1
|
Math BA, Waibl F, Lamp LM, Fernández‐Quintero ML, Liedl KR. Cross-linking disulfide bonds govern solution structures of diabodies. Proteins 2023; 91:1316-1328. [PMID: 37376973 PMCID: PMC10952579 DOI: 10.1002/prot.26509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/19/2023] [Indexed: 06/29/2023]
Abstract
In the last years, antibodies have emerged as a promising new class of therapeutics, due to their combination of high specificity with long serum half-life and low risk of side-effects. Diabodies are a popular novel antibody format, consisting of two Fv domains connected with short linkers. Like IgG antibodies, they simultaneously bind two target proteins. However, they offer altered properties, given their smaller size and higher rigidity. In this study, we conducted the-to our knowledge-first molecular dynamics (MD) simulations of diabodies and find a surprisingly high conformational flexibility in the relative orientation of the two Fv domains. We observe rigidifying effects through the introduction of disulfide bonds in the Fv -Fv interface and characterize the effect of different disulfide bond locations on the conformation. Additionally, we compare VH -VL orientations and paratope dynamics between diabodies and an antigen binding fragment (Fab) of the same sequence. We find mostly consistent structures and dynamics, indicating similar antigen binding properties. The most significant differences can be found within the CDR-H2 loop dynamics. Of all CDR loops, the CDR-H2 is located closest to the artificial Fv -Fv interface. All examined diabodies show similar VH -VL orientations, Fv -Fv packing and CDR loop conformations. However, the variant with a P14C-K64C disulfide bond differs most from the Fab in our measures, including the CDR-H3 loop conformational ensemble. This suggests altered antigen binding properties and underlines the need for careful validation of the disulfide bond locations in diabodies.
Collapse
Affiliation(s)
- Barbara A. Math
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| | - Franz Waibl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| | - Leonida M. Lamp
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| | - Monica L. Fernández‐Quintero
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| |
Collapse
|
2
|
Sell J, Haselmann H, Hallermann S, Hust M, Geis C. Autoimmune encephalitis: novel therapeutic targets at the preclinical level. Expert Opin Ther Targets 2020; 25:37-47. [PMID: 33233983 DOI: 10.1080/14728222.2021.1856370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Antibody-mediated encephalitides (AE) with pathogenic autoantibodies (aAB) against neuronal surface antigens are a growing group of diseases characterized by antineuronal autoimmunity in the brain. AE patients typically present with rapidly progressive encephalitis and characteristic disease symptoms dependent on the target antigen. Current treatment consists of an escalating immunotherapy strategy including plasma exchange, steroid application, and B cell depletion. AREAS COVERED For this review, we searched Medline database and google scholar with inclusive dates from 2000. We summarize current treatment strategies and present novel therapeutic approaches of target-specific interventions at the pre-clinical level as well as immunotherapy directed at antibody-induced pathology. Treatment options include modulation of target proteins, intervention with downstream pathways, antibody modification, and depletion of antibody-secreting cells. EXPERT OPINION Although current therapies in AE are effective in many patients, recovery is often prolonged and relapses as well as persistent deficits can occur. Specific immunotherapy together with supportive target-specific therapy may provide faster control of severe symptoms, shorten the disease course, and lead to long-lasting disease stability. Among the various novel therapeutic approaches, modulation of targeted receptors by small molecules crossing the blood-brain barrier as well as prevention of aAB binding is of particular interest.
