1
|
Maidana SS, Craig PO, Craig MI, Ludwig L, Mauroy A, Thiry E, Romera SA. Evidence of natural interspecific recombinant viruses between bovine alphaherpesviruses 1 and 5. Virus Res 2017; 242:122-130. [DOI: 10.1016/j.virusres.2017.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
|
2
|
Smith LM, McWhorter AR, Shellam GR, Redwood AJ. The genome of murine cytomegalovirus is shaped by purifying selection and extensive recombination. Virology 2012; 435:258-68. [PMID: 23107009 DOI: 10.1016/j.virol.2012.08.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/02/2012] [Accepted: 08/24/2012] [Indexed: 11/19/2022]
Abstract
The herpesvirus lifestyle results in a long-term interaction between host and invading pathogen, resulting in exquisite adaptation of virus to host. We have sequenced the genomes of nine strains of murine cytomegalovirus (a betaherpesvirus), isolated from free-living mice trapped at locations separated geographically and temporally. Despite this separation these genomes were found to have low levels of nucleotide variation. Of the more than 160 open reading frames, almost 90% had a dN/dS ratio of amino acid substitutions of less than 0.6, indicating the level of purifying selection on the coding potential of MCMV. Examination of selection acting on individual genes at the codon level however indicates some level of positive selection, with 0.03% of codons showing strong evidence for positive selection. Conversely, 1.3% of codons show strong evidence of purifying selection. Alignments of both genome sequences and coding regions suggested that high levels of recombination have shaped the MCMV genome.
Collapse
Affiliation(s)
- L M Smith
- School of Pathology and Laboratory Medicine, University of Western Australia, Australia
| | | | | | | |
Collapse
|
3
|
Abstract
AbstractBovine herpes virus 1 (BHV-1) is primarily associated with clinical syndromes such as rhinotracheitis, pustular vulvovaginitis and balanoposthitis, abortion, infertility, conjunctivitis and encephalitis in bovine species. The main sources of infection are the nasal exudates and the respiratory droplets, genital secretions, semen, fetal fluids and tissues. The BHV-1 virus can become latent following a primary infection with a field isolate or vaccination with an attenuated strain. The viral genomic DNA has been demonstrated in the sensory ganglia of the trigeminal nerve in infectious bovine rhinotracheitis (IBR) and in sacral spinal ganglia in pustular vulvovaginitis and balanoposthitis cases. BHV-1 infections can be diagnosed by detection of virus or virus components and antibody by serological tests or by detection of genomic DNA by polymerase chain reaction (PCR), nucleic acid hybridization and sequencing. Inactivated vaccines and modified live virus vaccines are used for prevention of BHV-1 infections in cattle; subunit vaccines and marker vaccines are under investigation.
Collapse
|
4
|
Coinfection with two closely related alphaherpesviruses results in a highly diversified recombination mosaic displaying negative genetic interference. J Virol 2009; 83:3127-37. [PMID: 19153224 DOI: 10.1128/jvi.02474-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Phylogenetic studies of the emergence and spread of natural recombinants in herpesviruses infecting humans and animals have been reported recently. However, despite an ever-increasing amount of evidence of recombination in herpesvirus history, the recombination process and the consequences on the genetic diversity of the progeny remain poorly characterized. We addressed this issue by using multiple single-nucleotide polymorphisms (SNPs) differentiating the two subtypes of an alphaherpesvirus, bovine herpesvirus 1 (BoHV-1). Analysis of a large sample of progeny virions obtained in a single growth cycle of coinfected BoHV-1 strains provided a prospective investigation of the recombination dynamics by using SNPs as recombination markers. We found that the simultaneous infection with two closely related herpesviruses results in a highly diversified recombination mosaic. From the analysis of multiple recombinants arising in the progeny, we provide the first evidence of genetic interference influencing the recombination process in herpesviruses. In addition, we report striking differences in the levels of recombination frequency observed along the BoHV-1 genome. With particular emphasis on the genetic structure of a progeny virus population rising in vitro, our data show to which extent recombination participates to the genetic diversification of herpesviruses.
