1
|
Pakozdy A, Patzl M, Zimmermann L, Jokinen TS, Glantschnigg U, Kelemen A, Hasegawa D. LGI Proteins and Epilepsy in Human and Animals. J Vet Intern Med 2015; 29:997-1005. [PMID: 26032921 PMCID: PMC4895363 DOI: 10.1111/jvim.12610] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/23/2015] [Accepted: 04/11/2015] [Indexed: 12/16/2022] Open
Abstract
Leucine‐rich glioma‐inactivated (LGI) protein was first thought to have a suppressor effect in the formation of some cancers. Developments in physiology and medicine made it possible to characterize the function of the LGI protein family and its crucial role in different conditions more precisely. These proteins play an important role in synaptic transmission, and dysfunction may cause hyperexcitability. Genetic mutation of LGI1was confirmed to be the cause of autosomal dominant lateral temporal lobe epilepsy in humans. The LGI2 mutation was identified in benign familial juvenile epilepsy in Lagotto Romagnolo (LR) dogs. Cats with familial spontaneous temporal lobe epilepsy have been reported, and the etiology might be associated with LGI protein family dysfunction. In addition, an autoimmune reaction against LGI1 was detected in humans and cats with limbic encephalitis. These advances prompted a review of LGI protein function and its role in different seizure disorders.
Collapse
Affiliation(s)
- A Pakozdy
- University Clinic of Small Animals, University of Veterinary Medicine, Vienna, Austria
| | - M Patzl
- Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| | - L Zimmermann
- Unit of Physiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - T S Jokinen
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - U Glantschnigg
- University Clinic of Small Animals, University of Veterinary Medicine, Vienna, Austria
| | - A Kelemen
- Epilepsy Center, National Institute of Clinical Neurosciences, Budapest, Hungary
| | - D Hasegawa
- Department of Clinical Veterinary Medicine, Nippon Veterinary and Life Science University, Musashinoshi, Tokyo, Japan
| |
Collapse
|
2
|
Detection of auto-antibodies to DAT in the serum: interactions with DAT genotype and psycho-stimulant therapy for ADHD. J Neuroimmunol 2014; 278:212-22. [PMID: 25468771 DOI: 10.1016/j.jneuroim.2014.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 10/08/2014] [Accepted: 11/09/2014] [Indexed: 01/12/2023]
Abstract
UNLABELLED Interest is rising for auto-immune contribution in neuro-psychiatry. We evaluated the auto-antibodies against dopamine transporter (DAT aAbs) in 61 children (46 ADHD who met DSM-IV-TR criteria, 15 healthy controls). METHODS ADHD patients were assigned, according to severity, either to a non-pharmacological therapy (NPT, N=32) or to a pharmacological treatment (PT, N=14) with methylphenidate (MPH). In ADHD children, blood samples were withdrawn twice, at recruitment (T0 basal) and after 6 weeks (T1); following 16 excluded subjects, DAT genotype was characterized (9-repeat or 10-repeat alleles; N=15 each). After 18 months of NPT or PT, some patients (carrying at least one 9-repeat allele) were blood sampled again (T2), for comparison with healthy controls (final n=8) RESULTS: Compared to NPT, basal DAT aAbs titers were higher within most severe patients (then assigned to PT), specifically if carrying a DAT 10/10 genotype. DAT aAbs levels of NPT group resulted highly correlated with distinct subscales of Conners' Parent/Teacher Scales (Rs>0.34), especially within DAT 10/10 genotype (Rs>0.53). While T1 titers were elevated over T0 baseline for NPT children, such an increase was not observed in PT patients carrying at least one 9-repeat allele, who also showed behavioral response to subchronic MPH. After 12-24 months of MPH exposure, DAT aAbs titers in PT subjects were comparable to those of healthy controls, while titers remained significantly elevated in NPT patients. Data warrant further research on serum DAT aAbs, which could be used to confirm ADHD diagnosis and/or to monitor therapeutic efficacy of MPH.
Collapse
|
3
|
Irani SR, Gelfand JM, Al-Diwani A, Vincent A. Cell-surface central nervous system autoantibodies: clinical relevance and emerging paradigms. Ann Neurol 2014; 76:168-84. [PMID: 24930434 PMCID: PMC4141019 DOI: 10.1002/ana.24200] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 06/13/2014] [Accepted: 06/13/2014] [Indexed: 01/17/2023]
Abstract
The recent discovery of several potentially pathogenic autoantibodies has helped identify patients with clinically distinctive central nervous system diseases that appear to benefit from immunotherapy. The associated autoantibodies are directed against the extracellular domains of cell-surface-expressed neuronal or glial proteins such as LGI1, N-methyl-D-aspartate receptor, and aquaporin-4. The original descriptions of the associated clinical syndromes were phenotypically well circumscribed. However, as availability of antibody testing has increased, the range of associated patient phenotypes and demographics has expanded. This in turn has led to the recognition of more immunotherapy-responsive syndromes in patients presenting with cognitive and behavioral problems, seizures, movement disorders, psychiatric features, and demyelinating disease. Although antibody detection remains diagnostically important, clinical recognition of these distinctive syndromes should ensure early and appropriate immunotherapy administration. We review the emerging paradigm of cell-surface-directed antibody-mediated neurological diseases, describe how the associated disease spectrums have broadened since the original descriptions, discuss some of the methodological issues regarding techniques for antibody detection and emphasize considerations surrounding immunotherapy administration. As these disorders continue to reach mainstream neurology and even psychiatry, more cell-surface-directed antibodies will be discovered, and their possible relevance to other more common disease presentations should become more clearly defined.
