33548577 DOI: 10.1016/j.intimp.2021.107391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 12/11/2022]
Abstract
The immune system and the nervous system depend on each other for their fine tuning and working, thus cooperating to maintain physiological homeostasis and prevent infections. The cholinergic system regulates the mobilization, differentiation, secretion, and antigen presentation of adaptive and innate immune cells mainly through α7 nicotinic acetylcholine receptors (α7nAChRs). The neuro-immune interactions are established and maintained by the following mechanisms: colocalization of immune and neuronal cells at defined anatomical sites, expression of the non-neuronal cholinergic system by immune cells, and the acetylcholine receptor-mediated activation of intracellular signaling pathways. Based on these immunological mechanisms, the protective effects of cholinergic system in animal models of diseases were summarized in this paper, such as myocardial infarction/ischemia-reperfusion, viral myocarditis, and endotoxin-induced myocardial damage. In addition to maintaining hemodynamic stability and improving the energy metabolism of the heart, both non-neuronal acetylcholine and neuronal acetylcholine in the heart can alleviate myocardial inflammation and remodeling to exert a significant cardioprotective effect. The new findings on the role of cholinergic agonists and vagus nerve stimulation in immune regulation are updated, so as to develop improved approaches to treat inflammatory heart disease.
Collapse
Affiliation(s)
- Jing Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| | - Weifeng Wu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Center for Translational Medicine, Guangxi Medical University, Shuangyong Road 22, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| |
Collapse
|
3
|
Hadamitzky M, Lückemann L, Pacheco-López G, Schedlowski M. Pavlovian Conditioning of Immunological and Neuroendocrine Functions. Physiol Rev 2020; 100:357-405. [DOI: 10.1152/physrev.00033.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The phenomenon of behaviorally conditioned immunological and neuroendocrine functions has been investigated for the past 100 yr. The observation that associative learning processes can modify peripheral immune functions was first reported and investigated by Ivan Petrovic Pavlov and his co-workers. Their work later fell into oblivion, also because so little was known about the immune system’s function and even less about the underlying mechanisms of how learning, a central nervous system activity, could affect peripheral immune responses. With the employment of a taste-avoidance paradigm in rats, this phenomenon was rediscovered 45 yr ago as one of the most fascinating examples of the reciprocal functional interaction between behavior, the brain, and peripheral immune functions, and it established psychoneuroimmunology as a new research field. Relying on growing knowledge about efferent and afferent communication pathways between the brain, neuroendocrine system, primary and secondary immune organs, and immunocompetent cells, experimental animal studies demonstrate that cellular and humoral immune and neuroendocrine functions can be modulated via associative learning protocols. These (from the classical perspective) learned immune responses are clinically relevant, since they affect the development and progression of immune-related diseases and, more importantly, are also inducible in humans. The increased knowledge about the neuropsychological machinery steering learning and memory processes together with recent insight into the mechanisms mediating placebo responses provide fascinating perspectives to exploit these learned immune and neuroendocrine responses as supportive therapies, the aim being to reduce the amount of medication required, diminishing unwanted drug side effects while maximizing the therapeutic effect for the patient’s benefit.
Collapse
Affiliation(s)
- Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laura Lückemann
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gustavo Pacheco-López
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Zanetti SR, Ziblat A, Torres NI, Zwirner NW, Bouzat C. Expression and Functional Role of α7 Nicotinic Receptor in Human Cytokine-stimulated Natural Killer (NK) Cells. J Biol Chem 2016; 291:16541-52. [PMID: 27284006 DOI: 10.1074/jbc.m115.710574] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 12/18/2022] Open
Abstract
The homomeric α7 nicotinic receptor (nAChR) is one of the most abundant nAChRs in the central nervous system where it contributes to cognition, attention, and working memory. α7 nAChR is also present in lymphocytes, dendritic cells (DCs), and macrophages and it is emerging as an important drug target for intervention in inflammation and sepsis. Natural killer (NK) cells display cytotoxic activity against susceptible target cells and modulate innate and adaptive immune responses through their interaction with DCs. We here show that human NK cells also express α7 nAChR. α7 nAChR mRNA is detected by RT-PCR and cell surface expression of α7 nAChR is detected by confocal microscopy and flow cytometry using α-bungarotoxin, a specific antagonist. Both mRNA and protein levels increase during NK stimulation with cytokines (IL-12, IL-18, and IL-15). Exposure of cytokine-stimulated NK cells to PNU-282987, a specific α7 nAChR agonist, increases intracellular calcium concentration ([Ca(2+)]i) mainly released from intracellular stores, indicating that α7 nAChR is functional. Moreover, its activation by PNU-282987 plus a specific positive allosteric modulator greatly enhances the Ca(2+) responses in NK cells. Stimulation of NK cells with cytokines and PNU-282987 decreases NF-κB levels and nuclear mobilization, down-regulates NKG2D receptors, and decreases NKG2D-dependent cell-mediated cytotoxicity and IFN-γ production. Also, such NK cells are less efficient to trigger DC maturation. Thus, our results demonstrate the anti-inflammatory role of α7 nAChR in NK cells and suggest that modulation of its activity in these cells may constitute a novel target for regulation of the immune response.
