1
|
Levinson AI. Myasthenia Gravis. Clin Immunol 2019. [DOI: 10.1016/b978-0-7020-6896-6.00065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
Chen W, Meng QF, Sui JK, Wang YJ, Li XL, Liu S, Li H, Wang CC, Li CH, Li YB. Ginsenoside Rb1: The new treatment measure of myasthenia gravis. Int Immunopharmacol 2016; 41:136-143. [DOI: 10.1016/j.intimp.2016.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/06/2016] [Accepted: 08/24/2016] [Indexed: 02/08/2023]
|
3
|
A novel infection- and inflammation-associated molecular signature in peripheral blood of myasthenia gravis patients. Immunobiology 2016; 221:1227-36. [PMID: 27387891 DOI: 10.1016/j.imbio.2016.06.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/13/2016] [Indexed: 12/15/2022]
Abstract
Myasthenia gravis (MG) is a T-cell dependent autoimmune disorder of the neuromuscular junction, characterised by muscle weakness and fatigability. Autoimmunity is thought to initiate in the thymus of acetylcholine receptor (AChR)-positive MG patients; however, the molecular mechanisms linking intra-thymic MG pathogenesis with autoreactivity via the circulation to the muscle target organ are poorly understood. Using whole-transcriptome sequencing, we compared the transcriptional profile of peripheral blood mononuclear cells from AChR-early onset MG (AChR-EOMG) patients with healthy controls: 178 coding transcripts and 229 long non-coding RNAs, including 11 pre-miRNAs, were differentially expressed. Among the 178 coding transcripts, 128 were annotated of which 17% were associated with the 'infectious disease' functional category and 46% with 'inflammatory disease' and 'inflammatory response-associated' categories. Validation of selected transcripts by qPCR indicated that of the infectious disease-related transcripts, ETF1, NFKB2, PLK3, and PPP1R15A were upregulated, whereas CLC and IL4 were downregulated in AChR-EOMG patients; in the 'inflammatory' categories, ABCA1, FUS, and RELB were upregulated, suggesting a contribution of these molecules to immunological dysfunctions in MG. Data selection and validation were also based on predicted microRNA-mRNA interactions. We found that miR-612, miR-3654, and miR-3651 were increased, whereas miR-612-putative AKAp12 and HRH4 targets and the miR-3651-putative CRISP3 target were downregulated in AChR-EOMG, also suggesting altered immunoregulation. Our findings reveal a novel peripheral molecular signature in AChR-EOMG, reflecting a critical involvement of inflammatory- and infectious disease-related immune responses in disease pathogenesis.
Collapse
|
4
|
Levinson AI. Myasthenia gravis. Clin Immunol 2013. [DOI: 10.1016/b978-0-7234-3691-1.00078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Pál Z, Varga Z, Semsei Á, Reményi V, Rózsa C, Falus A, Illes Z, Buzás EI, Molnar MJ. Interleukin-4 receptor alpha polymorphisms in autoimmune myasthenia gravis in a Caucasian population. Hum Immunol 2012; 73:193-5. [DOI: 10.1016/j.humimm.2011.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 10/23/2011] [Accepted: 11/07/2011] [Indexed: 10/15/2022]
|
6
|
Baggi F, Antozzi C, Toscani C, Cordiglieri C. Acetylcholine Receptor-Induced Experimental Myasthenia Gravis: What Have We Learned from Animal Models After Three Decades? Arch Immunol Ther Exp (Warsz) 2011; 60:19-30. [DOI: 10.1007/s00005-011-0158-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/28/2011] [Indexed: 01/23/2023]
|
7
|
Liu R, Hao J, Dayao CS, Shi FD, Campagnolo DI. T-bet deficiency decreases susceptibility to experimental myasthenia gravis. Exp Neurol 2009; 220:366-73. [DOI: 10.1016/j.expneurol.2009.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 09/21/2009] [Accepted: 09/23/2009] [Indexed: 01/06/2023]
|
8
|
Suppression of ongoing experimental autoimmune myasthenia gravis by transfer of RelB-silenced bone marrow dentritic cells is associated with a change from a T helper Th17/Th1 to a Th2 and FoxP3+ regulatory T-cell profile. Inflamm Res 2009; 59:197-205. [PMID: 19768385 DOI: 10.1007/s00011-009-0087-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 07/15/2009] [Accepted: 08/19/2009] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To observe the therapeutic effect of RelB-silenced dendritic cells (DCs) in experimental autoimmune myasthenia gravis (EAMG), and further to investigate the mechanism of this immune system therapeutic. METHODS (1) RelB-silenced DCs and control DCs were prepared and the supernatants were collected for IL-12p70, IL-6, and IL-23 measurement by ELISA. (2) RelB-silenced DCs and control DCs were co-cultured with AChR-specific T cells, and the supernatant was collected to observe the IL-17, IFN-gamma, IL-4 production. (3) EAMG mice with clinical scores of 1 to 2 were collected and enrolled randomly into the RelB-silenced DC group or the control DC group. RelB-silenced DCs or an equal amount of control DCs were injected intravenously on days 0, 7, and 14 after enrollment. Clinical scores were evaluated every other day. Twenty days after allotment, serum from individual mice was collected to detect serum concentrations of anti-mouse AChR IgG, IgG1, IgG2b, and IgG2c. The splenocytes were isolated for analysis of lymphocyte proliferative responses, cytokine (IL-17, IFN-gamma, IL-4) production, and protein levels of RORgammat, T-bet, GATA-3, and FoxP3 (the special transcription factors of Th17, Th1, Th2, and Treg, respectively). RESULTS (1) RelB-silenced DCs produced significantly reduced amounts of IL-12p70, IL-6, and IL-23, as compared with control DCs. (2) RelB-silenced DCs spurred on the CD4(+) T cells from Th1/Th17 to the Th2 cell subset in the co-culture system. (3) Treatment with RelB-silenced DCs effectively reduced myasthenic symptoms and levels of serum anti-acetylcholine receptor autoantibody in mice with ongoing EAMG. Th17-related markers (RORgammat, IL-17) and Th1-related markers (T-bet, IFN-gamma) were downregulated, whereas Th2 markers (IL-4 and GATA3) and Treg marker (FoxP3) were upregulated. CONCLUSIONS RelB-silenced DCs were able to create a particular cytokine environment that was absent of inflammatory cytokines. RelB-silenced DCs provide a practical means to normalize the differentiation of the four T-cell subsets (Th17, Th1, Th2, and Treg) in vivo, and thus possess therapeutic potential in Th1/Th17-dominant autoimmune disorders such as myasthenia gravis.