Collapse
Affiliation(s)
- Sarosh R Irani
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom; Multiple Sclerosis and Neuroinflammation Center, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | | | | | | |
Collapse
|
4
|
Lack of antibodies to NMDAR or VGKC-complex in GAD and cardiolipin antibody-positive refractory epilepsy. Epilepsy Res 2014; 108:592-6. [PMID: 24447612 DOI: 10.1016/j.eplepsyres.2013.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/29/2013] [Accepted: 12/05/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND Over the last few years autoantibodies against neuronal proteins have been identified in several forms of autoimmune encephalitis and epilepsy. NMDA receptor (NMDAR) and voltage gated potassium channel (VGKC) complex antibodies are mainly associated with limbic encephalitis (LE) whereas glutamic acid decarboxylase antibodies (GADA) and anticardiolipin (ACL) antibodies are more commonly detected in patients with chronic epilepsy. Clinical features vary between these antibodies suggesting the specificity of different neuronal antibodies in seizures. METHODS Serum samples of 14 GADA positive and 24 ACL positive patients with refractory epilepsy were analyzed for the presence of VGKC or NMDAR antibodies. RESULTS No positive VGKC or NMDAR antibodies were found in these patients. CONCLUSIONS The results confirm the different significance of these neuronal antibodies in seizure disorders. Different autoantibodies have different significance in seizures and probably have different pathophysiological mechanisms of actions.
Collapse
|
5
|
Irani SR, Vincent A. The expanding spectrum of clinically-distinctive, immunotherapy-responsive autoimmune encephalopathies. ARQUIVOS DE NEURO-PSIQUIATRIA 2012; 70:300-4. [PMID: 22510741 DOI: 10.1590/s0004-282x2012000400015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/18/2012] [Indexed: 12/30/2022]
Abstract
The autoimmune encephalopathies are a group of conditions that are associated with autoantibodies against surface neuronal proteins, which are likely to mediate the disease. They are established as a frequent cause of encephalitis. Characteristic clinical features in individual patients often allow the specificity of the underlying antibody to be confidently predicted. Antibodies against the VGKC-complex, mainly LGI1(leucine-rich glioma-inactivated 1), CASPR2 (contactin-associated protein 2), and contactin-2, and NMDA (N-methyl, D-aspartate) -receptor are the most frequently established serological associations. In the minority of cases, an underlying tumour can be responsible. Early administration of immunotherapies, and tumour removal, where it is relevant, offer the greatest chance of improvement. Prolonged courses of immunotherapies may be required, and clinical improvements often correlate well with the antibody levels. In the present article, we have summarised recent developments in the clinical and laboratory findings within this rapidly expanding field.
Collapse
Affiliation(s)
- Sarosh R Irani
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK.
| | | |
Collapse
|
6
|
Serrano-Castro PJ, Quiroga-Subirana P, Payán-Ortiz M, Fernandez-Perez J. The expanding spectrum of febrile infection-related epilepsy syndrome (FIRES). Seizure 2012; 22:153-5. [PMID: 23237766 DOI: 10.1016/j.seizure.2012.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 11/15/2012] [Accepted: 11/16/2012] [Indexed: 02/08/2023] Open
Affiliation(s)
- Pedro J Serrano-Castro
- Neurology and Neurophysiology Unit, Complejo Hospitalario Torrecárdenas, Almeria, Spain.
| | | | | | | |
Collapse
|
7
|
Adriani W, Koot S, Columba-Cabezas S, Romano E, Travaglini D, van den Bos R, Granstrem O, Ali SF, Laviola G. Immunization with DAT fragments is associated with long-term striatal impairment, hyperactivity and reduced cognitive flexibility in mice. Behav Brain Funct 2012. [PMID: 23192105 PMCID: PMC3537576 DOI: 10.1186/1744-9081-8-54] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Possible interactions between nervous and immune systems in neuro-psychiatric disorders remain elusive. Levels of brain dopamine transporter (DAT) have been implicated in several impulse-control disorders, like attention deficit / hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD). Here, we assessed the interplay between DAT auto-immunity and behavioural / neurochemical phenotype. Methods Male CD-1 mice were immunized with DAT peptide fragments (DAT-i), or vehicle alone (VEH), to generate elevated circulating levels of DAT auto-antibodies (aAbs). Using an operant delay-of-reward task (20 min daily sessions; timeout 25 sec), mice had a choice between either an immediate small amount of food (SS), or a larger amount of food after a delay (LL), which increased progressively across sessions (from 0 to 150 sec). Results DAT-i mice exhibited spontaneous hyperactivity (2 h-longer wake-up peak; a wake-up attempt during rest). Two sub-populations differing in behavioural flexibility were identified in the VEH control group: they showed either a clear-cut decision to select LL or clear-cut shifting towards SS, as expected. Compared to VEH controls, choice-behaviour profile of DAT-i mice was markedly disturbed, together with long-lasting alterations of the striatal monoamines. Enhanced levels of DA metabolite HVA in DAT-i mice came along with slower acquisition of basal preferences and with impaired shifting; elevation also in DOPAC levels was associated with incapacity to change a rigid selection strategy. This scarce flexibility of performance is indicative of a poor adaptation to task contingencies. Conclusions Hyperactivity and reduced cognitive flexibility are patterns of behaviour consistent with enduring functional impairment of striatal regions. It is yet unclear how anti-DAT antibodies could enter or otherwise affect these brain areas, and which alterations in DAT activity exactly occurred after immunization. Present neuro-behavioural alterations, coming along with an experimentally-induced rise of circulating DAT-directed aAbs, open the issue of a potential role for auto-immunity in vulnerability to impulse-control disorders.