Collapse
Affiliation(s)
- Josefine Sell
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital , Jena, Germany
| | - Holger Haselmann
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital , Jena, Germany
| | - Stefan Hallermann
- Carl-Ludwig-Institute for Physiology, Medical Faculty, Leipzig University , Leipzig, Germany
| | - Michael Hust
- Department Biotechnology, Technische Universität Braunschweig, Institute for Biochemistry, Biotechnology and Bioinformatics , Braunschweig, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital , Jena, Germany
| |
Collapse
|
3
|
Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies (Basel) 2019; 8:antib8040055. [PMID: 31816964 PMCID: PMC6963682 DOI: 10.3390/antib8040055] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Antibodies and antibody-derived macromolecules have established themselves as the mainstay in protein-based therapeutic molecules (biologics). Our knowledge of the structure–function relationships of antibodies provides a platform for protein engineering that has been exploited to generate a wide range of biologics for a host of therapeutic indications. In this review, our basic understanding of the antibody structure is described along with how that knowledge has leveraged the engineering of antibody and antibody-related therapeutics having the appropriate antigen affinity, effector function, and biophysical properties. The platforms examined include the development of antibodies, antibody fragments, bispecific antibody, and antibody fusion products, whose efficacy and manufacturability can be improved via humanization, affinity modulation, and stability enhancement. We also review the design and selection of binding arms, and avidity modulation. Different strategies of preparing bispecific and multispecific molecules for an array of therapeutic applications are included.
Collapse
Affiliation(s)
- Mark L. Chiu
- Drug Product Development Science, Janssen Research & Development, LLC, Malvern, PA 19355, USA
- Correspondence:
| | - Dennis R. Goulet
- Department of Medicinal Chemistry, University of Washington, P.O. Box 357610, Seattle, WA 98195-7610, USA;
| | - Alexey Teplyakov
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| | - Gary L. Gilliland
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| |
Collapse
|
4
|
Ayyar BV, Atassi MZ. Development of humanized scFv antibody fragment(s) that targets and blocks specific HLA alleles linked to myasthenia gravis. Appl Microbiol Biotechnol 2017; 101:8165-8179. [DOI: 10.1007/s00253-017-8557-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 01/13/2023]
|
5
|
Akbari B, Farajnia S, Zarghami N, Mahdieh N, Rahmati M, Khosroshahi SA, Rahbarnia L. Design, expression and evaluation of a novel humanized single chain antibody against epidermal growth factor receptor (EGFR). Protein Expr Purif 2016; 127:8-15. [DOI: 10.1016/j.pep.2016.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
|
6
|
Škerlová J, Král V, Fábry M, Sedláček J, Veverka V, Řezáčová P. Optimization of the crystallizability of a single-chain antibody fragment. Acta Crystallogr F Struct Biol Commun 2014; 70:1701-6. [PMID: 25484230 PMCID: PMC4259244 DOI: 10.1107/s2053230x1402247x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/13/2014] [Indexed: 11/10/2022] Open
Abstract
Single-chain variable antibody fragments (scFvs) are molecules with immense therapeutic and diagnostic potential. Knowledge of their three-dimensional structure is important for understanding their antigen-binding mode as well as for protein-engineering approaches such as antibody humanization. A major obstacle to the crystallization of single-chain variable antibody fragments is their relatively poor homogeneity caused by spontaneous oligomerization. A new approach to optimization of the crystallizability of single-chain variable antibody fragments is demonstrated using a representative single-chain variable fragment derived from the anti-CD3 antibody MEM-57. A Thermofluor-based assay was utilized to screen for optimal conditions for antibody-fragment stability and homogeneity. Such an optimization of the protein storage buffer led to a significantly improved ability of the scFv MEM-57 to yield crystals.