Collapse
|
9
|
Zhang Y, Yang H, Xiao B, Wu M, Zhou W, Li J, Li G, Christadoss P. Dendritic cells transduced with lentiviral-mediated RelB-specific ShRNAs inhibit the development of experimental autoimmune myasthenia gravis. Mol Immunol 2008; 46:657-67. [PMID: 19038457 DOI: 10.1016/j.molimm.2008.08.274] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 08/17/2008] [Accepted: 08/18/2008] [Indexed: 11/17/2022]
Abstract
Dendritic cells (DC) are professional APC that are able to modulate immune response in either a positive or negative manner depending upon their lineage and state of maturation. RelB is a NF-kappaB family member which plays a key role in the differentiation and maturation of DC. In this study, we constructed lentiviral vector expressing RelB-specific short hairpin RNAs (ShRNAs) that efficiently silenced the RelB gene in bone marrow-derived dendritic cells (BMDCs). These RelB-silenced BMDCs were maturation resistant and could functionally decrease antigen-specific T cells proliferation. We tested the therapeutic effect of RelB-silenced BMDCs in C57BL/6 mice with experimental autoimmune myasthenia gravis (EAMG). Injection i.v. with RelB-silenced BMDCs plused with Torpedo acetylcholine receptor (TAChR) dominant peptide Talpha(146-162) on days 3, 33, and 63 after first immunization decreased the incidence and severity of clinical EAMG with suppressed IFN-gamma production and increased IL-10 and IL-4 production in vitro and in vivo, and also leads to a decreased serum anti-AChR IgG, IgG1, IgG2b Ab levels. Furthermore, RelB-silenced BMDCs promoted regulatory T cell profiles as indicated by a marked increase of FoxP3 in splenocyte. Our data suggested that lentiviral-mediated RNAi targeting RelB was effective methods to inhibit the maturation of BMDCs, thus possess therapeutic potential to prevent autoimmune disorders such as EAMG or human MG.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Neurology, Xiangya Hosptial, Central South University, Changsha, Hunan 410008, PR China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Conti-Fine BM, Milani M, Wang W. CD4+T Cells and Cytokines in the Pathogenesis of Acquired Myasthenia Gravis. Ann N Y Acad Sci 2008; 1132:193-209. [DOI: 10.1196/annals.1405.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
|
12
|
Fuchs S, Feferman T, Zhu KY, Meidler R, Margalit R, Wang N, Laub O, Souroujon MC. Suppression of Experimental Autoimmune Myasthenia Gravis by Intravenous Immunoglobulin and Isolation of a Disease-Specific IgG Fraction. Ann N Y Acad Sci 2007; 1110:550-8. [PMID: 17911471 DOI: 10.1196/annals.1423.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Intravenous immunoglobulin (IVIG) administration has been beneficially used for the treatment of a variety of autoimmune diseases including myasthenia gravis (MG). We have demonstrated that IVIG administration in experimental autoimmune MG (EAMG) results in suppression of disease that is accompanied by decreased Th1 cell and B cell proliferation. Chromatography of pooled human immunoglobulins (IVIGs) on immobilized IgG, isolated from rats with EAMG, results in a complete depletion of the suppressive activity of the IVIG. Moreover, the eluate from this EAMG-specific antibody column retains the immunosuppressive activity of IVIG. This study supports the notion that the therapeutic effect of IVIGs is mediated by an antigen-specific anti-immunoglobulin (anti-idiotypic) activity that is essential for its suppressive activity.