Collapse
Affiliation(s)
- Walter Adriani
- Dept. Cell Biology & Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bien CG, Vincent A, Barnett MH, Becker AJ, Blümcke I, Graus F, Jellinger KA, Reuss DE, Ribalta T, Schlegel J, Sutton I, Lassmann H, Bauer J. Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis. Brain 2012; 135:1622-38. [PMID: 22539258 DOI: 10.1093/brain/aws082] [Citation(s) in RCA: 442] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Classical paraneoplastic encephalitis syndromes with 'onconeural' antibodies directed to intracellular antigens, and the recently described paraneoplastic or non-paraneoplastic encephalitides and antibodies against both neural surface antigens (voltage-gated potassium channel-complexes, N-methyl-d-aspartate receptors) and intracellular antigens (glutamic acid decarboxylase-65), constitute an increasingly recognized group of immune-mediated brain diseases. Evidence for specific immune mechanisms, however, is scarce. Here, we report qualitative and quantitative immunopathology in brain tissue (biopsy or autopsy material) of 17 cases with encephalitis and antibodies to either intracellular (Hu, Ma2, glutamic acid decarboxylase) or surface antigenic targets (voltage-gated potassium channel-complex or N-methyl-d-aspartate receptors). We hypothesized that the encephalitides with antibodies against intracellular antigens (intracellular antigen-onconeural and intracellular antigen-glutamic acid decarboxylase groups) would show neurodegeneration mediated by T cell cytotoxicity and the encephalitides with antibodies against surface antigens would be antibody-mediated and would show less T cell involvement. We found a higher CD8/CD3 ratio and more frequent appositions of granzyme-B(+) cytotoxic T cells to neurons, with associated neuronal loss, in the intracellular antigen-onconeural group (anti-Hu and anti-Ma2 cases) compared to the patients with surface antigens (anti-N-methyl-d-aspartate receptors and anti-voltage-gated potassium channel complex cases). One of the glutamic acid decarboxylase antibody encephalitis cases (intracellular antigen-glutamic acid decarboxylase group) showed multiple appositions of GrB-positive T cells to neurons. Generally, however, the glutamic acid decarboxylase antibody cases showed less intense inflammation and also had relatively low CD8/CD3 ratios compared with the intracellular antigen-onconeural cases. Conversely, we found complement C9neo deposition on neurons associated with acute neuronal cell death in the surface antigen group only, specifically in the voltage-gated potassium channel-complex antibody patients. N-methyl-d-aspartate receptors-antibody cases showed no evidence of antibody and complement-mediated tissue injury and were distinguished from all other encephalitides by the absence of clear neuronal pathology and a low density of inflammatory cells. Although tissue samples varied in location and in the stage of disease, our findings strongly support a central role for T cell-mediated neuronal cytotoxicity in encephalitides with antibodies against intracellular antigens. In voltage-gated potassium channel-complex encephalitis, a subset of the surface antigen antibody encephalitides, an antibody- and complement-mediated immune response appears to be responsible for neuronal loss and cerebral atrophy; the apparent absence of these mechanisms in N-methyl-d-aspartate receptors antibody encephalitis is intriguing and requires further study.
Collapse
Affiliation(s)
- Christian G Bien
- Centre for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Striatal hypermetabolism in limbic encephalitis. J Neurol 2011; 259:1106-10. [DOI: 10.1007/s00415-011-6308-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/28/2011] [Accepted: 10/30/2011] [Indexed: 01/09/2023]
|
10
|
Macrì S, Granstrem O, Shumilina M, Antunes Gomes dos Santos FJ, Berry A, Saso L, Laviola G. Resilience and vulnerability are dose-dependently related to neonatal stressors in mice. Horm Behav 2009; 56:391-8. [PMID: 19632235 DOI: 10.1016/j.yhbeh.2009.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/14/2009] [Accepted: 07/15/2009] [Indexed: 01/13/2023]
Abstract
Early life experiences have been shown to adjust cognitive abilities, stress reactivity, fear responses and immune activity in adult mammals of many species. However, whereas severe stressors have been generally associated with the emergence of hypothalamic pituitary adreno-cortical (HPA)-mediated pathology, mild neonatal stressful experiences have been traditionally associated with 'positive' effects or resilience. External stressors stimulate the HPA axis to induce a corticosterone secretion in mouse dams, which, in turn is directly transmitted to the progeny through lactation. Such corticosteroid transfer may offer a unitary mechanism whereby early low corticosterone exposure may favor resilience in the offspring and high corticosterone increase vulnerability to pathology. In this study we further investigated this hypothesis by evaluating the long-term effects of a neonatal exposure to low (33 mg/l) and high (100 mg/l) doses of corticosterone during the first 10 days of life in outbred CD-1 mice through supplementation in the maternal drinking water. Offspring attentional set-shifting abilities, central neurotrophic regulation and levels of natural auto-antibodies (na-Abs) directed to serotonin (SERT) and dopamine (DAT) transporters were assessed in adulthood. While low levels of neonatal corticosterone improved adult cognitive abilities and increased na-Abs levels directed to SERT, high doses of neonatal corticosterone reduced hippocampal BDNF levels and na-Abs directed to DAT. These findings confirm and extend our previous findings, supporting the view that both adaptive plasticity and pathological outcomes in adulthood may depend on circulating neonatal corticosterone levels and that these effects follow a U-shaped profile.