Collapse
Affiliation(s)
- Jana Škerlová
- Institute of Molecular Genetics, ASCR, v.v.i., Vídeňská 1083, 14220 Prague 4, Czech Republic
- Institute of Organic Chemistry and Biochemistry, ASCR, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Faculty of Science, Charles University in Prague, Albertov 6, 12843 Prague 2, Czech Republic
| | - Vlastimil Král
- Institute of Molecular Genetics, ASCR, v.v.i., Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics, ASCR, v.v.i., Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Juraj Sedláček
- Institute of Molecular Genetics, ASCR, v.v.i., Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry, ASCR, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Pavlína Řezáčová
- Institute of Molecular Genetics, ASCR, v.v.i., Vídeňská 1083, 14220 Prague 4, Czech Republic
- Institute of Organic Chemistry and Biochemistry, ASCR, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| |
Collapse
|
7
|
Koduvayur SP, Gussin HA, Parthasarathy R, Hao Z, Kay BK, Pepperberg DR. Generation of recombinant antibodies to rat GABAA receptor subunits by affinity selection on synthetic peptides. PLoS One 2014; 9:e87964. [PMID: 24586298 PMCID: PMC3929611 DOI: 10.1371/journal.pone.0087964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/01/2014] [Indexed: 12/23/2022] Open
Abstract
The abundance and physiological importance of GABAA receptors in the central nervous system make this neurotransmitter receptor an attractive target for localizing diagnostic and therapeutic biomolecules. GABAA receptors are expressed within the retina and mediate synaptic signaling at multiple stages of the visual process. To generate monoclonal affinity reagents that can specifically recognize GABAA receptor subunits, we screened two bacteriophage M13 libraries, which displayed human scFvs, by affinity selection with synthetic peptides predicted to correspond to extracellular regions of the rat α1 and β2 GABAA subunits. We isolated three anti-β2 and one anti-α1 subunit specific scFvs. Fluorescence polarization measurements revealed all four scFvs to have low micromolar affinities with their cognate peptide targets. The scFvs were capable of detecting fully folded GABAA receptors heterologously expressed by Xenopus laevis oocytes, while preserving ligand-gated channel activity. Moreover, A10, the anti-α1 subunit-specific scFv, was capable of detecting native GABAA receptors in the mouse retina, as observed by immunofluorescence staining. In order to improve their apparent affinity via avidity, we dimerized the A10 scFv by fusing it to the Fc portion of the IgG. The resulting scFv-Fc construct had a Kd of ∼26 nM, which corresponds to an approximately 135-fold improvement in binding, and a lower detection limit in dot blots, compared to the monomeric scFv. These results strongly support the use of peptides as targets for generating affinity reagents to membrane proteins and encourage investigation of molecular conjugates that use scFvs as anchoring components to localize reagents of interest at GABAA receptors of retina and other neural tissues, for studies of receptor activation and subunit structure.
Collapse
Affiliation(s)
- Sujatha P. Koduvayur
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Hélène A. Gussin
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Rajni Parthasarathy
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Zengping Hao
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Brian K. Kay
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - David R. Pepperberg
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
8
|
Lagoumintzis G, Zisimopoulou P, Kordas G, Lazaridis K, Poulas K, Tzartos SJ. Recent approaches to the development of antigen-specific immunotherapies for myasthenia gravis. Autoimmunity 2010; 43:436-45. [DOI: 10.3109/08916930903518099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Zouridakis M, Zisimopoulou P, Poulas K, Tzartos SJ. Recent advances in understanding the structure of nicotinic acetylcholine receptors. IUBMB Life 2009; 61:407-23. [PMID: 19319967 DOI: 10.1002/iub.170] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs), members of the Cys-loop ligand-gated ion channels (LGICs) superfamily, are involved in signal transduction upon binding of the neurotransmitter acetylcholine or exogenous ligands, such as nicotine. nAChRs are pentameric assemblies of homologous subunits surrounding a central pore that gates cation flux, and are expressed at the neuromuscular junction and in the nervous system and several nonneuronal cell types. The 17 known nAChR subunits assemble into a variety of pharmacologically distinct receptor subtypes. nAChRs are implicated in a range of physiological functions and pathophysiological conditions related to muscle contraction, learning and memory, reward, motor control, arousal, and analgesia, and therefore present an important target for drug research. Such studies would be greatly facilitated by knowledge of the high-resolution structure of the nAChR. Although this information is far from complete, important progress has been made mainly based on electron microscopy studies of Torpedo nAChR and the high-resolution X-ray crystal structures of the homologous molluscan acetylcholine-binding proteins, the extracellular domain of the mouse nAChR alpha1 subunit, and two prokaryotic pentameric LGICs. Here, we review some of the latest advances in our understanding of nAChR structure and gating.
