1
|
Sarkar SK, Willson AML, Jordan MA. The Plasticity of Immune Cell Response Complicates Dissecting the Underlying Pathology of Multiple Sclerosis. J Immunol Res 2024; 2024:5383099. [PMID: 38213874 PMCID: PMC10783990 DOI: 10.1155/2024/5383099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative autoimmune disease characterized by the destruction of the myelin sheath of the neuronal axon in the central nervous system. Many risk factors, including environmental, epigenetic, genetic, and lifestyle factors, are responsible for the development of MS. It has long been thought that only adaptive immune cells, especially autoreactive T cells, are responsible for the pathophysiology; however, recent evidence has indicated that innate immune cells are also highly involved in disease initiation and progression. Here, we compile the available data regarding the role immune cells play in MS, drawn from both human and animal research. While T and B lymphocytes, chiefly enhance MS pathology, regulatory T cells (Tregs) may serve a more protective role, as can B cells, depending on context and location. Cells chiefly involved in innate immunity, including macrophages, microglia, astrocytes, dendritic cells, natural killer (NK) cells, eosinophils, and mast cells, play varied roles. In addition, there is evidence regarding the involvement of innate-like immune cells, such as γδ T cells, NKT cells, MAIT cells, and innate-like B cells as crucial contributors to MS pathophysiology. It is unclear which of these cell subsets are involved in the onset or progression of disease or in protective mechanisms due to their plastic nature, which can change their properties and functions depending on microenvironmental exposure and the response of neural networks in damage control. This highlights the need for a multipronged approach, combining stringently designed clinical data with carefully controlled in vitro and in vivo research findings, to identify the underlying mechanisms so that more effective therapeutics can be developed.
Collapse
Affiliation(s)
- Sujan Kumar Sarkar
- Department of Anatomy, Histology and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Annie M. L. Willson
- Biomedical Sciences and Molecular Biology, CPHMVS, James Cook University, Townsville, Queensland 4811, Australia
| | - Margaret A. Jordan
- Biomedical Sciences and Molecular Biology, CPHMVS, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
2
|
Takano C, Takano T, Masumura M, Nakamura R, Koda S, Bochimoto H, Yoshida S, Bando Y. Involvement of Degenerating 21.5 kDa Isoform of Myelin Basic Protein in the Pathogenesis of the Relapse in Murine Relapsing-Remitting Experimental Autoimmune Encephalomyelitis and MS Autopsied Brain. Int J Mol Sci 2023; 24:ijms24098160. [PMID: 37175866 PMCID: PMC10179612 DOI: 10.3390/ijms24098160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Multiple sclerosis (MS) is the chronic inflammatory demyelinating disease of the CNS. Relapsing-remitting MS (RRMS) is the most common type of MS. However, the mechanisms of relapse and remission in MS have not been fully understood. While SJL mice immunized with proteolipid protein (PLP) develop relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE), we have recently observed that some of these mice were resistant to the active induction of relapsing EAE after initial clinical and histological symptoms of EAE with a severity similar to the relapsing EAE mice. To clarify the mechanism of relapsing, we examined myelin morphology during PLP139-151-induced RR-EAE in the SJL mice. While RR-EAE mice showed an increased EAE severity (relapse) with CNS inflammation, demyelination with abnormal myelin morphology in the spinal cord, the resistant mice exhibited a milder EAE phenotype with diminished relapse. Compared with the RR-EAE mice, the resistant mice showed less CNS inflammation, demyelination, and abnormalities of the myelin structure. In addition, scanning electron microscopic (SEM) analysis with the osmium-maceration method displayed ultrastructural abnormalities of the myelin structure in the white matter of the RR-EAE spinal cord, but not in that of the resistant mice. While the intensity of myelin staining was reduced in the relapsing EAE spinal cord, immunohistochemistry and immunoblot analysis revealed that the 21.5 kDa isoform of degenerating myelin basic protein (MBP) was specifically induced in the relapsing EAE spinal cord. Taken together, the neuroinflammation-induced degenerating 21 kDa isoform of MBP sheds light on the development of abnormal myelin on the relapse of MS pathogenesis.
Collapse
Affiliation(s)
- Chie Takano
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Takuma Takano
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Makoto Masumura
- Institute for Social Innovation and Cooperation, Niigata University, Niigata 951-8510, Japan
| | | | | | - Hiroki Bochimoto
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Shigetaka Yoshida
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Yoshio Bando
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Anatomy, Akita University Graduate School of Medicine, Hondo 1-1-1, Akita 010-8543, Japan
| |
Collapse
|
3
|
Serwach K, Gruszczynska-Biegala J. Target Molecules of STIM Proteins in the Central Nervous System. Front Mol Neurosci 2020; 13:617422. [PMID: 33424550 PMCID: PMC7786003 DOI: 10.3389/fnmol.2020.617422] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Stromal interaction molecules (STIMs), including STIM1 and STIM2, are single-pass transmembrane proteins that are located predominantly in the endoplasmic reticulum (ER). They serve as calcium ion (Ca2+) sensors within the ER. In the central nervous system (CNS), they are involved mainly in Orai-mediated store-operated Ca2+ entry (SOCE). The key molecular components of the SOCE pathway are well-characterized, but the molecular mechanisms that underlie the regulation of this pathway need further investigation. Numerous intracellular target proteins that are located in the plasma membrane, ER, cytoskeleton, and cytoplasm have been reported to play essential roles in concert with STIMs, such as conformational changes in STIMs, their translocation, the stabilization of their interactions with Orai, and the activation of other channels. The present review focuses on numerous regulators, such as Homer, SOCE-associated regulatory factor (SARAF), septin, synaptopodin, golli proteins, partner of STIM1 (POST), and transcription factors and proteasome inhibitors that regulate STIM-Orai interactions in the CNS. Further we describe novel roles of STIMs in mediating Ca2+ influx via other than Orai pathways, including TRPC channels, VGCCs, AMPA and NMDA receptors, and group I metabotropic glutamate receptors. This review also summarizes recent findings on additional molecular targets of STIM proteins including SERCA, IP3Rs, end-binding proteins (EB), presenilin, and CaMKII. Dysregulation of the SOCE-associated toolkit, including STIMs, contributes to the development of neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, and Huntington's disease), traumatic brain injury, epilepsy, and stroke. Emerging evidence points to the role of STIM proteins and several of their molecular effectors and regulators in neuronal and glial physiology and pathology, suggesting their potential application for future therapeutic strategies.
