1
|
Libbey JE, Fujinami RS. Experimental autoimmune encephalomyelitis as a testing paradigm for adjuvants and vaccines. Vaccine 2010; 29:3356-62. [PMID: 20850537 DOI: 10.1016/j.vaccine.2010.08.103] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/13/2010] [Accepted: 08/31/2010] [Indexed: 11/27/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an experimental model for multiple sclerosis. EAE can be induced by inoculation with central nervous system (CNS) proteins or peptides emulsified in complete Freund's adjuvant. Protection from EAE, enhancement of EAE or subclinical priming for EAE can occur as a result of either live viral infection or DNA immunization with molecular mimics of CNS proteins or peptides. Here we review the published data describing modulation of EAE through administration of various CNS proteins/peptides introduced via live virus or plasmid DNA and modulation of EAE through choice of adjuvant (immunostimulating agents).
Collapse
Affiliation(s)
- Jane E Libbey
- Department of Pathology, University of Utah School of Medicine, 30 North 1900 East, 3R330 SOM, Salt Lake City, UT 84132, United States
| | | |
Collapse
|
2
|
Libbey JE, Tsunoda I, Fujinami RS. Studies in the modulation of experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol 2010; 5:168-75. [PMID: 20401539 DOI: 10.1007/s11481-010-9215-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 03/22/2010] [Indexed: 02/05/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE), an experimental model for multiple sclerosis, can be induced through inoculation with several different central nervous system (CNS) proteins or peptides. Modulation of EAE, resulting in either protection from EAE or enhancement of EAE, can also be accomplished through either vaccination or DNA immunization with molecular mimics of self-CNS proteins. Previously published data on this method of EAE modulation will be reviewed. New data is presented, which demonstrates that EAE can also be modulated through the administration of the beta-(1,3)-D-glucan, curdlan. Dendritic cells stimulated by curdlan are involved in the differentiation of the interleukin-17 producing subset of CD4(+) T cells that are recognized effector cells in EAE. Using two different systems to study the effects of curdlan on EAE, it was found that curdlan increased the incidence of EAE and/or the severity of the disease course.
Collapse
Affiliation(s)
- Jane E Libbey
- Department of Pathology, University of Utah School of Medicine, 30 North 1900 East, 3R330 SOM, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
3
|
Abstract
MS is an immune mediated disease of the central nervous system (CNS) characterized by demyelination, axonal damage and neurologic disability. The primary cause of this CNS disease remains elusive. Here we will address our current understanding of the role of viruses as potential environmental triggers for MS. Virus infections can act peripherally (outside the CNS) or within the CNS. The association of viral infections with demyelinating disease, in both animals and humans, will be discussed, as will the potential contributions of peripheral infection with Torque Teno virus, infection outside of and/or within the CNS with Epstein-Barr virus and infection within the CNS with Human Herpesvirus 6 to MS. An experimental animal model, Theiler's murine encephalomyelitis virus infection of susceptible strains of mice is an example of viral infections of the CNS as a prerequisite for demyelination. Finally, the proposition that multiple virus infections are required, which first prime the immune system and then trigger the disease, as a model where infections outside of the CNS lead to inflammatory changes within the CNS, for the development of a MS-like disease is explored.
Collapse
Affiliation(s)
- Jane E Libbey
- Department of Pathology, University of Utah School of Medicine, 30 North 1900 East, RM 3R330, Salt Lake City, Utah 84132, USA.
| | | |
Collapse
|
4
|
Theil DJ, Libbey JE, Rodriguez F, Whitton JL, Tsunoda I, Derfuss TJ, Fujinami RS. Targeting myelin proteolipid protein to the MHC class I pathway by ubiquitination modulates the course of experimental autoimmune encephalomyelitis. J Neuroimmunol 2008; 204:92-100. [PMID: 18706703 PMCID: PMC2646907 DOI: 10.1016/j.jneuroim.2008.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 07/07/2008] [Accepted: 07/09/2008] [Indexed: 02/08/2023]
Abstract
Relapsing-remitting experimental autoimmune encephalomyelitis (EAE), a multiple sclerosis model, is induced in mice by injection of myelin proteolipid protein (PLP) encephalitogenic peptide, PLP139-151, in adjuvant. In this study, prior to EAE induction, mice were vaccinated with a bacterial plasmid encoding a PLP-ubiquitin fusion (pCMVUPLP). During the relapse phase of EAE, clinical signs, histopathologic changes, in vitro lymphoproliferation to PLP139-151 and interferon-gamma levels were reduced in pCMVUPLP-vaccinated mice, compared to mock-vaccinated mice (controls). Lymphocytes from pCMVUPLP-vaccinated mice produced interleukin-4, a cytokine lacking in controls. Thus, pCMVUPLP vaccination can modulate the relapse after EAE induction.