Collapse
Affiliation(s)
- Marios Zouridakis
- Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | | | | | | |
Collapse
|
10
|
Watanabe H, Tsumoto K, Taguchi S, Yamashita K, Doi Y, Nishimiya Y, Kondo H, Umetsu M, Kumagai I. A human antibody fragment with high affinity for biodegradable polymer film. Bioconjug Chem 2007; 18:645-51. [PMID: 17385839 DOI: 10.1021/bc060203y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibodies with high affinity for the surface of a solid material would be advantageous in biomaterial science as a protein device. A human antibody fragment that binds to poly(hydroxybutyrate) (PHB), a biodegradable polymer matter, was generated by a phage display system. Clone PH7-3d3 was isolated after several rounds of selection and prepared as a fragment of immunoglobulin variable regions (Fv). The quartz crystal microbalance technique showed that PH7-3d3 Fv completely inhibited PHB enzymatic degradation by competing with PHB depolymerase. Kinetic analysis based on surface plasmon resonance demonstrated that PH7-3d3 Fv bound to the PHB film with an equilibrium dissociation constant of 14 nM. The three-dimensional structure of PH7-3d3 Fv was resolved to 1.7 A, revealing that the complementarity determining regions (CDRs) in the Fv fragment form a relatively flat surface on which uncharged polar and aromatic amino acids are distributed in clusters. The structure of PH7-3d3 Fv was similar to that of PHB depolymerase in the orientation of aromatic residues in the binding sites. Alanine scanning mutagenesis demonstrated that these aromatic residues, especially tryptophan residues in CDRs, were critical in the interaction between PH7-3d3 Fv and PHB. Our results suggest the possible selection of an antibody fragment that binds a material surface in a manner similar to protein-ligand interaction.
Collapse
Affiliation(s)
- Hideki Watanabe
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba-yama 6-6-11-606, Sendai 980-8579, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Konstantakaki M, Tzartos SJ, Poulas K, Eliopoulos E. Molecular modeling of the complex between Torpedo acetylcholine receptor and anti-MIR Fab198. Biochem Biophys Res Commun 2007; 356:569-75. [PMID: 17376405 DOI: 10.1016/j.bbrc.2007.02.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 02/28/2007] [Indexed: 12/01/2022]
Abstract
Myasthenia gravis is a neuromuscular disorder caused by an antibody-mediated autoimmune response to the muscle-type nicotinic acetylcholine receptor (AChR). The majority of monoclonal antibodies (mAbs) produced in rats immunized with intact AChR compete with each other for binding to an area of the alpha-subunit called the main immunogenic region (MIR). The availability of a complex between the AChR and Fab198 (Fab fragment of the anti-MIR mAb198) would help understand how the antigen and antibody interact and in designing improved antibody fragments that protect against the destructive activity of myasthenic antibodies. In the present study, we modeled the Torpedo AChR/Fab198 complex, based primarily on the recent 4A resolution structure of the Torpedo AChR. In order to computationally dock the two structures, we used the ZDOCK software. The total accessible surface area change of the complex compared to those of experimentally determined antigen-antibody complexes indicates an intermediate size contact surface. CDRs H3 and L3 seem to contribute most to the binding, while L2 seems to contribute least. These data suggest mutagenesis experiments aimed at validating the model and improving the binding affinity of Fab198 for the AChR.