Collapse
Affiliation(s)
- Sara Fuchs
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Wang W, Milani M, Ostlie N, Okita D, Agarwal RK, Caspi RR, Caspi R, Conti-Fine BM. C57BL/6 mice genetically deficient in IL-12/IL-23 and IFN-gamma are susceptible to experimental autoimmune myasthenia gravis, suggesting a pathogenic role of non-Th1 cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:7072-80. [PMID: 17513756 PMCID: PMC2756237 DOI: 10.4049/jimmunol.178.11.7072] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunization with Torpedo acetylcholine receptor (TAChR) induces experimental autoimmune myasthenia gravis (EAMG) in C57BL/6 (B6) mice. EAMG development needs IL-12, which drives differentiation of Th1 cells. The role of IFN-gamma, an important Th1 effector, is not clear and that of IL-17, a proinflammatory cytokine produced by Th17 cells, is unknown. In this study, we examined the effect of simultaneous absence of IL-12 and IFN-gamma on EAMG susceptibility, using null mutant B6 mice for the genes of both the IL-12/IL-23 p40 subunit and IFN-gamma (dKO mice). Wild-type (WT) B6 mice served as control for EAMG induction. All mice were immunized with TAChR in Freund's adjuvant. dKO mice developed weaker anti-TAChR CD4(+)T cells and Ab responses than WT mice. Yet, they developed EAMG symptoms, anti-mouse acetylcholine receptor (AChR) Ab, and CD4(+) T cell responses against mouse AChR sequences similar to those of WT mice. dKO and WT mice had similarly reduced AChR content in their muscles, and IgG and complement at the neuromuscular junction. Naive dKO mice had significantly fewer NK, NKT, and CD4(+)CD25(+)Foxp3(+) T regulatory (Treg) cells than naive WT mice. Treg cells from TAChR-immunized dKO mice had significantly less suppressive activity in vitro than Treg cells from TAChR-immunized WT mice. In contrast, TAChR-specific CD4(+) T cells from TAChR-immunized dKO and WT mice secreted comparable amounts of IL-17 after stimulation in vitro with TAChR. The susceptibility of dKO mice to EAMG may be due to reduced Treg function, in the presence of a normal function of pathogenic Th17 cells.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Female
- Genetic Predisposition to Disease
- Immunoglobulin G/analysis
- Interferon-gamma/deficiency
- Interferon-gamma/genetics
- Interleukin-12/deficiency
- Interleukin-12/genetics
- Interleukin-17/metabolism
- Interleukin-17/physiology
- Interleukin-23/deficiency
- Interleukin-23/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/metabolism
- Myasthenia Gravis, Autoimmune, Experimental/genetics
- Myasthenia Gravis, Autoimmune, Experimental/immunology
- Myasthenia Gravis, Autoimmune, Experimental/pathology
- Receptors, Cholinergic/administration & dosage
- Receptors, Cholinergic/immunology
- Receptors, Cholinergic/physiology
- Severity of Illness Index
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
- Th1 Cells/immunology
- Th1 Cells/metabolism
Collapse
Affiliation(s)
- Wei Wang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sheng JR, Li L, Ganesh BB, Vasu C, Prabhakar BS, Meriggioli MN. Suppression of Experimental Autoimmune Myasthenia Gravis by Granulocyte-Macrophage Colony-Stimulating Factor Is Associated with an Expansion of FoxP3+Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:5296-306. [PMID: 17015715 DOI: 10.4049/jimmunol.177.8.5296] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Dendritic cells (DCs) have the potential to activate or tolerize T cells in an Ag-specific manner. Although the precise mechanism that determines whether DCs exhibit tolerogenic or immunogenic functions has not been precisely elucidated, growing evidence suggests that DC function is largely dependent on differentiation status, which can be manipulated using various growth factors. In this study, we investigated the effects of mobilization of specific DC subsets-using GM-CSF and fms-like tyrosine kinase receptor 3-ligand (Flt3-L)-on the susceptibility to induction of experimental autoimmune myasthenia gravis (EAMG). We administered GM-CSF or Flt3-L to C57BL/6 mice before immunization with acetylcholine receptor (AChR) and observed the effect on the frequency and severity of EAMG development. Compared with AChR-immunized controls, mice treated with Flt3-L before immunization developed EAMG at an accelerated pace initially, but disease frequency and severity was comparable at the end of the observation period. In contrast, GM-CSF administered before immunization exerted a sustained suppressive effect against the induction of EAMG. This suppression was associated with lowered serum autoantibody levels, reduced T cell proliferative responses to AChR, and an expansion in the population of FoxP3+ regulatory T cells. These results highlight the potential of manipulating DCs to expand regulatory T cells for the control of autoimmune diseases such as MG.
Collapse
MESH Headings
- Animals
- Autoimmune Diseases/therapy
- Cell Communication/immunology
- Cell Proliferation/drug effects
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Forkhead Transcription Factors
- Granulocyte-Macrophage Colony-Stimulating Factor/administration & dosage
- Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology
- Immunization
- Membrane Proteins/administration & dosage
- Membrane Proteins/pharmacology
- Mice
- Mice, Inbred C57BL
- Myasthenia Gravis, Autoimmune, Experimental/immunology
- Myasthenia Gravis, Autoimmune, Experimental/prevention & control
- Myasthenia Gravis, Autoimmune, Experimental/therapy
- Receptors, Cholinergic/administration & dosage
- Receptors, Cholinergic/immunology
- T-Lymphocytes, Regulatory/cytology
Collapse
Affiliation(s)
- Jian Rong Sheng
- Department of Neurology and Rehabilitation, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
15
|
Milani M, Ostlie N, Wu H, Wang W, Conti-Fine BM. CD4+ T and B cells cooperate in the immunoregulation of Experimental Autoimmune Myasthenia Gravis. J Neuroimmunol 2006; 179:152-62. [PMID: 16945426 DOI: 10.1016/j.jneuroim.2006.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 06/28/2006] [Accepted: 07/03/2006] [Indexed: 11/20/2022]
Abstract
C57Bl6 mice (B6 mice) immunized with Torpedo acetylcholine receptor (TAChR) in Freund's adjuvants (FA) develop Experimental Autoimmune Myasthenia Gravis (EAMG). In mouse EAMG Th2 cytokines may be protective. Aluminum hydroxide (Alum) was used to immunize B6 mice to the TAChR and prime CD4+ T and B cells secreting Th2 cytokines. Mice immunized with TAChR/Alum developed anti-AChR CD4+ T cells response, but minimal antibody levels and symptoms. TAChR/Alum treatments prior immunization with TAChR/FA protected mice from EAMG. Cell transfer experiments demonstrated that B and CD4+ T cells mediated the protective effect by causing intense reduction of complement-fixing anti-TAChR IgG subclasses.