Collapse
Affiliation(s)
- Simone Macrì
- Section of Behavioural Neuroscience, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Huizinga R, Gerritsen W, Heijmans N, Amor S. Axonal loss and gray matter pathology as a direct result of autoimmunity to neurofilaments. Neurobiol Dis 2008; 32:461-70. [DOI: 10.1016/j.nbd.2008.08.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/08/2008] [Accepted: 08/13/2008] [Indexed: 11/28/2022] Open
|
12
|
Autoantibodies against opioid or glutamate receptors are associated with changes in morphine reward and physical dependence in mice. Psychopharmacology (Berl) 2008; 197:535-48. [PMID: 18265961 DOI: 10.1007/s00213-007-1062-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 12/21/2007] [Indexed: 12/20/2022]
Abstract
BACKGROUND Possible interactions between nervous and immune systems during opioid addiction remain elusive. Recombinant mu-delta opioid receptors (MDOR) and the glutamate receptor 1 (GluR1) subunit of amino-3-hydroxy-5-methyl-4-isoxazole propionic acid glutamate receptors are involved in acute and chronic effects of morphine. Elevated levels of autoantibodies (aAbs) to these receptors were demonstrated in heroin human addicts and in animal models. This study characterized the role of aAbs to these receptors in behavioral modulations recruited during opioid tolerance and sensitization. METHODS AND FINDINGS Male CD-1 mice, immunized with either MDOR or GluR1 peptide fragments (80 microg intraperitoneal (i.p.)), were examined for spontaneous behavior and response to morphine (5 mg/kg i.p.). Spontaneous home-cage activity, novelty-induced self-grooming and morphine-induced hyperactivity were higher in GluR1 mice compared to Vehicle subjects, whereas MDOR immunization was associated with an increased morphine-induced conditioned place preference. In response to escalating doses of morphine (from 10 to 60 mg/kg i.p., twice daily) and naloxone-precipitated withdrawal (1 mg/kg subcutaneous), GluR1 mice exhibited a more marked stereotyped sniffing behavior and less body tremors compared to Vehicle subjects, whereas less sniffing and teeth chattering were found in MDOR mice. The expected downregulation of mu receptor binding sites, induced by chronic morphine in vehicle subjects, was completely absent following MDOR immunization. CONCLUSIONS These findings indicate an altered response to morphine-related reinforcing and aversive effects in MDOR mice and altered coping with the environment in GluR1 mice. Circulating aAbs to specific neuroreceptors may alter the response to opiates and play a role as determinants of vulnerability to opiate addiction.
Collapse
|
13
|
Remyelination-promoting human IgMs: developing a therapeutic reagent for demyelinating disease. Curr Top Microbiol Immunol 2008; 318:213-39. [PMID: 18219820 PMCID: PMC7120407 DOI: 10.1007/978-3-540-73677-6_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Promoting remyelination following injury to the central nervous system (CNS) promises to be an effective neuroprotective strategy to limit the loss of surviving axons and prevent disability. Studies confirm that multiple sclerosis (MS) and spinal cord injury lesions contain myelinating cells and their progenitors. Recruiting these endogenous cells to remyelinate may be of therapeutic value. This review addresses the use of antibodies reactive to CNS antigens to promote remyelination. Antibody-induced remyelination in a virus-mediated model of chronic spinal cord injury was initially observed in response to treatment with CNS reactive antisera. Monoclonal mouse and human IgMs, which bind to the surface of oligodendrocytes and myelin, were later identified that were functionally equivalent to antisera. A recombinant form of a human remyelination-promoting IgM (rHIgM22) targets areas of CNS injury and promotes maximal remyelination within 5 weeks after a single low dose (25 microg/kg). The IgM isoform of this reparative antibody is required for in vivo function. We hypothesize that the IgM clusters membrane domains and associated signaling molecules on the surface of target cells. Current therapies for MS are designed to modulate inflammation. In contrast, remyelination promoting IgMs are the first potential therapeutic molecules designed to induce tissue repair by acting within the CNS at sites of damage on the cells responsible for myelin synthesis.
Collapse
|
14
|
Boscolo S, Tongiorgi E. Quantification of antineural antibodies in autoimmune neurological disorders. Expert Rev Clin Immunol 2007; 3:949-73. [PMID: 20477143 DOI: 10.1586/1744666x.3.6.949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
More than 50 different neurological pathologies have a confirmed or suspected autoimmune etiology affecting an estimated number of 75 million people worldwide. Autoantibodies are a useful diagnostic marker for most autoimmune diseases even though their pathological role is not evident, and several tests for their detection are commercially available. However, for autoimmune diseases involving the nervous system, lack of clear information on the identity of antineural antibody targets and the presence of many rare diseases have hampered the development of specific diagnostic assays. This review focuses on the actual knowledge on confirmed and suspected autoimmune diseases that target the CNS and the diagnostic relevance of corresponding antineural autoantibodies.