Collapse
Affiliation(s)
- Maria Konstantakaki
- Department of Agricultural Biotechnology, Agricultural University of Athens, 75 Iera Odos, Votanikos, GR11855 Athens, Greece
| | | | | | | |
Collapse
|
12
|
Fostieri E, Kostelidou K, Poulas K, Tzartos SJ. Recent advances in the understanding and therapy of myasthenia gravis. FUTURE NEUROLOGY 2006. [DOI: 10.2217/14796708.1.6.799] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Myasthenia gravis (MG) is a T-cell dependent autoimmune disease mediated by autoantibodies, which mainly target muscle nicotinic acetylcholine receptors (AChR) and cause loss of functional AChRs in the neuromuscular junction. Both MG and its major autoantigen are studied extensively, yet the etiology of the disease remains unclear, although it is known to be associated with the thymus. A genetic predisposition, combined with several unidentified environmental stimuli, likely creates a favorable milieu in which the disease can appear. Current research focusses on elucidating the cellular and molecular pathways of immune dysregulation, which underly MG outburst and progression. Considerable progress has been made concerning the involvement of the thymus, the identification of impaired mechanisms of immune control and the B–T-cell interaction in MG pathogenesis, while the role of chemokines arises as an intriguing new puzzle. Recent findings fueled the development of novel therapeutic approaches with some encouraging, although preliminary, results. This review summarizes recent achievements in the fields of both basic research and therapeutics.
Collapse
Affiliation(s)
- Efrosini Fostieri
- Hellenic Pasteur Institute, Department of Biochemistry, 127 Vas. Sofias Avenue, 11521 Athens, Greece
| | - Kalliopi Kostelidou
- Hellenic Pasteur Institute, Department of Biochemistry, 127 Vas. Sofias Avenue 11521 Athens, Greece
| | | | - Socrates J Tzartos
- Hellenic Pasteur Institute, Department of Biochemistry, 127 Vas. Sofias Avenue, 11521 Athens, Greece and, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| |
Collapse
|
13
|
Protopapadakis E, Kokla A, Tzartos SJ, Mamalaki A. Isolation and characterization of human anti-acetylcholine receptor monoclonal antibodies from transgenic mice expressing human immunoglobulin loci. Eur J Immunol 2005; 35:1960-8. [PMID: 15915538 DOI: 10.1002/eji.200526173] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The isolation of human antibodies against muscle acetylcholine receptor (AChR), the autoantigen involved in myasthenia gravis (MG), is important for the development of therapeutically useful reagents. Monovalent antibody fragments from monoclonal antibodies against the main immunogenic region (MIR) of AChR protect the receptor from the destructive activity of MG autoantibodies. Human anti-AChR alpha-subunit antibody fragments with therapeutic potential have been isolated using phage display antibody libraries. An alternative approach for obtaining human mAb has been provided by the development of humanized mice. In this report, we show that immunization of transgenic mouse strains with the extracellular domain of the human AChR alpha-subunit results in antibody responses and isolation of hybridomas producing human mAb. Four specific IgM mAb were isolated and analyzed. mAb170 recognized the native receptor the best and was capable of inducing AChR antigenic modulation, suggesting its specificity for a pathogenic epitope. Moreover, the recombinant antigen-binding (Fab) fragment of this mAb competed with an anti-MIR mAb, revealing that its antigenic determinant lies in or near the MIR. Finally, Fab170 was able to compete with MG autoantibodies and protect the AChR against antigenic modulation induced by MG sera. This approach will be useful for isolating additional mAb with therapeutic potential against the other AChR subunits.
Collapse
|
14
|
Lindstrom J. Autoimmune diseases involving nicotinic receptors. JOURNAL OF NEUROBIOLOGY 2002; 53:656-65. [PMID: 12436428 DOI: 10.1002/neu.10106] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The antibody-mediated autoimmune response to alpha1 muscle nicotinic acetylcholine receptors that causes myasthenia gravis is one of the best characterized autoimmune diseases. Antibody-mediated autoimmune responses to neuronal nicotinic receptors are just beginning to be discovered and characterized. One of these causes dysautonomia through antibodies to alpha 3 nicotinic receptors of autonomic ganglia. Another causes pemphigus through antibodies to alpha 9 nicotinic receptors in skin. Other autoimmune responses to nicotinic receptors may be discovered as the many functional roles of nicotinic receptors are revealed.