Collapse
Affiliation(s)
- Monica Milani
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| | | | | | | | | |
Collapse
|
16
|
Zhu KY, Feferman T, Maiti PK, Souroujon MC, Fuchs S. Intravenous immunoglobulin suppresses experimental myasthenia gravis: Immunological mechanisms. J Neuroimmunol 2006; 176:187-97. [PMID: 16730380 DOI: 10.1016/j.jneuroim.2006.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 03/21/2006] [Accepted: 04/10/2006] [Indexed: 11/16/2022]
Abstract
Intravenous immunoglobulin (IVIG) administration has been beneficially used in the treatment of several autoimmune disorders including myasthenia gravis (MG), although its mechanism of action is still not clear. To study the optimal conditions of IVIG treatment and delineate its mechanism of action we established a suitable model in rat experimental autoimmune MG (EAMG). We show that IVIG has a suppressive effect on the clinical symptoms of ongoing EAMG that is associated with decreased AChR-specific cellular and humoral immune reactivity. Costimulatory factors and cytokine profile analyses suggest that IVIG immunomodulation in EAMG involves suppression of B and Th1-type T cell responses with no generation of T-regulatory cells. Our data contribute to the understanding of the immunological mechanisms underlying IVIG treatment in MG and in other autoimmune disorders.
Collapse
Affiliation(s)
- Kai-Yun Zhu
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
17
|
Wang W, Ostlie NS, Conti-Fine BM, Milani M. The Susceptibility to Experimental Myasthenia Gravis of STAT6−/− and STAT4−/− BALB/c Mice Suggests a Pathogenic Role of Th1 Cells. THE JOURNAL OF IMMUNOLOGY 2003; 172:97-103. [PMID: 14688314 DOI: 10.4049/jimmunol.172.1.97] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autoantibodies to the muscle acetylcholine receptor (AChR) cause the symptoms of human and experimental myasthenia gravis (EMG). AChR-specific CD4+ T cells permit development of these diseases, but the role(s) of the Th1 and Th2 subsets is unclear. The STAT4 and STAT6 proteins, which mediate intracellular cytokine signaling, are important for differentiation of Th1 and Th2 cells, respectively. Wild-type (WT) BALB/c mice, which are prone to develop Th2 rather than Th1 responses to Ag, are resistant to EMG. We have examined the role of Th1 and Th2 cells in EMG using STAT4 (STAT4-/-)- or STAT6 (STAT6-/-)-deficient BALB/c mice. After AChR immunization, STAT6-/- mice were susceptible to EMG: they developed more serum anti-AChR Ab, and had more complement-fixing anti-AChR IgG2a and 2b and less IgG1 than WT or STAT4-/- mice. The susceptibility to EMG of STAT6-/- mice is most likely related to the Th1 cell-induced synthesis of anti-AChR Ab, which trigger complement-mediated destruction of the neuromuscular junction. CD4+ T cells of the STAT6-/- mice had proliferative responses to the AChR comparable to those of WT and STAT4-/- mice, and recognized similar AChR epitopes. STAT6-/- mice had abundant AChR-specific Th1 cells, which were nearly absent in WT and STAT4-/- mice. Spleen and lymph nodes from STAT6-/- mice contained cells that secreted IL-4 when cultured with AChR: these are most likely STAT6-independent cells, stimulated in a non-Ag-specific manner by the cytokines secreted by AChR-specific Th1 cells.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
18
|
Abstract
Converging experimental evidence indicates that the clinical expression of autoimmunity is under the control of T cell-mediated immunoregulatory circuits. Several types of suppressor T cells have been described. Some of them are closely dependent upon cytokines such as TH2 cells and Tr1 cells. Others appear to rely more on cell-cell contact (such as CD25+ CD62L+ T cells), although some cytokines, notably TGF-beta, may be involved in their growth or their mode of action. It is tempting to separate suppressor cells that appear spontaneously, such as CD25+ T cells and NKT cells (innate immunoregulation), from those that are only observed after antigen administration, such as TH2 cells and Tr1 cells (adaptive immunoregulation). The role of these diverse cell types in the control of the onset or the progression of autoimmune diseases is likely, but still a matter of debate. A central question is to determine whether immune dysregulation precedes the burst of pathogenic autoimmunity.
Collapse
|
19
|
Milani M, Ostlie N, Wang W, Conti-Fine BM. T Cells and Cytokines in the Pathogenesis of Acquired Myasthenia Gravis. Ann N Y Acad Sci 2003; 998:284-307. [PMID: 14592887 DOI: 10.1196/annals.1254.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although the symptoms of myasthenia gravis (MG) and experimental MG (EAMG) are caused by autoantibodies, CD4(+) T cells specific for the target antigen, the nicotinic acetylcholine receptor, and the cytokines they secrete, have an important role in these diseases. CD4(+) T cells have a pathogenic role, by permitting and facilitating the synthesis of high-affinity anti-AChR antibodies. Th1 CD4(+) cells are especially important because they drive the synthesis of anti-AChR complement-fixing IgG subclasses. Binding of those antibodies to the muscle AChR at the neuromuscular junction will trigger the complement-mediated destruction of the postsynaptic membrane. Thus, IL-12, a crucial cytokine for differentiation of Th1 cells, is necessary for development of EAMG. Th2 cells secrete different cytokines, with different effects on the pathogenesis of EAMG. Among them, IL-10, which is a potent growth and differentiation factor for B cells, facilitates the development of EAMG. In contrast, IL-4 appears to be involved in the differentiation of AChR-specific regulatory CD4(+) T cells, which can prevent the development of EAMG and its progression to a self-maintaining, chronic autoimmune disease. Studies on the AChR-specific CD4(+) cells commonly present in the blood of MG patients support a crucial role of CD4(+) T cells in the development of MG. Circumstantial evidence supports a pathogenic role of IL-10 also in human MG. On the other hand, there is no direct or circumstantial evidence yet indicating a role of IL-4 in the modulatory or immunosuppressive circuits in MG.