Collapse
Affiliation(s)
- Sabrina Boscolo
- BRAIN Centre for Neuroscience, Department of Biology, University of Trieste, Via Giorgieri, 10. 34127 Trieste, Italy.
| | | |
Collapse
|
15
|
Schneider CK, Melmed RD, Barstow LE, Enriquez FJ, Ranger-Moore J, Ostrem JA. Oral human immunoglobulin for children with autism and gastrointestinal dysfunction: a prospective, open-label study. J Autism Dev Disord 2007; 36:1053-64. [PMID: 16845577 DOI: 10.1007/s10803-006-0141-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immunoglobulin secretion onto mucosal surfaces is a major component of the mucosal immune system. We hypothesized that chronic gastrointestinal (GI) disturbances associated with autistic disorder (AD) may be due to an underlying deficiency in mucosal immunity, and that orally administered immunoglobulin would be effective in alleviating chronic GI dysfunction in these individuals. In this pilot study, twelve male subjects diagnosed with AD were evaluated using a GI severity index (GSI) while receiving daily dosing with encapsulated human immunoglobulin. Following eight weeks of treatment, 50% of the subjects met prespecified criteria for response in GI signs and symptoms and showed significant behavioral improvement as assessed by the Autism Behavior Checklist and parent and physician rated Clinical Global Impression of Improvement.
Collapse
|
16
|
Le Panse R, Cizeron-Clairac G, Bismuth J, Berrih-Aknin S. Microarrays reveal distinct gene signatures in the thymus of seropositive and seronegative myasthenia gravis patients and the role of CC chemokine ligand 21 in thymic hyperplasia. THE JOURNAL OF IMMUNOLOGY 2007; 177:7868-79. [PMID: 17114458 PMCID: PMC1892191 DOI: 10.4049/jimmunol.177.11.7868] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Myasthenia gravis (MG) is an autoimmune disease mainly caused by antiacetylcholine receptor autoantibodies (seropositive (SP) disease) or by Abs against unknown autoantigenic target(s) (seronegative (SN) disease). Thymectomy is usually beneficial although thymic hyperplasia with ectopic germinal centers is mainly observed in SP MG. To understand the role of thymus in the disease process, we compared the thymic transcriptome of non-MG adults to those of SP patients with a low or high degree of hyperplasia or SN patients. Surprisingly, an overexpression of MHC class II, Ig, and B cell marker genes is observed in SP but also SN MG patients. Moreover, we demonstrate an overexpression of CXCL13 in all MG thymuses leading probably to the generalized B cell infiltration. However, we find different chemotactic properties for MG subgroups and, especially, a specific overexpression of CCL21 in hyperplastic thymuses triggering most likely ectopic germinal center development. Besides, SN patients present a peculiar signature with an abnormal expression of genes involved in muscle development and synaptic transmission, but also genes implicated in host response, suggesting that viral infection might be related to SN MG. Altogether, these results underline differential pathogenic mechanisms in the thymus of SP and SN MG and propose new research areas.
Collapse
Affiliation(s)
- Rozen Le Panse
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8162, Institut Paris-Sud Cytokines, Université Paris XI, Hôpital Marie Lannelongue, 133 avenue de la résistance, 92350 Le Plessis-Robinson, France
| | | | | | | |
Collapse
|
17
|
Boscolo S, Passoni M, Baldas V, Cancelli I, Hadjivassiliou M, Ventura A, Tongiorgi E. Detection of anti-brain serum antibodies using a semi-quantitative immunohistological method. J Immunol Methods 2006; 309:139-49. [PMID: 16413571 DOI: 10.1016/j.jim.2005.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 10/31/2005] [Accepted: 11/28/2005] [Indexed: 10/25/2022]
Abstract
The number of autoimmune disorders that may involve the nervous system is increasing. The diagnosis of neurological involvement in the context of systemic diseases may be helped by the detection of autoantibodies reacting against neural autoantigens. If the autoantigen is not known but the target tissue is suspected, immunohistochemistry is one of the main techniques used to certify the presence of autoantibodies. Autoreactive antibodies are also present in the healthy population but in low quantity compared to patients with such diseases. Quantification of such autoantibodies could help to discriminate between disease and healthy states. We have developed a densitometric immunohistological method for the evaluation of human serum anti-neural reactivity. Using a densitometric analysis of rat brain sections incubated with the serum from 107 healthy subjects, we have defined the baseline of natural anti-neural autoreactivity, and the cut-off for subsequent quantification of anti-neural reactivity in patients with neurological involvement in the context of autoimmune diseases, including systemic lupus erythematosus, paraneoplastic cerebellar degeneration, and stiff person syndrome. The test sensitivity was 81% with a positive predictive value of 52%, a specificity of 89% with a negative predictive value as high as 97%. In conclusion, this standardised semi-quantitative procedure makes immunohistochemistry a reliable diagnostic test for autoimmune neuropathologies and represents an excellent exclusion test for anti-neural autoimmunity.