Collapse
|
5
|
Muylkens B, Meurens F, Schynts F, Farnir F, Pourchet A, Bardiau M, Gogev S, Thiry J, Cuisenaire A, Vanderplasschen A, Thiry E. Intraspecific bovine herpesvirus 1 recombinants carrying glycoprotein E deletion as a vaccine marker are virulent in cattle. J Gen Virol 2006; 87:2149-2154. [PMID: 16847110 DOI: 10.1099/vir.0.81969-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vaccines used in control programmes of Bovine herpesvirus 1 (BoHV-1) utilize highly attenuated BoHV-1 strains marked by a deletion of the glycoprotein E (gE) gene. Since BoHV-1 recombinants are obtained at high frequency in experimentally coinfected cattle, the consequences of recombination on the virulence of gE-negative BoHV-1 were investigated. Thus, gE-negative BoHV-1 recombinants were generated in vitro from several virulent BoHV-1 and one mutant BoHV-1 deleted in the gC and gE genes. Four gE-negative recombinants were tested in the natural host. All the recombinants were more virulent than the gE-negative BoHV-1 vaccine and the gC- and gE-negative parental BoHV-1. The gE-negative recombinant isolated from a BoHV-1 field strain induced the highest severe clinical score. Latency and reactivation studies showed that three of the recombinants were reexcreted. Recombination can therefore restore virulence of gE-negative BoHV-1 by introducing the gE deletion into a different virulence background.
Collapse
Affiliation(s)
- Benoît Muylkens
- Department of Infectious and Parasitic Diseases, Virology and Immunology, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster 20 B43b, B-4000 Sart-Tilman (Liège), Belgium
| | - François Meurens
- Department of Infectious and Parasitic Diseases, Virology and Immunology, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster 20 B43b, B-4000 Sart-Tilman (Liège), Belgium
| | | | - Frédéric Farnir
- Department of Animal Production, Biostatistics, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster 20 B43b, B-4000 Sart-Tilman (Liège), Belgium
| | - Aldo Pourchet
- Department of Infectious and Parasitic Diseases, Virology and Immunology, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster 20 B43b, B-4000 Sart-Tilman (Liège), Belgium
| | - Marjorie Bardiau
- Department of Infectious and Parasitic Diseases, Virology and Immunology, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster 20 B43b, B-4000 Sart-Tilman (Liège), Belgium
| | - Sacha Gogev
- Department of Infectious and Parasitic Diseases, Virology and Immunology, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster 20 B43b, B-4000 Sart-Tilman (Liège), Belgium
| | - Julien Thiry
- Department of Infectious and Parasitic Diseases, Virology and Immunology, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster 20 B43b, B-4000 Sart-Tilman (Liège), Belgium
| | - Adeline Cuisenaire
- Department of Infectious and Parasitic Diseases, Virology and Immunology, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster 20 B43b, B-4000 Sart-Tilman (Liège), Belgium
| | - Alain Vanderplasschen
- Department of Infectious and Parasitic Diseases, Virology and Immunology, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster 20 B43b, B-4000 Sart-Tilman (Liège), Belgium
| | - Etienne Thiry
- Department of Infectious and Parasitic Diseases, Virology and Immunology, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster 20 B43b, B-4000 Sart-Tilman (Liège), Belgium
| |
Collapse
|
6
|
Muylkens B, Meurens F, Schynts F, de Fays K, Pourchet A, Thiry J, Vanderplasschen A, Antoine N, Thiry E. Biological characterization of bovine herpesvirus 1 recombinants possessing the vaccine glycoprotein E negative phenotype. Vet Microbiol 2006; 113:283-91. [PMID: 16321480 DOI: 10.1016/j.vetmic.2005.11.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intramolecular recombination is a frequent event during the replication cycle of bovine herpesvirus 1 (BoHV-1). Recombinant viruses frequently arise and survive in cattle after concomitant nasal infections with two BoHV-1 mutants. The consequences of this process, related to herpesvirus evolution, have to be assessed in the context of large use of live marker vaccines based on glycoprotein E (gE) gene deletion. In natural conditions, double nasal infections by vaccine and wild-type strains are likely to occur. This situation might generate virulent recombinant viruses inducing a serological response indistinguishable from the vaccine one. This question was addressed by generating in vitro BoHV-1 recombinants deleted in the gE gene from seven wild-type BoHV-1 strains and one mutant strain deleted in the genes encoding gC and gE. In vitro growth properties were assessed by virus production, one step growth kinetics and plaque size assay. Heterogeneity in the biological properties was shown among the investigated recombinant viruses. The results demonstrated that some recombinants, in spite of their gE minus phenotype, have biological characteristics close to wild-type BoHV-1.