Collapse
MESH Headings
- Animals
- Antibodies/metabolism
- CD4-Positive T-Lymphocytes/metabolism
- Cytokines/classification
- Cytokines/immunology
- Cytokines/metabolism
- Disease Models, Animal
- Humans
- Immunization
- Mice
- Mice, SCID
- Mice, Transgenic
- Muscles/metabolism
- Muscles/physiopathology
- Muscles/transplantation
- Myasthenia Gravis/immunology
- Myasthenia Gravis/metabolism
- Myasthenia Gravis/pathology
- Myasthenia Gravis, Autoimmune, Experimental/etiology
- Myasthenia Gravis, Autoimmune, Experimental/genetics
- Myasthenia Gravis, Autoimmune, Experimental/metabolism
- Protein Subunits
- Receptors, Cholinergic/immunology
- T-Lymphocytes/classification
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Time Factors
Collapse
Affiliation(s)
- Monica Milani
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
20
|
Ostlie N, Milani M, Wang W, Okita D, Conti-Fine BM. Absence of IL-4 facilitates the development of chronic autoimmune myasthenia gravis in C57BL/6 mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:604-12. [PMID: 12496449 DOI: 10.4049/jimmunol.170.1.604] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Myasthenia gravis (MG) is a T cell-dependent, Ab-mediated autoimmune disease. Ab against muscle acetylcholine receptor (AChR) cause the muscular weakness that characterizes MG and its animal model, experimental MG (EMG). EMG is induced in C57BL6 (B6) mice by three injections of Torpedo AChR (TAChR) in adjuvant. B6 mice develop anti-TAChR Ab that cross-react with mouse muscle AChR, but their CD4+ T cells do not cross-react with mouse AChR sequences. Moreover, murine EMG is not self-maintaining as is human MG, and it has limited duration. Several studies suggest that IL-4 has a protecting function in EMG. Here we show that B6 mice genetically deficient in IL-4 (IL-4-/-) develop long-lasting muscle weakness after a single immunization with TAChR. They develop chronic self-reactive Ab, and their CD4+ T cells respond not only to the TAChR and TAChR subunit peptides, but also to several mouse AChR subunit peptides. These results suggest that in B6 mice, regulatory mechanisms that involve IL-4 contribute to preventing the development of a chronic Ab-mediated autoimmune response to the AChR.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Autoantibodies/blood
- B7-1 Antigen/biosynthesis
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD40 Antigens/biosynthesis
- Chronic Disease
- Epitopes, T-Lymphocyte/immunology
- Genetic Predisposition to Disease
- Immunization
- Injections, Subcutaneous
- Interferon-gamma/metabolism
- Interleukin-4/deficiency
- Interleukin-4/genetics
- Lymphocyte Activation/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myasthenia Gravis, Autoimmune, Experimental/blood
- Myasthenia Gravis, Autoimmune, Experimental/genetics
- Myasthenia Gravis, Autoimmune, Experimental/immunology
- Peptide Fragments/immunology
- Receptors, Cholinergic/administration & dosage
- Receptors, Cholinergic/immunology
- Severity of Illness Index
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- Torpedo/immunology
Collapse
Affiliation(s)
- Norma Ostlie
- Department of Biochemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
21
|
Lin F, Kaminski HJ, Conti-Fine BM, Wang W, Richmonds C, Medof ME. Markedly enhanced susceptibility to experimental autoimmune myasthenia gravis in the absence of decay-accelerating factor protection. J Clin Invest 2002. [DOI: 10.1172/jci0216086] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
22
|
Lin F, Kaminski HJ, Conti-Fine BM, Wang W, Richmonds C, Medof ME. Markedly enhanced susceptibility to experimental autoimmune myasthenia gravis in the absence of decay-accelerating factor protection. J Clin Invest 2002; 110:1269-74. [PMID: 12417565 PMCID: PMC151616 DOI: 10.1172/jci16086] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune neuromuscular transmission disorder characterized by loss of acetylcholine receptors (AChR's) due primarily to the production of anti-AChR autoantibodies. In this study we investigated whether the presence of decay-accelerating factor (DAF or CD55), an intrinsic complement regulator, protects against the development of disease. Experimental autoimmune MG was induced in Daf1(-/-) mice (devoid of neuromuscular DAF protein) and their Daf1(+/+) littermates by injection of rat anti-AChR mAb McAb-3. After twenty-four hours, grip strength assessment revealed that Daf1(-/-) mice exhibited hold times of less than 30 seconds, compared with more than 8 minutes for the Daf1(+/+) controls. The weakness was reversed by edrophonium, consistent with a myasthenic disorder. Immunohistochemistry revealed greatly augmented C3b deposition localized at postsynaptic junctions, and radioimmunoassays showed more profound reductions in AChR levels. Electron microscopy demonstrated markedly greater junctional damage in the Daf1(-/-) mice compared with the Daf1(+/+) littermates. Control studies showed equivalent levels of other cell surface regulators, i.e., Crry and CD59. The results demonstrate that mice that lack DAF are markedly more susceptible to anti-AChR-induced MG, which simulates the primary mechanism in the human disease, and strongly suggest that in disease flares complement inhibitors might have therapeutic value.