Collapse
Affiliation(s)
- Karolina Serwach
- Molecular Biology Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
4
|
Bagheri H, Friedman H, Siminovitch KA, Peterson AC. Transcriptional regulators of the Golli/myelin basic protein locus integrate additive and stealth activities. PLoS Genet 2020; 16:e1008752. [PMID: 32790717 PMCID: PMC7446974 DOI: 10.1371/journal.pgen.1008752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/25/2020] [Accepted: 07/01/2020] [Indexed: 11/19/2022] Open
Abstract
Myelin is composed of plasma membrane spirally wrapped around axons and compacted into dense sheaths by myelin-associated proteins. Myelin is elaborated by neuroepithelial derived oligodendrocytes in the central nervous system (CNS) and by neural crest derived Schwann cells in the peripheral nervous system (PNS). While some myelin proteins accumulate in only one lineage, myelin basic protein (Mbp) is expressed in both. Overlapping the Mbp gene is Golli, a transcriptional unit that is expressed widely both within and beyond the nervous system. A super-enhancer domain within the Golli/Mbp locus contains multiple enhancers shown previously to drive reporter construct expression specifically in oligodendrocytes or Schwann cells. In order to determine the contribution of each enhancer to the Golli/Mbp expression program, and to reveal if functional interactions occur among them, we derived mouse lines in which they were deleted, either singly or in different combinations, and relative mRNA accumulation was measured at key stages of early development and at maturity. Although super-enhancers have been shown previously to facilitate interaction among their component enhancers, the enhancers investigated here demonstrated largely additive relationships. However, enhancers demonstrating autonomous activity strictly in one lineage, when missing, were found to significantly reduce output in the other, thus revealing cryptic "stealth" activity. Further, in the absence of a key oligodendrocyte enhancer, Golli accumulation was markedly and uniformly attenuated in all cell types investigated. Our observations suggest a model in which enhancer-mediated DNA-looping and potential super-enhancer properties underlie Golli/Mbp regulatory organization.
Collapse
Affiliation(s)
- Hooman Bagheri
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Hana Friedman
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Katherine A. Siminovitch
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Mount Sinai Hospital, Lunenfeld-Tanenbaum and Toronto General Hospital Research Institutes, Toronto, Ontario, Canada
| | - Alan C. Peterson
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Kappel S, Borgström A, Stokłosa P, Dörr K, Peinelt C. Store-operated calcium entry in disease: Beyond STIM/Orai expression levels. Semin Cell Dev Biol 2019; 94:66-73. [PMID: 30630032 DOI: 10.1016/j.semcdb.2019.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/29/2018] [Accepted: 01/05/2019] [Indexed: 12/19/2022]
Abstract
Precise intracellular calcium signaling is crucial to numerous cellular functions. In non-excitable cells, store-operated calcium entry (SOCE) is a key step in the generation of intracellular calcium signals. Tight regulation of SOCE is important, and dysregulation is involved in several pathophysiological cellular malfunctions. The current underlying SOCE, calcium release-activated calcium current (ICRAC), was first discovered almost three decades ago. Since its discovery, the molecular components of ICRAC, Orai1 and stromal interaction molecule 1 (STIM1), have been extensively investigated. Several regulatory mechanisms and proteins contribute to alterations in SOCE and cellular malfunctions in cancer, immune and neurodegenerative diseases, inflammation, and neuronal disorders. This review summarizes these regulatory mechanisms, including glycosylation, pH sensing, and the regulatory proteins golli, α-SNAP, SARAF, ORMDL3, CRACR2A, and TRPM4 channels.
Collapse
Affiliation(s)
- Sven Kappel
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Anna Borgström
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Paulina Stokłosa
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | | | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| |
Collapse
|
6
|
Spurlock CF, Tossberg JT, Guo Y, Sriram S, Crooke PS, Aune TM. Defective structural RNA processing in relapsing-remitting multiple sclerosis. Genome Biol 2015; 16:58. [PMID: 25885816 PMCID: PMC4403723 DOI: 10.1186/s13059-015-0629-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/11/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Surveillance of integrity of the basic elements of the cell including DNA, RNA, and proteins is a critical element of cellular physiology. Mechanisms of surveillance of DNA and protein integrity are well understood. Surveillance of structural RNAs making up the vast majority of RNA in a cell is less well understood. Here, we sought to explore integrity of processing of structural RNAs in relapsing remitting multiple sclerosis (RRMS) and other inflammatory diseases. RESULTS We employed mononuclear cells obtained from subjects with RRMS and cell lines. We used quantitative-PCR and whole genome RNA sequencing to define defects in structural RNA surveillance and siRNAs to deplete target proteins. We report profound defects in surveillance of structural RNAs in RRMS exemplified by elevated levels of poly(A) + Y1-RNA, poly(A) + 18S rRNA and 28S rRNAs, elevated levels of misprocessed 18S and 28S rRNAs and levels of the U-class of small nuclear RNAs. Multiple sclerosis is also associated with genome-wide defects in mRNA splicing. Ro60 and La proteins, which exist in ribonucleoprotein particles and play different roles in quality control of structural RNAs, are also deficient in RRMS. In cell lines, silencing of the genes encoding Ro60 and La proteins gives rise to these same defects in surveillance of structural RNAs. CONCLUSIONS Our results establish that profound defects in structural RNA surveillance exist in RRMS and establish a causal link between Ro60 and La proteins and integrity of structural RNAs.