Collapse
Affiliation(s)
- Sabrina Boscolo
- BRAIN Centre for Neuroscience, Department of Biology, University of Trieste, Via L. Giorgieri, 10, 34127 Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Sakic B, Kirkham DL, Ballok DA, Mwanjewe J, Fearon IM, Macri J, Yu G, Sidor MM, Denburg JA, Szechtman H, Lau J, Ball AK, Doering LC. Proliferating brain cells are a target of neurotoxic CSF in systemic autoimmune disease. J Neuroimmunol 2005; 169:68-85. [PMID: 16198428 PMCID: PMC1634761 DOI: 10.1016/j.jneuroim.2005.08.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 08/01/2005] [Indexed: 12/31/2022]
Abstract
Brain atrophy, neurologic and psychiatric (NP) manifestations are common complications in the systemic autoimmune disease, lupus erythematosus (SLE). Here we show that the cerebrospinal fluid (CSF) from autoimmune MRL-lpr mice and a deceased NP-SLE patient reduce the viability of brain cells which proliferate in vitro. This detrimental effect was accompanied by periventricular neurodegeneration in the brains of autoimmune mice and profound in vivo neurotoxicity when their CSF was administered to the CNS of a rat. Multiple ionic responses with microfluorometry and protein peaks on electropherograms suggest more than one mechanism of cellular demise. Similar to the CSF from diseased MRL-lpr mice, the CSF from a deceased SLE patient with a history of psychosis, memory impairment, and seizures, reduced viability of the C17.2 neural stem cell line. Proposed mechanisms of cytotoxicity involve binding of intrathecally synthesized IgG autoantibodies to target(s) common to different mammalian species and neuronal populations. More importantly, these results indicate that the viability of proliferative neural cells can be compromised in systemic autoimmune disease. Antibody-mediated lesions of germinal layers may impair the regenerative capacity of the brain in NP-SLE and possibly, brain development and function in some forms of CNS disorders in which autoimmune phenomena have been documented.
Collapse
Affiliation(s)
- Boris Sakic
- Department of Psychiatry and Behavioural Neurosciences, HSC Rm 4N81, McMaster University, 1200 Main St. West, Hamilton, Ontario, Canada L8N 3Z5
- * Corresponding author. Tel.: +1 905 525 9140x22617, 22850; fax: +1 905 522 8804. E-mail addresses: (B. Sakic), (D.L. Kirkham), (D.A. Ballok), (J. Mwanjewe), (I.M. Fearon), (J. Macri), (G. Yu), (M.M. Sidor), (J.A. Denburg), (H. Szechtman), (J. Lau), (A.K. Ball), (L.C. Doering)
| | - David L. Kirkham
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - David A. Ballok
- Department of Psychiatry and Behavioural Neurosciences, HSC Rm 4N81, McMaster University, 1200 Main St. West, Hamilton, Ontario, Canada L8N 3Z5
| | - James Mwanjewe
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Ian M. Fearon
- Department of Biology, McMaster University, Hamilton, Canada
| | - Joseph Macri
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Guanhua Yu
- Department of Psychiatry and Behavioural Neurosciences, HSC Rm 4N81, McMaster University, 1200 Main St. West, Hamilton, Ontario, Canada L8N 3Z5
| | - Michelle M. Sidor
- Department of Psychiatry and Behavioural Neurosciences, HSC Rm 4N81, McMaster University, 1200 Main St. West, Hamilton, Ontario, Canada L8N 3Z5
| | | | - Henry Szechtman
- Department of Psychiatry and Behavioural Neurosciences, HSC Rm 4N81, McMaster University, 1200 Main St. West, Hamilton, Ontario, Canada L8N 3Z5
| | - Jonathan Lau
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Alexander K. Ball
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Laurie C. Doering
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
19
|
Dambinova SA, Khounteev GA, Izykenova GA, Zavolokov IG, Ilyukhina AY, Skoromets AA. Blood test detecting autoantibodies to N-methyl-D-aspartate neuroreceptors for evaluation of patients with transient ischemic attack and stroke. Clin Chem 2003; 49:1752-62. [PMID: 14500616 DOI: 10.1373/49.10.1752] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Stroke is a multisystemic disorder that includes mechanisms of thrombosis and neurotoxic coupling. Key metabolites of the molecular cascade following biochemical events appear simultaneously in brain tissue, the blood-brain barrier, and brain vessels, activating the immune system and generating autoantibodies (aAbs) to brain-specific antigens. We developed an ELISA blood test to measure aAbs to a subtype of N-methyl-D-aspartate (NMDA) receptors, which are the key markers of neurotoxicity underlying cerebral ischemia. We investigated the diagnostic accuracy of serum aAbs to NR2A/2B, a subtype of NMDA receptors, in assessing transient ischemic attack (TIA) and ischemic stroke (IS) and its ability to distinguish cerebral ischemia from intracerebral hemorrhage (ICH). METHODS Autoantibodies to NR2A/2B were measured in 360 serum samples: 105 from TIA/stroke patients and 255 from controls, including patients with controlled hypertension/atherosclerosis and gender- and age-matched healthy individuals. RESULTS Patients with TIA (n = 56) and acute IS (n = 31) had significantly higher NR2A/2B aAb concentrations than controls (P <0.0001). The test sensitivities for TIA and IS were 95% and 97%, respectively, and predictive values were 86% and 91% at a cutoff point of 2.0 micro g/L. The area under the ROC curve was 0.99. Monitoring NR2A/2B aAbs within 72 h differentiated IS and ICH (P <0.001) and was confirmed by magnetic resonance imaging and computed tomography. CONCLUSIONS NR2A/2B aAbs are independent and sensitive serologic markers capable of detecting TIA with a high posttest probability and, in conjunction with neurologic observation and neuroimaging, ruling out ICH. The test may help assess risk of TIA in routine general practice and may potentially be useful in assisting diagnosis of acute IS in the emergency setting.