Collapse
Affiliation(s)
- Samanta R Zanetti
- From the Instituto de Investigaciones Bioquímicas (INIBIBB), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000 Bahía Blanca
| | - Andrea Ziblat
- the Instituto de Biología y Medicina Experimental, CONICET, C1428ADN-Ciudad de Buenos Aires, and
| | - Nicolás I Torres
- the Instituto de Biología y Medicina Experimental, CONICET, C1428ADN-Ciudad de Buenos Aires, and
| | - Norberto W Zwirner
- the Instituto de Biología y Medicina Experimental, CONICET, C1428ADN-Ciudad de Buenos Aires, and the Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428ADN-Ciudad de Buenos Aires, Argentina
| | - Cecilia Bouzat
- From the Instituto de Investigaciones Bioquímicas (INIBIBB), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000 Bahía Blanca,
| |
Collapse
|
5
|
Lin CH, Wang CH, Hsu SL, Liao LY, Lin TA, Hsueh CM. Molecular Mechanisms Responsible for Neuron-Derived Conditioned Medium (NCM)-Mediated Protection of Ischemic Brain. PLoS One 2016; 11:e0146692. [PMID: 26745377 PMCID: PMC4706329 DOI: 10.1371/journal.pone.0146692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 12/21/2015] [Indexed: 01/12/2023] Open
Abstract
The protective value of neuron-derived conditioned medium (NCM) in cerebral ischemia and the underlying mechanism(s) responsible for NCM-mediated brain protection against cerebral ischemia were investigated in the study. NCM was first collected from the neuronal culture growing under the in vitro ischemic condition (glucose-, oxygen- and serum-deprivation or GOSD) for 2, 4 or 6 h. Through the focal cerebral ischemia (bilateral CCAO/unilateral MCAO) animal model, we discovered that ischemia/reperfusion (I/R)-induced brain infarction was significantly reduced by NCM, given directly into the cistern magna at the end of 90 min of CCAO/MCAO. Immunoblocking and chemical blocking strategies were applied in the in vitro ischemic studies to show that NCM supplement could protect microglia, astrocytes and neurons from GOSD-induced cell death, in a growth factor (TGFβ1, NT-3 and GDNF) and p-ERK dependent manner. Brain injection with TGFβ1, NT3, GDNF and ERK agonist (DADS) alone or in combination, therefore also significantly decreased the infarct volume of ischemic brain. Moreover, NCM could inhibit ROS but stimulate IL-1β release from GOSD-treated microglia and limit the infiltration of IL-β-positive microglia into the core area of ischemic brain, revealing the anti-oxidant and anti-inflammatory activities of NCM. In overall, NCM-mediated brain protection against cerebral ischemia has been demonstrated for the first time in S.D. rats, due to its anti-apoptotic, anti-oxidant and potentially anti-glutamate activities (NCM-induced IL-1β can inhibit the glutamate-mediated neurotoxicity) and restriction upon the infiltration of inflammatory microglia into the core area of ischemic brain. The therapeutic potentials of NCM, TGFβ1, GDNF, NT-3 and DADS in the control of cerebral ischemia in human therefore have been suggested and require further investigation.
Collapse
Affiliation(s)
- Chi-Hsin Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
| | - Chen-Hsuan Wang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Adapted Physical Education, National Taiwan Sport University, Taoyuan, Taiwan
| | - Shih-Lan Hsu
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Li-Ya Liao
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Ting-An Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Mei Hsueh
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
6
|
Alterations of natural killer cells in traumatic brain injury. Neurosci Bull 2014; 30:903-912. [PMID: 25446874 DOI: 10.1007/s12264-014-1481-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/07/2014] [Indexed: 10/24/2022] Open
Abstract
To investigate the relationship between natural killer (NK) cells and traumatic brain injury (TBI), we tracked an established phenotype of circulating NK cells at several time points in patients with different grades of TBI. In serial peripheral blood samples, NK cells were prospectively measured by flow cytometry of CD3(-) CD56(+) lymphocytes. Compared to healthy controls, TBI patients had reductions in both the percentage and the absolute number of NK cells. Furthermore, the magnitude of NK cell reduction correlated with the degree of TBI severity at several time points. That is, NK cell population size was independently associated with lower Glasgow Coma Scale scores. In addition, at some time points, a positive correlation was found between the NK cell counts and Glasgow Outcome Scale scores. Our results indicate that TBI induces a reduction in the number of NK cells, and the magnitude of the reduction appears to parallel the severity of TBI.