Collapse
Affiliation(s)
- Benoît Muylkens
- Department of Infectious and Parasitic Diseases, Virology and Immunology, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Keuser V, Detry B, Thiry J, de Fays K, Schynts F, Pastoret PP, Vanderplasschen A, Thiry E. Characterization of caprine herpesvirus 1 glycoprotein D gene and its translation product. Virus Res 2006; 115:112-21. [PMID: 16140410 DOI: 10.1016/j.virusres.2005.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 07/08/2005] [Accepted: 07/08/2005] [Indexed: 10/25/2022]
Abstract
Caprine herpesvirus 1 (CpHV-1) is responsible of systemic infection in neonatal kids as well as abortion and fertility disorders in adult goats. This virus is closely related to bovine herpesvirus 1 (BoHV-1) which causes infectious bovine rhinotracheitis. Glycoprotein D (gD) mediates important functions in alphaherpesviruses and is also a main immunogen. The sequence of CpHV-1 gD gene and the biochemical properties of its translation product were analyzed and compared to those of BoHV-1 and other alphaherpesviruses. A relatively high homology was found between CpHV-1 and BoHV-1 glycoproteins D amino acid sequences (similarity of 68.8%). Moreover, six cysteine residues are conserved by CpHV-1 gD and the other studied alphaherpesviruses. CpHV-1 gD has a molecular mass similar to BoHV-1 gD and contains complex N-linked oligosaccharides. In contrast to the BoHV-1 gD, CpHV-1 gD is expressed as a late protein. In spite of the observed differences which could influence its biological functions, CpHV-1 gD shares most characteristics with other alphaherpesviruses and especially BoHV-1.
Collapse
Affiliation(s)
- Véronique Keuser
- Department of Infectious and Parasitic Diseases, Virology and Immunology, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Thiry E, Muylkens B, Meurens F, Gogev S, Thiry J, Vanderplasschen A, Schynts F. Recombination in the alphaherpesvirus bovine herpesvirus 1. Vet Microbiol 2005; 113:171-7. [PMID: 16343820 DOI: 10.1016/j.vetmic.2005.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Herpesviruses are DNA viruses characterized by a low rate of nucleotide substitution. Therefore, other mechanisms must be involved to their evolution, like recombination that can be seen as an essential evolutionary driving force of these viruses. Recombination contributes to the long-term evolution of alphaherpesviruses. It acts also to continuously create new alphaherpesvirus strains. We have used bovine herpesvirus 1 to investigate recombination both within DNA concatemers in infected cells and in vitro and in vivo at the end of the lytic cycle. The following results have been obtained: (i) intramolecular recombination occurs at the level of concatemers and gives rise to genomic segment inversions; (ii) intraspecific recombination occurs frequently both in vitro and in vivo; (iii) interspecific recombination is possible and requires two highly genetically related viruses; (iv) only simultaneous or closely separated infections lead to the production of recombinant viruses; (v) recombination between wild-type and glycoprotein defective vaccine virus can produce a glycoprotein defective virus keeping part of the virulence of parental wild-type virus. Recombination, by exchanging genomic segments, may modify the virulence of alphaherpesviruses. It must be carefully assessed for the biosafety of antiviral therapy, alphaherpesvirus-based vectors and live attenuated vaccines.
Collapse
Affiliation(s)
- E Thiry
- Department of Infectious and Parasitic Diseases, Virology and Immunology, Faculty of Veterinary Medicine, University of Liège, Bd de Colonster 20, B43b, B-4000 Liège, Belgium.
| | | | | | | | | | | | | |
Collapse
|
9
|
Toussaint JF, Letellier C, Paquet D, Dispas M, Kerkhofs P. Prime-boost strategies combining DNA and inactivated vaccines confer high immunity and protection in cattle against bovine herpesvirus-1. Vaccine 2005; 23:5073-81. [PMID: 16024138 DOI: 10.1016/j.vaccine.2005.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 06/06/2005] [Accepted: 06/09/2005] [Indexed: 11/20/2022]
Abstract
DNA vaccines have frequently been associated with poor efficacy in large animals. In the present study, one administration of an inactivated marker vaccine to cattle considerably boosted both humoral and cellular arms of the immune response primed with Bovine herpesvirus-1 (BoHV-1) DNA vaccines encoding glycoprotein D (gD) or gC+gD. Calves vaccinated according to the DNA prime-inactivated boost also showed significantly enhanced virological protection as compared to controls. The 4-logarithms reduction of virus shedding observed in primed-boosted animals was comparable to the one previously reported in calves immunized twice with marker vaccines. Intradermal immunization of cattle with DNA vaccines promoted a Th2-biased immune response but also primed a cellular component that was further boosted by the inactivated vaccine. Individual IgG2 titers of vaccinated calves were significantly correlated to IFN-gamma production. The immunization protocol described in the present study demonstrates the complementarity between DNA and conventional marker vaccines.