Collapse
Affiliation(s)
- Svetlana A Dambinova
- Department of Neurology and Neurosurgery, I.P. Pavlov's State Medical University, 6/8 Tolstoj Str., St. Petersburg, Russia 197102.
| | | | | | | | | | | |
Collapse
|
20
|
Dalton P, Deacon R, Blamire A, Pike M, McKinlay I, Stein J, Styles P, Vincent A. Maternal neuronal antibodies associated with autism and a language disorder. Ann Neurol 2003; 53:533-7. [PMID: 12666123 DOI: 10.1002/ana.10557] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neurodevelopmental disorders could be caused by maternal antibodies or other serum factors. We detected serum antibodies binding to rodent Purkinje cells and other neurons in a mother of three children: the first normal, the second with autism, and the third with a severe specific language disorder. We injected the serum (0.5-1.0 ml/day) into pregnant mice during gestation and found altered exploration and motor coordination and changes in cerebellar magnetic resonance spectroscopy in the mouse offspring, comparing with offspring of mice injected with sera from mothers of healthy children. This evidence supports a role for maternal antibodies in some forms of neurodevelopmental disorder.
Collapse
Affiliation(s)
- Paola Dalton
- Neurosciences Group, Department of Clinical Neurology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Secondary progressive (SP) MS follows on from but is distinct in its clinical picture from relapsing remitting (RR) MS. Diagnosis is usually straightforward except during the transitional stage when the two phenotypes merge. It is clear that most patients that start with relapsing remitting MS will develop SP disease, although the underlying pathogenesis that causes this change is subject to much debate. Clinical features such as pattern and site of symptoms, and age of onset, in the relapsing remitting stage versus progressive disease, suggests a difference in the pathophysiology. Laboratory markers may give insight into the disease mechanisms. Measures of urinary and CSF myelin basic protein-like material (MBPLM) indicate demyelination and subsequent oligodendrocyte and axonal loss. Tertiary neutralising antibodies to MBP antibodies could attenuate remission and lead to continuous progression, and neuronal antibodies found in SP disease may contribute to the axonal loss. In addition, differences in nitric oxide and other inflammatory cytokine patterns might either be secondary to or causative of the pathological mechanisms.Greater understanding of progressive MS is a priority considering permanent disability results almost entirely from this stage of the disease.
Collapse
Affiliation(s)
- Jackie Palace
- Department of Clinical Neurology, Radcliffe Infirmary, Woodstock Road, Oxford 0X2 6HE, UK.
| |
Collapse
|
22
|
Fukuda T, Motomura M, Nakao Y, Shiraishi H, Yoshimura T, Iwanaga K, Tsujihata M, Eguchi K. Reduction of P/Q-type calcium channels in the postmortem cerebellum of paraneoplastic cerebellar degeneration with Lambert-Eaton myasthenic syndrome. Ann Neurol 2003; 53:21-8. [PMID: 12509844 DOI: 10.1002/ana.10392] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aim of this study was to clarify whether autoimmunity against P/Q-type voltage-gated calcium channels (VGCCs) in the cerebellum was associated with the pathogenesis of paraneoplastic cerebellar degeneration (PCD) with Lambert-Eaton myasthenic syndrome (LEMS). We used human autopsy cerebellar tissues from three PCD-LEMS patients and six other disease patients including one with LEMS as the controls. We compared cerebellar P/Q-type VGCC in these patients and controls for the amount and ratio of autoantibody-channel complex using an 125I-omega-conotoxin MVIIC-binding assay with Scatchard analysis, and their distribution using autoradiography. The quantity of cerebellar P/Q-type VGCC measured by Scatchard analysis were reduced in PCD-LEMS patients (63.0 +/- 7.0 fmol/mg, n = 3), compared with the controls (297.8 +/- 38.9 fmol/mg, n = 6). The ratio of autoantibody-VGCC complexes to total P/Q-type VGCCs measured by immunoprecipitation assay were increased in PCD-LEMS patients. We analysed cerebellar specimens by autoradiography using (125)I-omega-conotoxin MVIIC, which specifically binds to P/Q-type VGCCs. In PCD-LEMS cerebellum, the toxin binding sites of P/Q-type VGCCs were markedly reduced compared with controls, especially in the molecular layer, which is the richest area of P/Q-type VGCCs in the normal cerebellum. This suggests that P/Q-type VGCCs of the cerebellar molecular layer is the immunological target in developing PCD-LEMS.