Collapse
Affiliation(s)
- Diethilde J. Theil
- Department of Pathology, University of Utah School of Medicine, 30 North 1900 East, RM 3R330, Salt Lake City, Utah 84132
| | - Jane E. Libbey
- Department of Pathology, University of Utah School of Medicine, 30 North 1900 East, RM 3R330, Salt Lake City, Utah 84132
| | - Fernando Rodriguez
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - J. Lindsay Whitton
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Ikuo Tsunoda
- Department of Pathology, University of Utah School of Medicine, 30 North 1900 East, RM 3R330, Salt Lake City, Utah 84132
| | - Tobias J. Derfuss
- Department of Pathology, University of Utah School of Medicine, 30 North 1900 East, RM 3R330, Salt Lake City, Utah 84132
| | - Robert S. Fujinami
- Department of Pathology, University of Utah School of Medicine, 30 North 1900 East, RM 3R330, Salt Lake City, Utah 84132
| |
Collapse
|
5
|
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS, characterized pathologically by a perivascular infiltrate consisting predominantly of T cells and macrophages. Although its aetiology remains unknown, several lines of evidence support the hypothesis that autoimmune mechanisms play a major role in the development of the disease. Several widely used disease-modifying agents are approved for the treatment of MS. However, these agents are only partially effective and their ability to attenuate the more progressive phases of the disease is not clear at this time. Therefore, there is a need to develop improved treatment options for MS. This article reviews the role of several novel, selective vaccine strategies that are currently under investigation, including: (i) T-cell vaccination (TCV); (ii) T-cell receptor (TCR) peptide vaccination; (iii) DNA vaccination; and (iv) altered peptide ligand (APL) vaccination. The administration of attenuated autoreactive T cells induces regulatory networks to specifically suppress pathogenic T cells in MS, a strategy named TCV. The concept of TCV was based on the experience of vaccination against aetiological agents of infectious diseases in which individuals are purposely exposed to an attenuated microbial pathogen, which then instructs the immune system to recognize and neutralize it in its virulent form. In regard to TCV, attenuated, pathogenic T cells are similarly used to instruct the immune system to recognize and neutralize disease-inducing T cells. In experimental allergic encephalomyelitis (EAE), an animal model for MS, pathogenic T cells use a strikingly limited number of variable-region elements (V region) to form TCR specific for defined autoantigens. Thus, vaccination with peptides directed against these TCR structures may induce immunoregulatory mechanisms, thereby preventing EAE. However, unlike EAE, myelin-reactive T cells derived from MS patients utilize a broad range of different V regions, challenging the clinical utility of this approach. Subsequently, the demonstration that injection of plasmid DNA encoding a reporter gene into skeletal muscle results in expression of the encoded proteins, as well as in the induction of immune responses in animal models of autoimmunity, was explored as another strategy to re-establish self-tolerance. This approach has promise for the treatment of MS and, therefore, warrants further investigation. APLs are molecules in which the native encephalitogenic peptides are modified by substitution(s) of one or a few amino acids critical for contact with the TCR. Depending on the substitution(s) at the TCR contact residues of the cognate peptide, an APL can induce immune responses that can protect against or reverse EAE. However, the heterogeneity of the immune response in MS patients requires further study to determine which patients are most likely to benefit from APL therapy. Other potential approaches for vaccines in MS include vaccination against axonal growth inhibitors associated with myelin, use of dendritic cells pulsed with specific antigens, and active vaccination against proinflammatory cytokines. Overall, vaccines for MS represent promising approaches for the treatment of this devastating disease, as well as other autoimmune diseases.
Collapse
Affiliation(s)
- Jorge Correale
- Department of Neurology, Raúl Carrea Institute for Neurological Research, Buenos Aires, Argentina.
| | | | | |
Collapse
|
6
|
McCoy L, Tsunoda I, Fujinami RS. Multiple sclerosis and virus induced immune responses: autoimmunity can be primed by molecular mimicry and augmented by bystander activation. Autoimmunity 2008; 39:9-19. [PMID: 16455578 DOI: 10.1080/08916930500484799] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polymicrobial infections have been associated with plausible immune mediated diseases, including multiple sclerosis (MS). Virus infection can prime autoimmune T cells specific for central nervous system (CNS) antigens, if virus has molecular mimicry with CNS proteins. On the other hand, infection of irrelevant viruses will induce two types of cytokine responses. Infection with a virus such as lymphocytic choriomeningitis virus (LCMV), can induce interferon (IFN)-alpha/beta production and suppress autoimmunity, while infection with a virus, such as murine cytomegalovirus (MCMV), can activate natural killer (NK), NKT and dendritic cells, resulting in interleukin (IL)-12 and IFN-gamma production. These cytokines can cause bystander activation of autoreactive T cells. We established an animal model, where mice infected with vaccinia virus encoding myelin protein can mount autoimmune responses. However, the mice develop clinical disease only after irrelevant immune activation either with complete Freund's adjuvant or MCMV infection. In this review, we propose that a combination of two mechanisms, molecular mimicry and bystander activation, induced by virus infection, can lead to CNS demyelinating diseases, including MS. Viral proteins having molecular mimicry with self-proteins in the CNS can prime genetically susceptible individuals. Once this priming has occurred, an immunologic challenge could result in disease through bystander activation by cytokines.