Collapse
Affiliation(s)
- J F Toussaint
- Veterinary and Agrochemical Research Centre, Department of Virology, Groeselenberg 99, B-1180 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
10
|
Meurens F, Keil GM, Muylkens B, Gogev S, Schynts F, Negro S, Wiggers L, Thiry E. Interspecific recombination between two ruminant alphaherpesviruses, bovine herpesviruses 1 and 5. J Virol 2004; 78:9828-36. [PMID: 15331717 PMCID: PMC514992 DOI: 10.1128/jvi.78.18.9828-9836.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 05/03/2004] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination between different species of alphaherpesviruses has been described between herpes simplex viruses 1 and 2 but has not yet been observed between other alphaherpesviruses. In the present study we chose to assess to what extent in vitro recombination can occur between members of a well-defined group of closely related viruses such as ruminant alphaherpesviruses. At 24 h after infection of epithelial bovine kidney cells with a double-deleted mutant of bovine herpesvirus 1 (BoHV-1) (containing green fluorescent protein and red fluorescent protein genes) and different ruminant alphaherpesviruses, four types of progeny viruses were detected and distinguished according to their phenotype. Frequent recombination events between identical or different strains of BoHV-1 were observed (up to 30%), whereas only two BoHV-1/BoHV-5 recombinants were identified, and no recombinants between BoHV-1 and less closely related caprine and cervine herpesviruses were detected. Restriction analysis of the genomes of the two BoHV-1/BoHV-5 recombinants showed different genetic backgrounds. One possessed a restriction pattern close to BoHV-1, whereas the other one was close to BoHV-5. This exhaustive analysis of each combination of coinfection in a unique situation of five closely related alphaherpesviruses revealed the importance of a high degree of genetic relatedness and similar parental virus growth kinetics for successful interspecific recombination.
Collapse
MESH Headings
- Alphaherpesvirinae/genetics
- Alphaherpesvirinae/isolation & purification
- Animals
- Antibodies, Monoclonal
- Antibodies, Viral
- Cattle
- Cell Line
- Crossing Over, Genetic
- Deer
- Goats
- Green Fluorescent Proteins
- Herpesvirus 1, Bovine/genetics
- Herpesvirus 1, Bovine/immunology
- Herpesvirus 1, Bovine/isolation & purification
- Herpesvirus 5, Bovine/genetics
- Herpesvirus 5, Bovine/immunology
- Herpesvirus 5, Bovine/isolation & purification
- In Vitro Techniques
- Luminescent Proteins/genetics
- Mutation
- Recombinant Proteins/genetics
- Recombination, Genetic
- Species Specificity
- Varicellovirus/genetics
- Varicellovirus/isolation & purification
- Red Fluorescent Protein
Collapse
Affiliation(s)
- François Meurens
- Department of Infectious and Parasitic Diseases, Laboratory of Virology, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster, 20, B43b, B-4000 Sart-Tilman, Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Meurens F, Schynts F, Keil GM, Muylkens B, Vanderplasschen A, Gallego P, Thiry E. Superinfection prevents recombination of the alphaherpesvirus bovine herpesvirus 1. J Virol 2004; 78:3872-9. [PMID: 15047803 PMCID: PMC374301 DOI: 10.1128/jvi.78.8.3872-3879.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination between strains of the same alphaherpesvirus species occurs frequently both in vitro and in vivo. This process has been described between strains of herpes simplex virus type 1, herpes simplex virus type 2, pseudorabies virus, feline herpesvirus 1, varicella-zoster virus, and bovine herpesvirus 1 (BoHV-1). In vivo, the rise of recombinant viruses can be modulated by different factors, such as the dose of the inoculated viruses, the distance between inoculation sites, the time interval between inoculation of the first and the second virus, and the genes in which the mutations are located. The effect of the time interval between infections with two distinguishable BoHV-1 on recombination was studied in three ways: (i) recombination at the level of progeny viruses, (ii) interference induced by the first virus infection on beta-galactosidase gene expression of a superinfecting virus, and (iii) recombination at the level of concatemeric DNA. A time interval of 2 to 8 h between two successive infections allows the establishment of a barrier, which reduces or prevents any successful superinfection needed to generate recombinant viruses. The dramatic effect of the time interval on the rise of recombinant viruses is particularly important for the risk assessment of recombination between glycoprotein E-negative marker vaccine and field strains that could threaten BoHV-1 control and eradication programs.