Collapse
Affiliation(s)
- Feng Lin
- Institute of Pathology, Case Western Reserve University, University Hospitals of Cleveland, and Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
23
|
Reding MT, Wu H, Krampf M, Okita DK, Diethelm-Okita BM, Key NS, Conti-Fine BM. CD4+ T cells specific for factor VIII as a target for specific suppression of inhibitor production. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 489:119-34. [PMID: 11554586 DOI: 10.1007/978-1-4615-1277-6_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The studies we reviewed here have begun to clarify the complex cellular mechanisms involved in the immune response to fVIII, and the circumstances under which fVIII inhibitors develop. Further characterization and comparison of the immune response to fVIII in both hemophilia patients and healthy subjects will help to further elucidate these mechanisms. The murine hemophilia model will hopefully provide further insights into the mechanisms of inhibitor formation, and prove to be a suitable tool for the design and testing of therapeutic strategies aimed at preventing the development of fVIII inhibitors.
Collapse
Affiliation(s)
- M T Reding
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis-St. Paul, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Monfardini C, Milani M, Ostlie N, Wang W, Karachunski PI, Okita DK, Lindstrom J, Conti-Fine BM. Adoptive protection from experimental myasthenia gravis with T cells from mice treated nasally with acetylcholine receptor epitopes. J Neuroimmunol 2002; 123:123-34. [PMID: 11880157 DOI: 10.1016/s0165-5728(01)00454-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nasal administration of synthetic CD4(+) epitopes of the acetylcholine receptor (AChR) prevents experimental myasthenia gravis (EMG) in C57Bl/6 mice, but not in IL4-deficient C57Bl/6 (IL4(-/-)) mice. Here we verify that nasal tolerance requires IL4, by showing that CD4(+) cells from C57Bl/6 mice treated nasally with a pool of AChR CD4(+) epitopes protected IL4(-/-) mice from EMG and caused a reduced production of anti-AChR antibody. CD4(+) cells from C57Bl/6 mice treated with unrelated peptides or sham-treated did not induce protection. CD4(+) cells from C57Bl/6 mice treated with just one AChR peptide protected IL4(-/-) mice from EMG without affecting antibody synthesis.
Collapse
Affiliation(s)
- Cristina Monfardini
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Garcia YR, May JJ, Green AM, Krolick KA. Acetylcholine receptor-reactive antibody induces nitric oxide production by a rat skeletal muscle cell line: influence of cytokine environment. J Neuroimmunol 2001; 120:103-11. [PMID: 11694325 DOI: 10.1016/s0165-5728(01)00414-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The monoclonal Lewis rat skeletal muscle cell line, LE1, responded to the acetylcholine receptor (AChR)-reactive antibody mAb35 by up-regulating levels of mRNA for inducible nitric oxide synthase (iNOS/NOS-II), followed by levels of NO. Interferon-gamma (IFN-gamma) and interleukin-1 (IL-1) were also each capable of inducing iNOS message, and synergistically with mAb35. Finally, myocyte-derived NO was implicated as a possible source of immunomodulation in experimental autoimmune myasthenia gravis (EAMG), as shown by the ability of the culture fluids from IFN-gamma-activated LE1 cells to inhibit the proliferation of AChR-reactive T cells.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Animals
- Antibodies, Monoclonal/pharmacology
- Cell Division/drug effects
- Cell Division/immunology
- Cells, Cultured/drug effects
- Cells, Cultured/immunology
- Cells, Cultured/metabolism
- Cytokines/immunology
- Cytokines/metabolism
- Cytokines/pharmacology
- Dose-Response Relationship, Drug
- Drug Synergism
- Enzyme Inhibitors/pharmacology
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interferon-gamma/pharmacology
- Interleukin-1/immunology
- Interleukin-1/metabolism
- Interleukin-1/pharmacology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/immunology
- Muscle, Skeletal/metabolism
- Myasthenia Gravis, Autoimmune, Experimental/immunology
- Myasthenia Gravis, Autoimmune, Experimental/metabolism
- Myasthenia Gravis, Autoimmune, Experimental/physiopathology
- Nitric Oxide/biosynthesis
- Nitric Oxide Donors/pharmacology
- Nitric Oxide Synthase/genetics
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Lew
- Receptors, Cholinergic/drug effects
- Receptors, Cholinergic/immunology
- Receptors, Cholinergic/metabolism
- Stem Cells/drug effects
- Stem Cells/immunology
- Stem Cells/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Up-Regulation/drug effects
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Y R Garcia
- Department of Microbiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, Mail Code 7758, San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
26
|
Ostlie NS, Karachunski PI, Wang W, Monfardini C, Kronenberg M, Conti-Fine BM. Transgenic expression of IL-10 in T cells facilitates development of experimental myasthenia gravis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4853-62. [PMID: 11290761 DOI: 10.4049/jimmunol.166.8.4853] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ab to the acetylcholine receptor (AChR) cause experimental myasthenia gravis (EMG). Th1 cytokines facilitate EMG, whereas Th2 cytokines might be protective. IL-10 inhibits Th1 responses but facilitates B cell proliferation and Ig production. We examined the role of IL-10 in EMG by using wild-type (WT) C57BL/6 mice and transgenic (TG) C57BL/6 mice that express IL-10 under control of the IL-2 promoter. We immunized the mice with doses of AChR that cause EMG in WT mice or with low doses ineffective at causing EMG in WT mice. After low-dose AChR immunization, WT mice did not develop EMG and had very little anti-AChR serum Ab, which were mainly IgG1, whereas TG mice developed EMG and had higher levels of anti-AChR serum Ab, which were mainly IgG2, in addition to IgG1. At the higher doses, TG mice developed EMG earlier and more frequently than WT mice and had more serum anti-AChR Ab. Both strains had similar relative serum concentrations of anti-AChR IgG subclasses and IgG and complement at the muscle synapses. CD8(+)-depleted splenocytes from all AChR-immunized mice proliferated in the presence of AChR and recognized a similar epitope repertoire. CD8(+)-depleted splenocytes from AChR-immunized TG mice stimulated in vitro with AChR secreted significantly more IL-10, but less of the prototypic Th1 cytokine IFN-gamma, than those from WT mice. They secreted comparable amounts of IL-4 and slightly but not significantly reduced amounts of IL-2. This suggests that TG mice had reduced activation of anti-Torpedo AChR Th1 cells, but increased anti-AChR Ab synthesis, that likely resulted from IL-10-mediated stimulation of anti-AChR B cells. Thus, EMG development is not strictly dependent on Th1 cell activity.