Collapse
Affiliation(s)
- Lori McCoy
- University of Utah School of Medicine, Department of Neurology, 30 North 1900 East, Room 3R330, Salt Lake City, UT 84132-2305, USA
| | | | | |
Collapse
|
7
|
Frausto RF, Crocker SJ, Eam B, Whitmire JK, Whitton JL. Myelin oligodendrocyte glycoprotein peptide-induced experimental allergic encephalomyelitis and T cell responses are unaffected by immunoproteasome deficiency. J Neuroimmunol 2007; 192:124-33. [PMID: 17964666 PMCID: PMC2175388 DOI: 10.1016/j.jneuroim.2007.09.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 09/21/2007] [Accepted: 09/21/2007] [Indexed: 01/19/2023]
Abstract
The inoculation of MOG peptides into C57BL/6 mice induces CD4(+) and CD8(+) T cells, and recent work has shown that adoptive transfer of the latter population, after extensive in vitro stimulation, can cause EAE in naïve recipient mice. Herein, we have evaluated the incidence and severity of EAE, and the induction of CD4(+) and CD8(+) T cells, following MOG peptide inoculation of wt mice and of LMP-2KO mice that lack an intact immunoproteasome, a cytoplasmic organelle that is induced by chronic inflammation and that may be important for the presentation of MHC class I epitopes to CD8(+) T cells. We report that EAE, evaluated by both clinical and histological criteria, is similar in LMP-2KO mice and wildtype C57B/6 mice (wt) in response to immunization with MOG peptides MOG(35-55) and MOG(40-54), suggesting that the immunoproteasome does not play a key role in the development of demyelinating disease. Furthermore, and consistent with previous reports, peptide-specific CD8(+) T cells were barely detectable in the CNS of peptide-immunized mice, although peptide-specific CD4(+) T cells were abundant. Therefore, we used a new technique to look for autoreactive CD8(+) T cells in MOG peptide-immunized mice, and we report the identification of CD4(+) and CD8(+) T cells that, as late as 19 days after peptide injection, are actively producing IFNgamma in vivo, in response to in vivo antigen contact.
Collapse
Affiliation(s)
| | | | | | | | - J L. Whitton
- *Corresponding author Molecular and Integrative Neurosciences Dept., SP30-2110, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA, Tel: 858-784-7090, FAX: 858-784-7380,
| |
Collapse
|
8
|
Fukumitsu H, Takase-Yoden S, Watanabe R. Neuropathology of experimental autoimmune encephalomyelitis modified by retroviral infection. Neuropathology 2002; 22:280-9. [PMID: 12564768 DOI: 10.1046/j.1440-1789.2002.00453.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The A8 virus is a molecular clone of the neuropathogenic FrC6 virus derived from the Friend murine leukemia virus (F-MuLV). To elucidate the effects of A8 virus-infection on immune-mediated diseases in the central nervous system, we investigated the development of acute and monophasic experimental autoimmune encephalomyelitis (EAE) in A8 virus-infected Lewis rats. In EAE rats after A8 virus infection (A8-EAE), many inflammatory cells were found in the gray matter including the frontal lobe, where almost no inflammatory cells were found in rats with EAE alone. The modified distribution of inflammatory cells was not dependent on the ages of A8 virus-infected rats, although the frequency of the modified distribution was reduced in older rats. The chimeric virus Rec2, which contains the pol and env genes of 57 virus on the background of A8 and does not induce spongiform degeneration in the CNS, caused the same distributional modification of inflammatory cells in the rats with EAE as in A8-EAE rats. Furthermore, the incidence and intensity of spongiform degeneration, thymoma and splenomegaly caused by A8 virus were reduced by the induction of EAE.
Collapse
|
9
|
Affiliation(s)
- R S Fujinami
- Department of Neurology, University of Utah School of Medicine, 30 N 1900 East, RM 3R330, Salt Lake City, Utah 84132, USA.
| |
Collapse
|
10
|
Abstract
This chapter discusses the virus infections of the central nervous system (CNS) and DNA vaccines. Mild central nervous system (CNS) symptoms, such as headache and drowsiness, can result from systemically elevated cytokine levels and therefore are common in many virus infections, even in the absence of the infection of the CNS. CNS infection is quite unusual and is initiated either as a result of the viremia or, more rarely, as a result of neural spread. The poliovirus infects the anterior horn motor neurons of the spinal cord, causing poliomyelitis, the disease for which the virus is named. DNA vaccination is a relatively new entrant in the vaccine sweepstakes, but is viewed with optimism, for a number of reasons. DNA vaccines encoding the nucleoprotein from lymphocytic choriomeningitis virus can confer protection against the normally lethal intracranial challenge. In rabies, in a mouse model, immunization with plasmids encoding the rabies glycoprotein conferred complete protection against subsequent viral challenge. Several virus-induced CNS diseases may be explained by their triggering of autoimmunity. Experimental autoimmune encephalomyelitis is a well-characterized CNS disease induced by the administration of certain CNS proteins.
Collapse
Affiliation(s)
- J L Whitton
- Department of Neuropharmacology, CVN-9, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|