Collapse
|
7
|
Hernandez ME, Martinez-Fong D, Perez-Tapia M, Estrada-Garcia I, Estrada-Parra S, Pavón L. Evaluation of the effect of selective serotonin-reuptake inhibitors on lymphocyte subsets in patients with a major depressive disorder. Eur Neuropsychopharmacol 2010; 20:88-95. [PMID: 20005081 DOI: 10.1016/j.euroneuro.2009.11.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 11/02/2009] [Accepted: 11/12/2009] [Indexed: 11/26/2022]
Abstract
To date, only the effect of a short-term antidepressant treatment (<12 weeks) on neuroendocrinoimmune alterations in patients with a major depressive disorder has been evaluated. Our objective was to determine the effect of a 52-week long treatment with selective serotonin-reuptake inhibitors on lymphocyte subsets. The participants were thirty-one patients and twenty-two healthy volunteers. The final number of patients (10) resulted from selection and course, as detailed in the enrollment scheme. Methods used to psychiatrically analyze the participants included the Mini-International Neuropsychiatric Interview, Hamilton Depression Scale and Beck Depression Inventory. The peripheral lymphocyte subsets were measured in peripheral blood using flow cytometry. Before treatment, increased counts of natural killer (NK) cells in patients were statistically significant when compared with those of healthy volunteers (312+/-29 versus 158+/-30; cells/mL), but no differences in the populations of T and B cells were found. The patients showed remission of depressive episodes after 20 weeks of treatment along with an increase in NK cell and B cell populations, which remained increased until the end of the study. At the 52nd week of treatment, patients showed an increase in the counts of NK cells (396+/-101 cells/mL) and B cells (268+/-64 cells/mL) compared to healthy volunteers (NK, 159+/-30 cells/mL; B cells, 179+/-37 cells/mL). We conclude that long-term treatment with selective serotonin-reuptake inhibitors not only causes remission of depressive symptoms, but also affects lymphocyte subset populations. The physiopathological consequence of these changes remains to be determined.
Collapse
|
8
|
Riether C, Doenlen R, Pacheco-Lopez G, Niemi MB, Engler A, Engler H, Schedlowski M. Behavioural Conditioning of Immune Functions: How the Central Nervous System Controls Peripheral Immune Responses by Evoking Associative Learning Processes. Rev Neurosci 2008; 19:1-17. [DOI: 10.1515/revneuro.2008.19.1.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Kubera M, Filip M, Budziszewska B, Basta-Kaim A, Wydra K, Leskiewicz M, Regulska M, Jaworska-Feil L, Przegalinski E, Machowska A, Lason W. Immunosuppression Induced by a Conditioned Stimulus Associated With Cocaine Self-Administration. J Pharmacol Sci 2008; 107:361-9. [DOI: 10.1254/jphs.fp0072106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
10
|
Pacheco-López G, Engler H, Niemi MB, Schedlowski M. Expectations and associations that heal: Immunomodulatory placebo effects and its neurobiology. Brain Behav Immun 2006; 20:430-46. [PMID: 16887325 DOI: 10.1016/j.bbi.2006.05.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 05/29/2006] [Accepted: 05/29/2006] [Indexed: 12/28/2022] Open
Abstract
The use of placebo may have accompanied healing and medical practices since their origins (Plato; Charmides, 155-156). Recent experimental data indicate that we would be well advised to further consider placebo effects in future therapeutic strategies, with a better knowledge of their potency, psychological basis and underlying neurobiological mechanisms. Current research in the areas of pain, depression and Parkinson's disease has uncovered some of the potential neurobiological mechanisms of placebo effects. These data indicate that conscious expectation and unconscious behavioral conditioning processes appear to be the major neurobiological mechanisms capable of releasing endogenous neurotransmitters and/or neurohormones that mimic the expected or conditioned pharmacological effects. To date, research on placebo responses affecting immune-related diseases is scarce, but there are consistent indications that skin and mucosal inflammatory diseases, in particular, are strongly modulated by placebo treatments. However, the brain's capability to modulate peripheral immune reactivity has been impressively demonstrated by paradigms of behavioral conditioning in animal experiments and human studies. Thus, placebo effects can benefit end organ functioning and the overall health of the individual through positive expectations and behavioral conditioning processes.