Collapse
Affiliation(s)
- N S Ostlie
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
27
|
Poussin MA, Goluszko E, Hughes TK, Duchicella SI, Christadoss P. Suppression of experimental autoimmune myasthenia gravis in IL-10 gene-disrupted mice is associated with reduced B cells and serum cytotoxicity on mouse cell line expressing AChR. J Neuroimmunol 2000; 111:152-60. [PMID: 11063833 DOI: 10.1016/s0165-5728(00)00385-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To analyze the role of interleukin-10 (IL-10) in experimental autoimmune myasthenia gravis (EAMG) pathogenesis, we induced clinical EAMG in C57BL/6 and IL-10 gene-knockout (KO) mice. IL-10 KO mice had a lower incidence and severity of EAMG, with less muscle acetylcholine receptor (AChR) loss. AChR-immunized IL-10 KO mice showed a significantly higher AChR-specific proliferative response, altered cytokine response, lower number of class II-positive cells and B-cells, but a greater CD5(+)CD19(+) population than C57BL/6 mice. The lower clinical incidence in IL-10 KO could be explained not by a reduction of the quantity, but by a possible difference in the pathogenicity of anti-AChR antibodies.
Collapse
MESH Headings
- Adjuvants, Immunologic/genetics
- Animals
- Antigens, CD19/analysis
- Autoantibodies/blood
- B-Lymphocytes/chemistry
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- Blood Proteins/immunology
- CD5 Antigens/analysis
- Cell Division/immunology
- Cell Line
- Cytotoxins/immunology
- Epitopes/immunology
- Histocompatibility Antigens Class II/biosynthesis
- Histocompatibility Antigens Class II/immunology
- Immunization
- Immunodominant Epitopes/immunology
- In Vitro Techniques
- Interferon-gamma/biosynthesis
- Interferon-gamma/immunology
- Interleukin-10/genetics
- Interleukin-10/immunology
- Interleukin-6/biosynthesis
- Interleukin-6/immunology
- Lymphocyte Count
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/immunology
- Myasthenia Gravis, Autoimmune, Experimental/genetics
- Myasthenia Gravis, Autoimmune, Experimental/immunology
- Receptors, Cholinergic/genetics
- Receptors, Cholinergic/immunology
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- M A Poussin
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555-1070, Galveston, TX, USA
| | | | | | | | | |
Collapse
|
28
|
Wang HB, Li H, Shi FD, Chambers BJ, Link H, Ljunggren HG. Tumor necrosis factor receptor-1 is critically involved in the development of experimental autoimmune myasthenia gravis. Int Immunol 2000; 12:1381-8. [PMID: 11007755 DOI: 10.1093/intimm/12.10.1381] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tumor necrosis factor receptor-1 (TNFR1, CD120a) has been implicated in the pathogenesis of several experimental models of T cell-mediated autoimmune disorders, but its role in antibody-mediated autoimmune diseases has not been addressed. Experimental autoimmune myasthenia gravis (EAMG), an autoantibody-mediated T cell-dependent neuromuscular disorder, represents an animal model for myasthenia gravis in human. To investigate the role of TNFR1 in the pathogenesis of EAMG, TNFR1(-/-) and wild-type mice were immunized with TORPEDO: acetylcholine receptor (AChR) in complete Freund's adjuvant. TNFR1(-/-) mice failed to develop EAMG. Lymphoid cells from TNFR1(-/-) mice produced low amounts of T(h)1 (IFN-gamma, IL-2 and IL-12)-type cytokines, but elevated levels of T(h)2 (IL-4 and IL-10)-type cytokines compared with lymphoid cells of wild-type mice. Accordingly, the levels of anti-AChR IgG2 antibodies were severely reduced and the level of anti-AChR IgG1 antibodies were moderately reduced. Co-injection of recombinant mouse IL-12 with AChR in adjuvant restored T cell responses to AChR and promoted development of EAMG in TNFR1(-/-) mice. These results demonstrate that the TNF/TNFR1 system is required for the development of EAMG. The lack of a functional TNF/TNFR1 system can, at least in part, be substituted by IL-12 at the stage of initial priming with AChR and adjuvant.