Collapse
Affiliation(s)
- Jon Lindstrom
- Department of Neuroscience, Medical School of the University of Pennsylvania, 217 Stemmler Hall, Philadelphia, Pennsylvania 19104-6074, USA.
| |
Collapse
|
15
|
Trakas N, Tzartos SJ. Conjugation of acetylcholine receptor-protecting Fab fragments with polyethylene glycol results in a prolonged half-life in the circulation and reduced immunogenicity. J Neuroimmunol 2001; 120:42-9. [PMID: 11694318 DOI: 10.1016/s0165-5728(01)00405-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Antibodies to the acetylcholine receptor (AChR) cause AChR loss, resulting in the disease, myasthenia gravis (MG). The majority of the pathogenic antibodies seem to be directed against the main immunogenic region (MIR) of the AChR. In contrast to the intact antibodies, Fab fragments of anti-AChR antibodies are not themselves pathogenic and such fragments of anti-MIR monoclonal antibodies (mAbs) protect the AChR in vitro and in vivo against the pathogenic antibodies. However, Fab fragments have a very short in vivo half-life and are immunogenic, obstacles which must be overcome before their clinical use can be envisaged. We investigated the effect of conjugating Fab fragments to polyethylene glycol (PEG), a method known to increase the in vivo half-life and reduce the immunogenicity of proteins. When the Fab' fragments of two rat anti-MIR mAbs (nos. 35 and 195) were conjugated to methoxy-PEG-maleimide, the conjugates retained about 10% of their AChR binding activity and efficiently protected the AChR against the binding and modulating activity of myasthenic antibodies. Their in vivo half-life in rats was approximately 15 times longer than that of the unconjugated Fab' fragment and they were much less immunogenic in mice. This work represents an important step towards the clinical use of AChR-protective anti-MIR Fabs, but further improvements are needed before their clinical use is attempted.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Autoantibodies/chemistry
- Autoantibodies/immunology
- Binding, Competitive/drug effects
- Binding, Competitive/immunology
- Half-Life
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/immunology
- Immunoglobulin Fab Fragments/pharmacology
- Mice
- Mice, Inbred BALB C
- Myasthenia Gravis/drug therapy
- Myasthenia Gravis/immunology
- Myasthenia Gravis/physiopathology
- Neuroprotective Agents/chemical synthesis
- Neuroprotective Agents/metabolism
- Polyethylene Glycols/chemical synthesis
- Polyethylene Glycols/metabolism
- Receptors, Cholinergic/drug effects
- Receptors, Cholinergic/immunology
- Receptors, Cholinergic/metabolism
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/immunology
- Tumor Cells, Cultured/metabolism
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/pharmacology
Collapse
Affiliation(s)
- N Trakas
- Department of Biochemistry, Hellenic Pasteur Institute, 127 Vas. Sofias Avenue, Athens 115 21, Greece
| | | |
Collapse
|
16
|
Poulas K, Eliopoulos E, Vatzaki E, Navaza J, Kontou M, Oikonomakos N, Acharya KR, Tzartos SJ. Crystal structure of Fab198, an efficient protector of the acetylcholine receptor against myasthenogenic antibodies. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3685-93. [PMID: 11432734 DOI: 10.1046/j.1432-1327.2001.02274.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The crystal structure of the Fab fragment of the rat monoclonal antibody 198, with protective activity for the main immunogenic region of the human muscle acetylcholine receptor against the destructive action of myasthenic antibodies, has been determined and refined to 2.8 A resolution by X-ray crystallographic methods. The mouse anti-lysozyme Fab D1.3 was used as a search model in molecular replacement with the AMORE software. The complementarity determining regions (CDR)-L2, CDR-H1 and CDR-H2 belong to canonical groups. Loops CDR-L3, CDR-H2 and CDR-H3, which seem to make a major contribution to binding, were analyzed and residues of potential importance for antigen-binding are examined. The antigen-binding site was found to be a long crescent-shaped crevice. The structure should serve as a model in the rational design of very high affinity humanized mutants of Fab198, appropriate for therapeutic approaches in the model autoimmune disease myasthenia gravis.