Collapse
Affiliation(s)
- Charles F Spurlock
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - John T Tossberg
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Yan Guo
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Subramaniam Sriram
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Philip S Crooke
- Department of Mathematics, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Thomas M Aune
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA. .,Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA. .,Medical Center North T3113, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN, USA.
| |
Collapse
|
7
|
Harauz G, Boggs JM. Myelin management by the 18.5-kDa and 21.5-kDa classic myelin basic protein isoforms. J Neurochem 2013; 125:334-61. [PMID: 23398367 DOI: 10.1111/jnc.12195] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/15/2022]
Abstract
The classic myelin basic protein (MBP) splice isoforms range in nominal molecular mass from 14 to 21.5 kDa, and arise from the gene in the oligodendrocyte lineage (Golli) in maturing oligodendrocytes. The 18.5-kDa isoform that predominates in adult myelin adheres the cytosolic surfaces of oligodendrocyte membranes together, and forms a two-dimensional molecular sieve restricting protein diffusion into compact myelin. However, this protein has additional roles including cytoskeletal assembly and membrane extension, binding to SH3-domains, participation in Fyn-mediated signaling pathways, sequestration of phosphoinositides, and maintenance of calcium homeostasis. Of the diverse post-translational modifications of this isoform, phosphorylation is the most dynamic, and modulates 18.5-kDa MBP's protein-membrane and protein-protein interactions, indicative of a rich repertoire of functions. In developing and mature myelin, phosphorylation can result in microdomain or even nuclear targeting of the protein, supporting the conclusion that 18.5-kDa MBP has significant roles beyond membrane adhesion. The full-length, early-developmental 21.5-kDa splice isoform is predominantly karyophilic due to a non-traditional P-Y nuclear localization signal, with effects such as promotion of oligodendrocyte proliferation. We discuss in vitro and recent in vivo evidence for multifunctionality of these classic basic proteins of myelin, and argue for a systematic evaluation of the temporal and spatial distributions of these protein isoforms, and their modified variants, during oligodendrocyte differentiation.
Collapse
Affiliation(s)
- George Harauz
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group and Collaborative Program in Neuroscience, University of Guelph, Guelph, Ontario, Canada.
| | | |
Collapse
|
8
|
Parakalan R, Jiang B, Nimmi B, Janani M, Jayapal M, Lu J, Tay SSW, Ling EA, Dheen ST. Transcriptome analysis of amoeboid and ramified microglia isolated from the corpus callosum of rat brain. BMC Neurosci 2012; 13:64. [PMID: 22697290 PMCID: PMC3441342 DOI: 10.1186/1471-2202-13-64] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 05/16/2012] [Indexed: 02/03/2023] Open
Abstract
Background Microglia, the resident immune cells of the central nervous system (CNS), have two distinct phenotypes in the developing brain: amoeboid form, known to be amoeboid microglial cells (AMC) and ramified form, known to be ramified microglial cells (RMC). The AMC are characterized by being proliferative, phagocytic and migratory whereas the RMC are quiescent and exhibit a slow turnover rate. The AMC transform into RMC with advancing age, and this transformation is indicative of the gradual shift in the microglial functions. Both AMC and RMC respond to CNS inflammation, and they become hypertrophic when activated by trauma, infection or neurodegenerative stimuli. The molecular mechanisms and functional significance of morphological transformation of microglia during normal development and in disease conditions is not clear. It is hypothesized that AMC and RMC are functionally regulated by a specific set of genes encoding various signaling molecules and transcription factors. Results To address this, we carried out cDNA microarray analysis using lectin-labeled AMC and RMC isolated from frozen tissue sections of the corpus callosum of 5-day and 4-week old rat brain respectively, by laser capture microdissection. The global gene expression profiles of both microglial phenotypes were compared and the differentially expressed genes in AMC and RMC were clustered based on their functional annotations. This genome wide comparative analysis identified genes that are specific to AMC and RMC. Conclusions The novel and specific molecules identified from the trancriptome explains the quiescent state functioning of microglia in its two distinct morphological states.
Collapse
Affiliation(s)
- Rangarajan Parakalan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD10, 4 Medical Drive, Singapore, 117597, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Liu H, Shiryaev SA, Chernov AV, Kim Y, Shubayev I, Remacle AG, Baranovskaya S, Golubkov VS, Strongin AY, Shubayev VI. Immunodominant fragments of myelin basic protein initiate T cell-dependent pain. J Neuroinflammation 2012; 9:119. [PMID: 22676642 PMCID: PMC3416717 DOI: 10.1186/1742-2094-9-119] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/23/2012] [Indexed: 12/11/2022] Open
Abstract
Background The myelin sheath provides electrical insulation of mechanosensory Aβ-afferent fibers. Myelin-degrading matrix metalloproteinases (MMPs) damage the myelin sheath. The resulting electrical instability of Aβ-fibers is believed to activate the nociceptive circuitry in Aβ-fibers and initiate pain from innocuous tactile stimulation (mechanical allodynia). The precise molecular mechanisms, responsible for the development of this neuropathic pain state after nerve injury (for example, chronic constriction injury, CCI), are not well understood. Methods and results Using mass spectrometry of the whole sciatic nerve proteome followed by bioinformatics analyses, we determined that the pathways, which are classified as the Infectious Disease and T-helper cell signaling, are readily activated in the nerves post-CCI. Inhibition of MMP-9/MMP-2 suppressed CCI-induced mechanical allodynia and concomitant TNF-α and IL-17A expression in nerves. MMP-9 proteolysis of myelin basic protein (MBP) generated the MBP84-104 and MBP68-86 digest peptides, which are prominent immunogenic epitopes. In agreement, the endogenous MBP69-86 epitope co-localized with MHCII and MMP-9 in Schwann cells and along the nodes of Ranvier. Administration of either the MBP84-104 or MBP68-86 peptides into the naïve nerve rapidly produced robust mechanical allodynia with a concomitant increase in T cells and MHCII-reactive cell populations at the injection site. As shown by the genome-wide expression profiling, a single intraneural MBP84-104 injection stimulated the inflammatory, immune cell trafficking, and antigen presentation pathways in the injected naïve nerves and the associated spinal cords. Both MBP84-104-induced mechanical allodynia and characteristic pathway activation were remarkably less prominent in the T cell-deficient athymic nude rats. Conclusions These data implicate MBP as a novel mediator of pain. Furthermore, the action of MMPs expressed within 1 day post-injury is critical to the generation of tactile allodynia, neuroinflammation, and the immunodominant MBP digest peptides in nerve. These MBP peptides initiate mechanical allodynia in both a T cell-dependent and -independent manner. In the course of Wallerian degeneration, the repeated exposure of the cryptic MBP epitopes, which are normally sheltered from immunosurveillance, may induce the MBP-specific T cell clones and a self-sustaining immune reaction, which may together contribute to the transition of acute pain into a chronic neuropathic pain state.