Collapse
Affiliation(s)
- Gustavo Pacheco-López
- Chair of Psychology and Behavioral Immunobiology, Institute for Behavioral Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | | | | | | |
Collapse
|
11
|
Pacheco-López G, Niemi MB, Kou W, Härting M, Fandrey J, Schedlowski M. Neural substrates for behaviorally conditioned immunosuppression in the rat. J Neurosci 2006; 25:2330-7. [PMID: 15745959 PMCID: PMC6726099 DOI: 10.1523/jneurosci.4230-04.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have previously demonstrated behaviorally conditioned immunosuppression using cyclosporin A as an unconditioned stimulus and saccharin as a conditioned stimulus. In the current study, we examined the central processing of this phenomenon generating excitotoxic lesions before and after acquisition to discriminate between learning and memory processes. Three different brain areas were analyzed: insular cortex (IC), amygdala (Am), and ventromedial nucleus of the hypothalamus (VMH). The results demonstrate that IC lesions performed before and after acquisition disrupted the behavioral component of the conditioned response (taste aversion). In contrast, Am and VMH lesions did not affect conditioned taste aversion. The behaviorally conditioned suppression of splenocyte proliferation and cytokine production (interleukin-2 and interferon-gamma) was differentially affected by the excitotoxic lesions, showing that the IC is essential to acquire and evoke this conditioned response of the immune system. In contrast, the Am seems to mediate the input of visceral information necessary at the acquisition time, whereas the VMH appears to participate within the output pathway to the immune system necessary to evoke the behavioral conditioned immune response. The present data reveal relevant neural mechanisms underlying the learning and memory processes of behaviorally conditioned immunosuppression.
Collapse
Affiliation(s)
- Gustavo Pacheco-López
- Department of Medical Psychology, University Duisburg-Essen, D-45122 Essen, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
Chao HJ, Hsu YC, Yuan HP, Jiang HS, Hsueh CM. The conditioned enhancement of neutrophil activity is catecholamine dependent. J Neuroimmunol 2005; 158:159-69. [PMID: 15589050 DOI: 10.1016/j.jneuroim.2004.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 07/09/2004] [Accepted: 09/13/2004] [Indexed: 11/30/2022]
Abstract
Neutrophil activity was elevated in the conditioned mice for the first time through an established conditioned training process. Catecholamines were proved to be important in the regulation of this conditioned innate immunity. In the study, the camphor odor (as the conditioned stimulus, CS) and poly I: C (as the unconditioned stimulus, US) was used to conditionally elevate the activity of the splenic neutrophils. The mechanism(s) responsible for the conditioned enhancement of neutrophil activity was further investigated using the neurochemical blocking assay and immunohistochemical analysis. Results showed that the neutrophil activity was significantly enhanced through the conditioned training process; both reserpine and 6-hydroxydopamine (6-OHDA) significantly blocked this conditioned innate immunity at the conditioned recall stage. Dexamethasone (Dex), however, showed no effect on the conditioned neutrophil response. Tyrosine hydroxylase (TH)-positive cells significantly increased in the locus coeruleus (LC), hypothalamus, and cortex but not in the spleen of the conditioned animals. These results indicate that during the conditioned recall stage, the brain signals the splenic neutrophils via the sympathetic nervous system (SNS) by releasing the peripheral catecholamines in spleen. The activation of the SNS, on the other hand, is also under the influence of catecholamines released in the LC. The hypothalamic pituitary (HP) axis, on the other hand, plays no role in the regulation of the conditioned neutrophil response.
Collapse
Affiliation(s)
- Hsin-Ju Chao
- Department of Life Sciences, National Chung-Hsing University, Taichung, 40227, Taiwan
| | | | | | | | | |
Collapse
|
13
|
Huang JX, Lin WJ, Chen J. Antibody response can be conditioned using electroacupuncture as conditioned stimulus. Neuroreport 2004; 15:1475-8. [PMID: 15194877 DOI: 10.1097/01.wnr.0000129857.40478.5a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To establish a new model of conditioned enhancement of antibody production, electroacupuncture was served as the conditioned stimulus (CS) and an injection of a protein antigen ovalbumin as the unconditioned stimulus (UCS). After a CS/UCS pairing was made, re-exposure of animals to the CS alone resulted in significant conditioned enhancement of anti-ovalbumin antibody production. Even in deep sleep induced by anesthesia, the animals can associate a single CS with UCS and an antibody response can be elicited upon subsequent re-exposure to CS in the absence of exogenous antigen. No effect of electroacupuncture on anti-ovalbumin antibody production was found.
Collapse
Affiliation(s)
- Jing-Xin Huang
- Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | |
Collapse
|