Collapse
Affiliation(s)
- H B Wang
- Experimental Neurology Unit, Division of Neurology, Karolinska Institutet, Huddinge University Hospital, 14186 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
29
|
Sitaraman S, Metzger DW, Belloto RJ, Infante AJ, Wall KA. Interleukin-12 enhances clinical experimental autoimmune myasthenia gravis in susceptible but not resistant mice. J Neuroimmunol 2000; 107:73-82. [PMID: 10808053 DOI: 10.1016/s0165-5728(00)00259-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Experimental autoimmune myasthenia gravis (EAMG) is induced by antibodies against the nicotinic acetylcholine receptor (AChR). Studies indicate a role for interferon-gamma (IFN-gamma) in EAMG. We examined the effect of IL-12, a major inducer of IFN-gamma production, on EAMG in C57BL/6 mice. Five doses of IL-12 accelerated and enhanced clinical disease in AChR-immunized mice. Control B6 mice, IFN-gamma gene-knockout mice, and EAMG-resistant bm12 mice showed no enhancement of disease. Shifting to a Th1-type antibody isotype distribution was insufficient to cause disease. Other factors, such as direct effects of Th1 cytokines on muscle tissue, may be involved in EAMG susceptibility.
Collapse
Affiliation(s)
- S Sitaraman
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78284, USA
| | | | | | | | | |
Collapse
|
30
|
Karachunski PI, Ostlie NS, Monfardini C, Conti-Fine BM. Absence of IFN-gamma or IL-12 has different effects on experimental myasthenia gravis in C57BL/6 mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:5236-44. [PMID: 10799884 DOI: 10.4049/jimmunol.164.10.5236] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunization with acetylcholine receptor (AChR) causes experimental myasthenia gravis (EMG). Th1 cells facilitate EMG development. IFN-gamma and IL-12 induce Th1 responses: we investigated whether these cytokines are necessary for EMG development. We immunized wild-type (WT) C57BL/6 mice and IFN-gamma and IL-12 knockout mutants (IFN-gamma-/-, IL-12-/-) with Torpedo AChR (TAChR). WT and IFN-gamma-/- mice developed EMG with similar frequency, IL-12-/-mice were resistant to EMG. All strains synthesized anti-AChR Ab that were not IgM or IgE. WT mice had anti-AChR IgG1, IgG2b, and IgG2c, IFN-gamma-/- mice had significantly less IgG2c, and IL-12-/- mice less IgG2b and IgG2c. All mice had IgG bound to muscle synapses, but only WT and IFN-gamma-/- mice had complement; WT mice had both IgG2b and IgG2c, IFN-gamma-/- only IgG2b, and IL-12-/- neither IgG2b nor IgG2c. CD4+ cells from all AChR-immunized mice proliferated in response to AChR and recognized similar epitopes. After stimulation with TAChR, CD4+ cells from IFN-gamma-/- mice secreted less IL-2 and similar amounts of IL-4 and IL-10 as WT mice. CD4+ cells from IL-12-/- mice secreted less IFN-gamma, but more IL-4 and IL-10 than WT mice, suggesting that they developed a stronger Th2 response to TAChR. The EMG resistance of IL-12-/- mice is likely due to both reduction of anti-TAChR Ab that bind complement and sensitization of modulatory Th2 cells. The reduced Th1 function of IFN-gamma-/- mice does not suffice to reduce all complement-fixing IgG subclasses, perhaps because as in WT mice a protective Th2 response is missing.
Collapse
Affiliation(s)
- P I Karachunski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Myasthenia gravis (MG) is an antibody-mediated, autoimmune neuromuscular disease. Animal models of experimental autoimmune myasthenia gravis (EAMG) can be induced in vertebrates by immunization with Torpedo californica acetylcholine receptors (AChR) in complete Freund's adjuvant. The MHC class II genes influence the cellular and humoral immune response to AChR and are involved in the development of clinical EAMG in mice. A dominant epitope within the AChR alpha146-162 region activates MHC class II-restricted CD4 cells and is involved in the production of pathogenic anti-AChR antibodies by B cells. Neonatal or adult tolerance to this T-cell epitope could prevent EAMG. During an immune response to AChR in vivo, multiple TCR genes are used. The CD28-B7 and CD40L-CD40 interaction is required during the primary immune response to AChR. However, CTLA-4 blockade augmented T- and B-cell immune response to AChR and disease. Cytokines IFN-gamma and IL-12 upregulate, while IFN-alpha downregulates, EAMG pathogenesis. However, the Th2 cytokine IL-4 fails to play a significant role in the development of antibody-mediated EAMG. Systemic or mucosal tolerance to AChR or its dominant peptide(s) has prevented EAMG in an antigen-specific manner. Antigen-specific tolerance and downregulation of pathogenic cytokines could achieve effective therapy of EAMG and probably MG.
Collapse
Affiliation(s)
- P Christadoss
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
| | | | | |
Collapse
|
32
|
Kono DH, Balomenos D, Park MS, Theofilopoulos AN. Development of lupus in BXSB mice is independent of IL-4. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:38-42. [PMID: 10604990 DOI: 10.4049/jimmunol.164.1.38] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although systemic lupus erythematosus appears to be a humorally mediated disease, both Th1 and Th2 type responses have been implicated in its pathogenesis. The Th1 response, as exemplified by IFN-gamma production, has been uniformly shown in mouse lupus models to be critical for disease induction. The role of Th2 type responses, however, is more complicated, with some studies showing detrimental and others beneficial effects of IL-4 in these models. To further address this issue, we generated and analyzed IL-4 gene-deficient BXSB mice. Mice homozygous for this deletion had significantly lower serum levels of total IgG1 compared with wild-type BXSB, consistent with the lack of IL-4. However, no significant differences were observed in mortality, spleen weight, severity of glomerulonephritis, levels of anti-chromatin and anti-ssDNA Abs, or frequency of activated (CD44high) CD4+ T cells. The anti-chromatin Ab isotype response was virtually all Th1 type in both the knockout and wild-type BXSB. These findings directly demonstrate that IL-4 and, by inference, Th2 cells are not obligatory participants in the induction and maintenance of lupus in this strain.
Collapse
Affiliation(s)
- D H Kono
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|