Collapse
Affiliation(s)
- Huaqing Liu
- Department of Anesthesiology, University of California, San Diego, 9500 Gilman Dr., Mail Box 0629, La Jolla, CA 92093-0629, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Paez PM, Cheli VT, Ghiani CA, Spreuer V, Handley VW, Campagnoni AT. Golli myelin basic proteins stimulate oligodendrocyte progenitor cell proliferation and differentiation in remyelinating adult mouse brain. Glia 2012; 60:1078-93. [PMID: 22447683 DOI: 10.1002/glia.22336] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/09/2012] [Indexed: 02/06/2023]
Abstract
Golli myelin basic proteins are necessary for normal myelination, acting via voltage and store-dependent Ca(2+) entry at multiple steps during oligodendrocyte progenitor cell (OPC) development. To date nothing is known regarding the role of golli proteins in demyelination or remyelination events. Here the effects of golli ablation and overexpression in myelin loss and recovery were examined using the cuprizone (CPZ) model of demyelination/remyelination. We found severe demyelination in the corpus callosum (CC) of golli-overexpressing mice (JOE) during the CPZ treatment, which was accompanied by an increased number of reactive astrocytes and activation of microglia/macrophages. During demyelination of JOE brains, a significant increase in the number of proliferating OPCs was found in the CC as well as in the subventricular zone, and our data indicate that these progenitors matured and fully remyelinated the CC of JOE animals after CPZ withdrawal. In contrast, in the absence of golli (golli-KO mice) delayed myelin loss associated with a smaller immune response, and a lower number of OPCs was found in these mice during the CPZ treatment. Furthermore, incomplete remyelination was observed after CPZ removal in large areas of the CC of golli-KO mice, reflecting irregular recovery of the oligodendrocyte population and subsequent myelin sheath formation. Our findings demonstrate that golli proteins sensitize mature oligodendrocytes to CPZ-induced demyelination, while at the same time stimulate the proliferation/recruitment of OPCs during demyelination, resulting in accelerated remyelination.
Collapse
Affiliation(s)
- Pablo M Paez
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7332, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Paez PM, Fulton D, Spreuer V, Handley V, Campagnoni AT. Modulation of canonical transient receptor potential channel 1 in the proliferation of oligodendrocyte precursor cells by the golli products of the myelin basic protein gene. J Neurosci 2011; 31:3625-37. [PMID: 21389218 PMCID: PMC3076512 DOI: 10.1523/jneurosci.4424-10.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 11/22/2010] [Accepted: 01/03/2011] [Indexed: 12/18/2022] Open
Abstract
Golli proteins, products of the myelin basic protein gene, function as a new type of modulator of intracellular Ca(2+) levels in oligodendrocyte progenitor cells (OPCs). Because of this, they affect a number of Ca(2+)-dependent functions, such as OPC migration and process extension. To examine further the Ca(2+) channels regulated by golli, we studied the store-operated Ca(2+) channels (SOCCs) in OPCs and acute brain slice preparations from golli knock-out and golli-overexpressing mice. Our results showed that pharmacologically induced Ca(2+) release from intracellular stores evoked a significant extracellular Ca(2+) entry after store depletion in OPCs. They also indicated that, under these pharmacological conditions, golli promoted activation of Ca(2+) influx by SOCCs in cultured OPCs as well as in tissue slices. The canonical transient receptor potential family of Ca(2+) channels (TRPCs) has been postulated to be SOCC subunits in oligodendrocytes. Using a small interfering RNA knockdown approach, we provided direct evidence that TRPC1 is involved in store-operated Ca(2+) influx in OPCs and that it is modulated by golli. Furthermore, our data indicated that golli is probably associated with TRPC1 at OPC processes. Additionally, we found that TRPC1 expression is essential for the effects of golli on OPC proliferation. In summary, our data indicate a key role for golli proteins in the regulation of TRPC-mediated Ca(2+) influx, a finding that has profound consequences for the regulation of multiple biological processes in OPCs. More important, we have shown that extracellular Ca(2+) uptake through TRPC1 is an essential component in the mechanism of OPC proliferation.
Collapse
Affiliation(s)
- Pablo M Paez
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, California 90095-7332, USA.
| | | | | | | | | |
Collapse
|
12
|
The multiple roles of myelin protein genes during the development of the oligodendrocyte. ASN Neuro 2010; 2:e00027. [PMID: 20017732 PMCID: PMC2814326 DOI: 10.1042/an20090051] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 12/14/2009] [Accepted: 12/17/2009] [Indexed: 11/22/2022] Open
Abstract
It has become clear that the products of several of the earliest identified myelin protein genes perform functions that extend beyond the myelin sheath. Interestingly, these myelin proteins, which comprise proteolipid protein, 2′,3′-cyclic nucleotide 3′-phosphodiesterase and the classic and golli MBPs (myelin basic proteins), play important roles during different stages of oligodendroglial development. These non-myelin-related functions are varied and include roles in the regulation of process outgrowth, migration, RNA transport, oligodendrocyte survival and ion channel modulation. However, despite the wide variety of cellular functions performed by the different myelin genes, the route by which they achieve these many functions seems to converge upon a common mechanism involving Ca2+ regulation, cytoskeletal rearrangements and signal transduction. In the present review, the newly emerging functions of these myelin proteins will be described, and these will then be discussed in the context of their contribution to oligodendroglial development.