Collapse
Affiliation(s)
- Taku Fukuda
- First Department of Internal Medicine, Nagasaki University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Autoimmune responses directed against the central nervous system (CNS) have generally been considered pathogenic in nature. Although there are several well understood conditions in which this is the case, there is also a growing body of experimental evidence to show that both the cellular and humoral immune responses can promote tissue repair following CNS injury and disease. Our laboratory has used a mouse model of chronic demyelinating disease to characterize a class of polyreactive IgM autoantibodies that react with oligodendrocyte surface antigens and promote myelin repair. By screening a large number of human monoclonal antibodies, we have found that IgM antibodies that react with CNS tissue are relatively common. Autoreactive IgM antibodies might constitute an endogenous system for tissue repair, and therefore these antibodies could be of value as therapeutic reagents.
Collapse
Affiliation(s)
- A J Bieber
- Dept of Neurology, Mayo Clinic and Foundation, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
24
|
Bieber AJ, Warrington A, Pease LR, Rodriguez M. Humoral autoimmunity as a mediator of CNS repair. Trends Neurosci 2001. [DOI: 10.1016/s0166-2236(01)00007-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Willison HJ, Ang W, Gilhus NE, Graus F, Liblau R, Vedeler C, Vincent A. EFNS task force report: a questionnaire-based survey on the service provision and quality assurance for determination of diagnostic autoantibody tests in European neuroimmunology centres. European Federation of Neurological Societies. Eur J Neurol 2000; 7:625-8. [PMID: 11136347 DOI: 10.1046/j.1468-1331.2000.00158.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Autoantibodies to a wide variety of neural components are frequently sought in the sera of patients with neurological diseases suspected to have an antibody-associated autoimmune basis. Variations in assay methodology and availability are likely to exist throughout European diagnostic immunology centres, and interlaboratory discrepancies in performance for some assays have been reported. The availability of quality assurance is largely unknown. In this questionnaire-based EFNS task force, all 18 national representatives of the Neuroimmunology Panel within the EFNS were invited to estimate the service provision within their country; 12 panel members responded. From these responses, it emerged that a range of assays are being performed throughout European centres, involving over 20 separate antigens, using a broad array of immunodetection techniques. With the exception of the estimation of anti-AChR antibodies for the diagnosis of myasthenia gravis, no systematic quality assurance schemes are available, this being conducted on an ad hoc basis, or not at all. Since quality is a central component of assay sensitivity and specificity, we conclude that there is an urgent need to introduce pan-European quality assurance schemes, based on provision of positive and negative test sera from a central source, and in which all neuroimmunology laboratories should participate.
Collapse
Affiliation(s)
- H J Willison
- University Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow G51 4TF, UK.
| | | | | | | | | | | | | |
Collapse
|
26
|
Lawson K. Is there a role for potassium channel openers in neuronal ion channel disorders? Expert Opin Investig Drugs 2000; 9:2269-80. [PMID: 11060806 DOI: 10.1517/13543784.9.10.2269] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Malfunction in ion channels, due to mutations in genes encoding channel proteins or the presence of autoantibodies, are increasing being implicated in causing disease conditions, termed channelopathies. Dysfunction of potassium (K(+)) channels has been associated with the pathophysiology of a number of neurological, as well as peripheral, disorders (e.g., episodic ataxia, epilepsy, neuromyotonia, Parkinson's disease, congenital deafness, long QT syndrome). K(+) channels, which demonstrate a high degree of diversity and ubiquity, are fundamental in the control of membrane depolarisation and cell excitability. A common feature of K(+) channelopathies is a reduction or loss of membrane potential repolarisation. The identification of K(+) channel subtype specific openers will allow the recovery of the mechanism(s) responsible for counteraction of uncontrolled cellular depolarisation. Synthetic agents that demonstrate K(+) channel opening properties are available for a variety of K(+) channel subtypes (e.g., K(ATP), BK(Ca), GIRK and M-channel). This study reviews the realistic therapeutic potential that may be gained in a broad spectrum of clinical conditions by K(+) channel openers. K(+) channel openers would therefore identify dysfunctional K(+) channel as therapeutic targets for clinical benefit, in addition being able to modulate normally functioning K(+) channels to gain clinical management of pathophysiological events irrespective of the cause.
Collapse
Affiliation(s)
- K Lawson
- Biomedical Research Centre, Sheffield Hallam University, School of Science and Mathematics, City Campus, Sheffield, S1 1WB, UK.
| |
Collapse
|
27
|
Butler MH, Hayashi A, Ohkoshi N, Villmann C, Becker CM, Feng G, De Camilli P, Solimena M. Autoimmunity to gephyrin in Stiff-Man syndrome. Neuron 2000; 26:307-12. [PMID: 10839351 DOI: 10.1016/s0896-6273(00)81165-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stiff-Man syndrome (SMS) is a rare disease of the central nervous system (CNS) characterized by chronic rigidity, spasms, and autoimmunity directed against synaptic antigens, most often the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD). In a subset of cases, SMS has an autoimmune paraneoplastic origin. We report here the identification of high-titer autoantibodies directed against gephyrin in a patient with clinical features of SMS and mediastinal cancer. Gephyrin is a cytosolic protein selectively concentrated at the postsynaptic membrane of inhibitory synapses, where it is associated with GABA(A) and glycine receptors. Our findings provide new evidence for a close link between autoimmunity directed against components of inhibitory synapses and neurological conditions characterized by chronic rigidity and spasms.
Collapse
Affiliation(s)
- M H Butler
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | |
Collapse
|