Collapse
Affiliation(s)
- K Poulas
- Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Papanastasiou D, Poulas K, Kokla A, Tzartos SJ. Prevention of passively transferred experimental autoimmune myasthenia gravis by Fab fragments of monoclonal antibodies directed against the main immunogenic region of the acetylcholine receptor. J Neuroimmunol 2000; 104:124-32. [PMID: 10713351 DOI: 10.1016/s0165-5728(99)00259-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The muscle acetylcholine receptor loss, responsible for the clinical symptoms of myasthenia gravis, is due mainly to mechanisms dependent on the bivalent character of the anti-receptor antibodies. In cell culture, univalent Fab fragments of monoclonal antibodies (mAbs) directed against the main immunogenic region (MIR) of the acetylcholine receptor are able to protect the receptor against the action of the intact antibodies. To investigate the potential therapeutic use of this approach, we examined the ability of the Fab fragment of anti-MIR mAb195 (Fab195) to protect the receptor in vivo against two anti-MIR mAbs. Because of the rapid clearance of Fab fragments from the circulation, Lewis rats were treated repeatedly with Fab195. The Fab fragment significantly protected muscle receptors against antibody-mediated loss and was very efficient in providing protection against clinical symptoms when its administration was commenced before, simultaneously with, or 2 h after, mAb injection. Twenty-four hours after mAb injection, the protected rats only showed mild myasthenic symptoms, whereas those which only received intact antibodies were moribund or dead. These results suggest that, once modified to ensure their low immunogenicity and a long half-life, anti-MIR Fab fragments might be useful in the specific immunotherapy of myasthenia gravis.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Dose-Response Relationship, Drug
- Female
- Immunoglobulin Fab Fragments/pharmacology
- Immunoglobulin Fab Fragments/therapeutic use
- Immunoglobulin Variable Region/drug effects
- Immunoglobulin Variable Region/immunology
- Myasthenia Gravis, Autoimmune, Experimental/immunology
- Myasthenia Gravis, Autoimmune, Experimental/metabolism
- Myasthenia Gravis, Autoimmune, Experimental/prevention & control
- Rats
- Rats, Inbred Lew
- Receptors, Cholinergic/drug effects
- Receptors, Cholinergic/immunology
- Time Factors
Collapse
Affiliation(s)
- D Papanastasiou
- Department of Biochemistry, Hellenic Pasteur Institute, 127 Vas. Sofias Avenue, Athens, Greece
| | | | | | | |
Collapse
|
18
|
Abstract
Much progress has been made in the 26 years since initial studies of the first purified acetylcholine receptors (AChRs) led to the discovery that an antibody-mediated autoimmune response to AChRs causes the muscular weakness and fatigability characteristic of myasthenia gravis (MG) and its animal model, experimental autoimmune myasthenia gravis (EAMG). Now, the structure of muscle AChRs is much better known. Monoclonal antibodies to muscle AChRs, developed as model autoantibodies for studies of EAMG, were used for initial purifications of neuronal AChRs, and now many homologous subunits of neuronal nicotinic AChRs have been cloned. There is a basic understanding of the pathological mechanisms by which autoantibodies to AChRs impair neuromuscular transmission. Immunodiagnostic assays for MG are used routinely. Nonspecific approaches to immunosuppressive therapy have been refined. However, fundamental mysteries remain regarding what initiates and sustains the autoimmune response to muscle AChRs and how to specifically suppress this autoimmune response using a practical therapy. Many rare congenital myasthenic syndromes have been elegantly shown to result from mutations in muscle AChRs. These studies have provided insights into AChR structure and function as well as into the pathological mechanisms of these diseases. Evidence has been found for autoimmune responses even to some central nervous system neurotransmitter receptors, but only one neuronal AChR has so far been implicated in an autoimmune disease. Thus far, only two neuronal AChR mutations have been found to be associated with a rare form of epilepsy, but many more neuronal AChR mutations will probably be found to be associated with disease in the years ahead.
Collapse
Affiliation(s)
- J M Lindstrom
- Department of Neuroscience, Medical School of the University of Pennsylvania, Philadelphia, Pennsylvania 19104-6074, USA.
| |
Collapse
|