Collapse
|
13
|
Jakovcevski I, Filipovic R, Mo Z, Rakic S, Zecevic N. Oligodendrocyte development and the onset of myelination in the human fetal brain. Front Neuroanat 2009; 3:5. [PMID: 19521542 PMCID: PMC2694674 DOI: 10.3389/neuro.05.005.2009] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 05/19/2009] [Indexed: 01/30/2023] Open
Abstract
Oligodendrocytes are cells that myelinate axons, providing saltatory conduction of action potentials and proper function of the central nervous system. Myelination begins prenatally in the human, and the sequence of oligodendrocyte development and the onset of myelination are not thoroughly investigated. This knowledge is important to better understand human diseases, such as periventricular leukomalacia, one of the leading causes of motor deficit in premature babies, and demyelinating disorders such as multiple sclerosis (MS). In this review we discuss the spatial and temporal progression of oligodendrocyte lineage characterized by the expression of specific markers and transcription factors in the human fetal brain from the early embryonic period (5 gestational weeks, gw) until midgestation (24 gw). Our in vitro evidence indicated that a subpopulation of human oligodendrocytes may have dorsal origin, from cortical radial glia cells, in addition to their ventral telencephalic origin. Furthermore, we demonstrated that the regulation of myelination in the human fetal brain includes positive and negative regulators. Chemokines, such as CXCL1, abundant in proliferative zones during brain development and in regions of remyelination in adult, are discussed in the view of their potential roles in stimulating oligodendrocyte development. Other signals are inhibitory and may include, but are not limited to, polysialic acid modification of the neural cell adhesion molecule on axons. Overall, important differences in temporal and spatial distribution and regulatory signals for oligodendrocyte differentiation exist between human and rodent brains. Those differences may underlie the unique susceptibility of humans to demyelinating diseases, such as MS.
Collapse
Affiliation(s)
- Igor Jakovcevski
- Department of Neuroscience, University of Connecticut Health CenterFarmington, CT, USA
| | - Radmila Filipovic
- Department of Neuroscience, University of Connecticut Health CenterFarmington, CT, USA
- Department of Physiology and Neurobiology, University of ConnecticutStorrs, CT, USA
| | - Zhicheng Mo
- Department of Neuroscience, University of Connecticut Health CenterFarmington, CT, USA
- Department of Pathology, Conemaugh Memorial Medical CenterJohnstown, PA, USA
| | - Sonja Rakic
- Department of Neuroscience, University of Connecticut Health CenterFarmington, CT, USA
- Department of Cell and Developmental Biology, University College LondonUK
| | - Nada Zecevic
- Department of Neuroscience, University of Connecticut Health CenterFarmington, CT, USA
| |
Collapse
|
14
|
Regulation of store-operated and voltage-operated Ca2+ channels in the proliferation and death of oligodendrocyte precursor cells by golli proteins. ASN Neuro 2009; 1:AN20090003. [PMID: 19570024 PMCID: PMC2695580 DOI: 10.1042/an20090003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OPCs (oligodendrocyte precursor cells) express golli proteins which, through regulation of Ca2+ influx, appear to be important in OPC process extension/retraction and migration. The aim of the present study was to examine further the role of golli in regulating OPC development. The effects of golli ablation and overexpression were examined in primary cultures of OPCs prepared from golli-KO (knockout) and JOE (golli J37-overexpressing) mice. In OPCs lacking golli, or overexpressing golli, differentiation induced by growth factor withdrawal was impaired. Proliferation analysis in the presence of PDGF (platelet-derived growth factor), revealed that golli enhanced the mitogen-stimulated proliferation of OPCs through activation of SOCCs (store-operated Ca2+ channels). PDGF treatment induced a biphasic increase in OPC intracellular Ca2+, and golli specifically increased Ca2+ influx during the second SOCC-dependent phase that followed the initial release of Ca2+ from intracellular stores. This store-operated Ca2+ uptake appeared to be essential for cell division, since specific SOCC antagonists completely blocked the effects of PDGF and golli on OPC proliferation. Additionally, in OPCs overexpressing golli, increased cell death was observed after mitogen withdrawal. This phenomenon could be prevented by exposure to VOCC (voltage-operated Ca2+ channel) blockers, indicating that the effect of golli on cell death involved increased Ca2+ influx through VOCCs. The results showed a clear effect of golli on OPC development and support a role for golli in modulating multiple Ca2+-regulatory events through VOCCs and SOCCs. Our results also suggest that PDGF engagement of its receptor resulting in OPC proliferation proceeds through activation of SOCCs.
Collapse
|
15
|
Matrix metalloproteinase proteolysis of the myelin basic protein isoforms is a source of immunogenic peptides in autoimmune multiple sclerosis. PLoS One 2009; 4:e4952. [PMID: 19300513 PMCID: PMC2654159 DOI: 10.1371/journal.pone.0004952] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 02/18/2009] [Indexed: 01/09/2023] Open
Abstract
Background Matrix metalloproteinases (MMPs) play a significant role in the fragmentation of myelin basic protein (MBP) and demyelination leading to autoimmune multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). The classic MBP isoforms are predominantly expressed in the oligodendrocytes of the CNS. The splice variants of the single MBP gene (Golli-MBP BG21 and J37) are widely expressed in the neurons and also in the immune cells. The relative contribution of the individual MMPs to the MBP cleavage is not known. Methodology/Principal Findings To elucidate which MMP plays the primary role in cleaving MBP, we determined the efficiency of MMP-2, MMP-8, MMP-9, MMP-10, MMP-12, MT1-MMP, MT2-MMP, MT3-MMP, MT4-MMP, MT5-MMP and MT6-MMP in the cleavage of the MBP, BG21 and J37 isoforms in the in vitro cleavage reactions followed by mass-spectroscopy analysis of the cleavage fragments. As a result, we identified the MMP cleavage sites and the sequence of the resulting fragments. We determined that MBP, BG21 and J37 are highly sensitive to redundant MMP proteolysis. MT6-MMP (initially called leukolysin), however, was superior over all of the other MMPs in cleaving the MBP isoforms. Using the mixed lymphocyte culture assay, we demonstrated that MT6-MMP proteolysis of the MBP isoforms readily generated, with a near quantitative yield, the immunogenic N-terminal 1–15 MBP peptide. This peptide selectively stimulated the proliferation of the PGPR7.5 T cell clone isolated from mice with EAE and specific for the 1–15 MBP fragment presented in the MHC H-2U context. Conclusions/Significance In sum, our biochemical observations led us to hypothesize that MT6-MMP, which is activated by furin and associated with the lipid rafts, plays an important role in MS pathology and that MT6-MMP is a novel and promising drug target in MS especially when compared with other individual MMPs.
Collapse
|
16
|
Abstract
Chemokine CXCL1 is abundantly present in proliferative zones during brain development and in regions of remyelination, suggesting that it influences development of oligodendrocyte progenitors (OPC) in these regions. We studied in vitro the effects and possible mechanisms by which CXCL1 acts on human fetal OPC. In organotypic slice cultures of human fetal cortical ventricular/subventricular (VZ/SVZ) zones, blocking of CXCL1 signaling reduced significantly the proliferation of OPC. Moreover, exogenously added CXCL1 induced increase of OPC proliferation. Treatments of purified OPC cultures and cell depletion experiments demonstrated that this effect of CXCL1 was mainly indirect, mediated through astrocytes. We identified that CXCL1 acted through the extracellular signal regulated kinase (ERK1/2) pathway, activated primarily in astrocytes. In vitro, astrocytes stimulated with CXCL1 released several cytokines, but only the release of interleukin-6 (IL-6) was completely blocked by inhibition of ERK1/2 pathway. When released IL-6 was neutralized in slices, a decrease in OPC proliferation was demonstrated, while addition of IL-6 was able to return OPC proliferation in astrocyte-depleted slices to the control level. These results suggest that in the human fetal brain CXCL1 promotes proliferation of early OPC, acting in part through an ERK1/2-dependent pathway and release of IL-6 from astrocytes.
Collapse
Affiliation(s)
- Radmila Filipovic
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA.
| | | |
Collapse
|
17
|
Filipovic R, Zecevic N. Neuroprotective role of minocycline in co-cultures of human fetal neurons and microglia. Exp Neurol 2008; 211:41-51. [PMID: 18359018 DOI: 10.1016/j.expneurol.2007.12.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 11/20/2007] [Accepted: 12/16/2007] [Indexed: 02/07/2023]
Abstract
Bacterial infections during pregnancy often result in premature birth and neonatal white matter damage. During these infections, microglia, the resident immune cells of the CNS, undergo activation and contribute to further neuronal damage of the CNS. Minocycline, a second-generation tetracycline antibiotic, inhibits microglial activation and protects neurons in rodents but data about its effects on human cells are limited. We studied the mechanism of the neuroprotective effect of minocycline in either purified cell cultures or co-cultures of microglia and neurons from human fetal brain during inflammation induced by lipopolysaccharide (LPS). In neuron/microglial co-cultures, minocycline treatment prevented activation and proliferation of microglia and protected neurons as demonstrated by decreased neuronal cell death and a shift of Bcl-2 family proteins toward anti-apoptotic ratio. Notably, neither minocycline nor LPS had an effect on neurons in purified neuronal cultures. The ability of minocycline to regulate activation of human fetal microglia might be relevant in therapies used towards treating neonatal CNS infections.
Collapse
Affiliation(s)
- Radmila Filipovic
- University of Connecticut Health Center, Department of Neuroscience, 263 Farmington Avenue, Farmington, CT 06030-3401, USA.
| | | |
Collapse
|
18
|
Ahmed MAM, Bamm VV, Harauz G, Ladizhansky V. The BG21 isoform of Golli myelin basic protein is intrinsically disordered with a highly flexible amino-terminal domain. Biochemistry 2007; 46:9700-12. [PMID: 17676872 DOI: 10.1021/bi700632x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The genes of the oligodendrocyte lineage (Golli) encode a family of developmentally regulated isoforms of myelin basic protein. The "classic" MBP isoforms arise from transcription start site 3, whereas Golli-specific isoforms arise from transcription start site 1, and comprise both Golli-specific and classic MBP sequences. The Golli isoform BG21 has been suggested to play roles in myelination and T cell activation pathways. It is an intrinsically disordered protein, thereby presenting a large effective surface area for interaction with other proteins such as Golli-interacting protein. We have used multidimensional heteronuclear NMR spectroscopy to achieve sequence-specific resonance assignments of the recombinant murine BG21 in physiologically relevant buffer, to analyze its secondary structure using chemical shift indexing (CSI), and to investigate its backbone dynamics using 15N spin relaxation measurements. We have assigned 184 out of 199 residues unambiguously. The CSI analysis revealed little ordered secondary structure under these conditions, with only some small fragments having a slight tendency toward alpha-helicity, which may represent putative recognition motifs. The 15N relaxation and NOE measurements confirmed the general behavior of the protein as an extended polypeptide chain, with the N-terminal Golli-specific portion (residues S5-T69) being exceptionally flexible, even in comparison to other intrinsically disordered proteins that have been studied this way. The high degree of flexibility of this N-terminal region may be to provide additional plasticity, or conformational adaptability, in protein-protein interactions. Another highly mobile segment, A126-S127-G128-G129, may function as a hinge.
Collapse
Affiliation(s)
- Mumdooh A M Ahmed
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
19
|
Bamm VV, Ahmed MAM, Ladizhansky V, Harauz G. Purification and spectroscopic characterization of the recombinant BG21 isoform of murine golli myelin basic protein. J Neurosci Res 2007; 85:272-84. [PMID: 17131428 DOI: 10.1002/jnr.21129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A recombinant form of the murine Golli-myelin basic protein (MBP) isoform BG21 (rmBG21) has been expressed in E. coli, and isolated to 96% purity via metal chelation chromatography. Characteristic yields were 6-8 mg protein per liter of culture in either minimal M9 or standard Luria-Bertani media. Circular dichroism spectroscopy showed that rmBG21 had a large proportion of random coil in aqueous solution, but gained alpha-helix in the presence of monosialoganglioside G(M1) and PI(4)P, as well as in the membrane-mimetic solvent trifluoroethanol. Bioinformatics analyses of the amino acid sequence of rmBG21 predicted an N-terminal calmodulin (CaM)-binding site. It was determined by fluorescence spectroscopy and dynamic light scattering that rmBG21 and CaM interacted weakly in a 1:1 ratio in a Ca(2+)-dependent manner. Solution NMR spectra of uniformly [(13)C(15)N]-labeled protein in aqueous buffer were consistent with it being an extended protein; spectral quality was independent of temperature. Thus, like "classic" MBP and the Golli-MBP isoform J37, rmBG21 is intrinsically disordered, implying multi functionality, and that its conformation depends on its environment and bound ligands.
Collapse
Affiliation(s)
- Vladimir V Bamm
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
20
|
Filipović R, Zecević N. Interaction between microglia and oligodendrocyte cell progenitors involves Golli proteins. Ann N Y Acad Sci 2006; 1048:166-74. [PMID: 16154930 DOI: 10.1196/annals.1342.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune and chronic inflammatory disease characterized by plaques, areas of destroyed myelin sheaths in the CNS, which results in multiple disabilities for patients. In addition to demyelinated plaques, pathophysiological studies have shown "shadow plaques" that represent areas of partial remyelination. New myelin can be made by oligodendrocytes (OLs) generated from oligodendrocyte progenitor cells (OPCs) that pre-exist in the demyelinated area or recruited from surrounding areas. To successfully repopulate the demyelinated area, OPCs have to proliferate, migrate, and differentiate into mature OLs capable of forming myelin. Identifying factors that influence remyelination is a current topic in developmental neurobiology. Previously, we showed that Golli proteins, which have a broad distribution in the nervous and immune systems, are present both in OPCs and activated microglia around MS lesions. We hypothesized that in response to inflammation, Golli proteins may promote proliferation of OPCs through microglial cells. To test this, we established neonatal mouse brain slice and cell cultures and used lipopolysaccharide (LPS) to induce inflammation. In LPS-treated brain slices, Golli proteins displayed increased expression in the cortical subventricular zone. Furthermore, Golli proteins were demonstrated only in the conditioned medium from LPS-treated microglial cell cultures (LPS-MCM), and were absent in either conditioned medium from LPS-treated astrocytes or control media. Finally, proliferation of purified OPCs was promoted with LPS-MCM or Golli proteins, but not with LPS alone. In summary, these results demonstrate that activated microglia are beneficial for proliferation of OPCs and suggest possible involvement of Golli proteins as one of mediators in this process.
Collapse
Affiliation(s)
- Radmila Filipović
- Department of Neuroscience, University of Connecticut Health Center, Farmington, 06030-340, USA
| | | |
Collapse
|
21
|
Filipovic R, Zecevic N. Lipopolysaccharide affects Golli expression and promotes proliferation of oligodendrocyte progenitors. Glia 2005; 49:457-66. [PMID: 15546149 DOI: 10.1002/glia.20125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Proliferation of oligodendrocyte progenitor cells (OPCs) is important for initial myelination as well as for remyelination in demyelinating diseases. Previously, we showed that numerous OPCs and activated microglia, are present around multiple sclerosis lesions, and that they accumulate Golli proteins. Golli proteins, present in both neuronal and immune cells, might have a role in the immune processes, as well as in development of neurons and oligodendrocytes. We hypothesize that Golli proteins, generated by microglia in response to inflammation, promote proliferation of OPCs. To test this hypothesis, we induced inflammation in neonatal mouse brain slice culture with bacterial endotoxin lipopolysaccharide (LPS). Treated slices showed an increase in the number of OPCs. Several results support the notion that this effect of LPS is conveyed through activation of microglia and upregulation of Golli proteins. First, LPS-treated brain slices have increased expression of Golli proteins observed by immunofluorescence and Western blot analysis. Second, Golli proteins were demonstrated only in the conditioned medium from LPS-treated microglial cell cultures (LPS-MCM), and were absent in either the conditioned media from LPS-treated astrocytes or the control media. Third, proliferation of purified OPCs was promoted with LPS-MCM or Golli proteins, but not with LPS alone. Taken together, these results demonstrate that microglia and/or microglia secreted factors, are necessary for the LPS-promoted proliferation of OPCs and suggest possible involvement of Golli proteins as one of mediators in this process.
Collapse
Affiliation(s)
- Radmila Filipovic
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA
| | | |
Collapse
|
22
|
Jakovcevski I, Zecevic N. Sequence of oligodendrocyte development in the human fetal telencephalon. Glia 2005; 49:480-91. [PMID: 15578660 DOI: 10.1002/glia.20134] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Oligodendrocytes (OL), cells that myelinate axons in the CNS, differentiate from early to late oligodendrocyte progenitor cells (OPC) to become mature OL. Unlike the case in the rodent brain, myelin formation starts prenatally in the human brain, but the sequence of OL development and the onset of myelination are not well understood. We studied the human fetal forebrain at midgestation (17-23 gestational weeks, g.w.) using OL lineage-specific antibodies and mRNA probes. Early OPC were present in a gradient from the subventricular zone to the cortical plate. Their close apposition to radial glia fibers suggests a possible role of these fibers in OPC migration. Late OPC reached peak density in the subplate layer, whereas multipolar cells with the morphology of mature OL were restricted to the emerging white matter. At 20 g.w., myelinated axons were observed in the diencephalon, but not in the telencephalon, consistent with caudal-to-rostral progression of myelination. Interestingly, in organotypic slice cultures of the same gestational ages, the subventricular zone contained a considerably greater number of the mature OL cells, suggesting the presence of inhibitory signals in vivo. Overall, in addition to considerable similarities with rodents, important differences in temporal and spatial distribution and regulatory signals for OL differentiation exist in the human brain.
Collapse
Affiliation(s)
- Igor Jakovcevski
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA
| | | |
Collapse
|
23
|
Harauz G, Ishiyama N, Hill CMD, Bates IR, Libich DS, Farès C. Myelin basic protein-diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Micron 2004; 35:503-42. [PMID: 15219899 DOI: 10.1016/j.micron.2004.04.005] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The 18.5 kDa isoform of myelin basic protein (MBP) is a major component of the myelin sheath in the central nervous system of higher vertebrates, and a member of a larger family of proteins with a multiplicity of forms and post-translational modifications (PTMs). The 18.5 kDa protein is the exemplar of the family, being most abundant in adult myelin, and thus the most-studied. It is peripherally membrane-associated, but has generally been investigated in isolated form. MBP is an 'intrinsically unstructured' protein with a high proportion (approximately 75%) of random coil, but postulated to have core elements of beta-sheet and alpha-helix. We review here the properties of the MBP family, especially of the 18.5 kDa isoform, and discuss how its three-dimensional (3D) structure may be resolved by direct techniques available to us, viz., X-ray and electron crystallography, and solution and solid-state NMR spectrometry. In particular, we emphasise that creating an appropriate environment in which the protein can adopt a physiologically relevant fold is crucial to such endeavours. By solving the 3D structure of 18.5 kDa MBP and the effects of PTMs, we will attain a better understanding of myelin architecture, and of the molecular mechanisms that transpire in demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- George Harauz
- Department of Molecular Biology and Genetics, Biophysics Interdepartmental Group, University of Guelph, Room 230, Axelrod Building, 50 Stone Road East, Guelph, Ont., Canada N1G 2W1.
| | | | | | | | | | | |
Collapse
|
24
|
Filipovic R, Jakovcevski I, Zecevic N. GRO-alpha and CXCR2 in the human fetal brain and multiple sclerosis lesions. Dev Neurosci 2003; 25:279-90. [PMID: 12966224 DOI: 10.1159/000072275] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Accepted: 04/01/2003] [Indexed: 11/19/2022] Open
Abstract
Chemokines, small proinflammatory cytokines, are involved in migration of inflammatory cells, but also have a role in normal central nervous system development. One chemokine, growth-related oncogene-alpha (GRO-alpha) and its receptor CXCR2, are involved in proliferation and migration of oligodendrocyte progenitors in rats. Here we studied the regional and cell type-specific expression of GRO-alpha and CXCR2 in the human telencephalon at midgestation, the time that oligodendrocytes are being generated in the human brain. Our results showed that both GRO-alpha and CXCR2 are predominately expressed by oligodendrocyte progenitors and activated microglial cells in the highly proliferative subventricular zone. This cellular and regional localization suggests that GRO-alpha/CXCR2 may play a role in human oligodendrocyte proliferation and subsequent migration. We also studied the expression of GRO-alpha and CXCR2 in brain sections of multiple sclerosis (MS) patients. Consistent with their role in the inflammatory process of MS, both GRO-alpha and CXCR2 were expressed in activated microglia localized on the border of MS lesions. However, neither GRO-alpha nor CXCR2 were present in early oligodendrocyte progenitors, a finding that may partially explain why remyelination is not more efficient in MS.
Collapse
Affiliation(s)
- R Filipovic
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Conn 06030-3401, USA
| | | | | |
Collapse
|
25
|
Abstract
Oligodendrocytes, the myelin-producing cells in the central nervous system, represent a large portion of the total number of cells in the human brain. Using cell-specific markers and antibodies to ventral homeodomain transcription factors, NKX2.1 and DLX2, we show here that a subpopulation of early oligodendrocyte progenitor cells (OPCs) in the human telencephalon may originate in the ganglionic eminence (GE). DLX2-labeled OPCs form a well-delineated stream of cells connecting the GE subventricular zone (SVZ) to the cortical intermediate zone through the anterior cortical SVZ. This population of cells is labeled by early OPCs markers, PDGFRalpha, Olig1, and NG2, and not with either neuronal, astrocyte, or late OPCs markers. Intriguingly, numerous CD68(+) microglia/macrophages, nestin(+) neural stem cells, and CD34(+) hematopoietic stem cells (HSCs) are also present in both the GE stream and the cortical SVZ. These cells could be colabeled with DLX2 as well as early OPCs markers. A separate subpopulation of early OPCs, present in the GE and cortical SVZ, did not express either DLX2 or CD68. These findings suggest that different subpopulations of early OPCs, characterized with different sets of transcription factors and cell-specific markers, are present in human forebrain. These subpopulations may have different origins; one may originate in the cortical SVZ, while others may come from the GE and/or outside the CNS as hematopoietic stem cells.
Collapse
Affiliation(s)
- Sonja Rakic
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut 06030, USA
| | | |
Collapse
|
26
|
Delineation of the intimate details of the backbone conformation of pyridine nucleotide coenzymes in aqueous solution. Biochem Biophys Res Commun 1976; 5:35-44. [PMID: 2 DOI: 10.1017/s1740925x09990342] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cells that express the NG2 chondroitin sulfate proteoglycan and platelet-derived growth factor receptor alpha (NG2 glia) are widespread in the adult human cerebral cortex and white matter and represent 10–15% of non-neuronal cells. The morphology and distribution of NG2 glia are similar to, but distinct from, both microglia and astrocytes. They are present as early as 17 weeks gestation and persist throughout life. NG2 glia can be detected in a variety of human central nervous system (CNS) diseases, of which multiple sclerosis is the best studied. NG2 glia show morphological changes in the presence of pathology and can show expression of the Ki-67 proliferation antigen. The antigenic profile and morphology of NG2 glia in human tissues are consistent with an oligodendrocyte progenitor function that has been well established in rodent models. Most antibodies to NG2 do not stain formalin-fixed paraffin-embedded tissues. Advances in our understanding of NG2 glia in human tissues will require the development of more robust markers for their detection in routinely processed human specimens.
Collapse
|