Collapse
Affiliation(s)
- François Meurens
- Department of Infectious and Parasitic Diseases, Virology, and Immunology, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
12
|
Keuser V, Schynts F, Detry B, Collard A, Robert B, Vanderplasschen A, Pastoret PP, Thiry E. Improved antigenic methods for differential diagnosis of bovine, caprine, and cervine alphaherpesviruses related to bovine herpesvirus 1. J Clin Microbiol 2004; 42:1228-35. [PMID: 15004081 PMCID: PMC356849 DOI: 10.1128/jcm.42.3.1228-1235.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Revised: 10/05/2003] [Accepted: 11/11/2003] [Indexed: 11/20/2022] Open
Abstract
The control of infectious bovine rhinotracheitis induced by bovine herpesvirus 1 (BoHV-1) requires sensitive and specific diagnostic assays. As BoHV-1 is antigenically and genetically related to four other alphaherpesviruses of ruminants-namely, BoHV-5, caprine herpesvirus 1 (CpHV-1), cervine herpesvirus 1 (CvHV-1) and CvHV-2-diagnostic tests able to discriminate BoHV-1 from these related viruses are needed to avoid misdiagnosis, especially because some of these viruses are able to cross the species barrier. In this study, murine monoclonal antibodies (MAbs) specific for BoHV-1, BoHV-5, CpHV-1, CvHV-1, and CvHV-2 were produced with the aim of setting up an immunofluorescence assay able to discriminate between these related herpesviruses. Produced MAbs were selected for their viral specificity by enzyme-linked immunosorbent assay and indirect immunofluorescence staining of virus-infected cells. Radioimmunoprecipitation characterization of the selected MAbs revealed that four of them are directed against glycoprotein C (gC) and one of them is directed against gD of these related viruses. The obtained results demonstrate that the antibodies produced allow an unambiguous discrimination of each of the four alphaherpesviruses related to BoHV-1.
Collapse
Affiliation(s)
- Véronique Keuser
- Department of Infectious and Parasitic Diseases, Laboratory of Virology and Immunology, Faculty of Veterinary Medicine, University of Liège, B 4000 Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Schynts F, Meurens F, Detry B, Vanderplasschen A, Thiry E. Rise and survival of bovine herpesvirus 1 recombinants after primary infection and reactivation from latency. J Virol 2004; 77:12535-42. [PMID: 14610176 PMCID: PMC262584 DOI: 10.1128/jvi.77.23.12535-12542.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombination is thought to be an important source of genetic variation in herpesviruses. Several studies, performed in vitro or in vivo, detected recombinant viruses after the coinoculation of two distinguishable strains of the same herpesvirus species. However, none of these studies investigated the evolution of the relative proportions of parental versus recombinant progeny populations after coinoculation of the natural host, both during the excretion and the reexcretion period. In the present study, we address this by studying the infection of cattle with bovine herpesvirus 1 (BoHV-1). The recombination of two BoHV-1 mutants lacking either glycoprotein C (gC(-)/gE(+)) or E (gC(+)/gE(-)) was investigated after inoculation of cattle by the natural route of infection. The results demonstrated that (i) recombination is a frequent event in vivo since recombinants (gC(+)/gE(+) and gC(-)/gE(-)) were detected in all coinoculated calves, (ii) relative proportions of progeny populations evolved during the excretion period toward a situation where two populations (gC(+)/gE(+) and gC(-)/gE(+)) predominated without fully outcompeting the presence of the two other detected populations (gC(+)/gE(-) and gC(-)/gE(-)), and (iii) after reactivation from latency, no gC(+)/gE(-) and gC(-)/gE(-) progeny viruses were detected, although gC(+)/gE(-) mutants, when inoculated alone, were detected after reactivation treatment. In view of these data, the importance of gE in the biology of BoHV-1 infection and the role of recombination in herpesvirus evolution are discussed.
Collapse
Affiliation(s)
- Frédéric Schynts
- Department of Infectious and Parasitic Diseases, Laboratory of Virology and Immunology, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
14
|
Dispas M, Schynts F, Lemaire M, Letellier C, Vanopdenbosch E, Thiry E, Kerkhofs P. Isolation of a glycoprotein E-deleted bovine herpesvirus type 1 strain in the field. Vet Rec 2003; 153:209-12. [PMID: 12956298 DOI: 10.1136/vr.153.7.209] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
During a field trial to evaluate the efficacy of repeated vaccinations with bovine herpesvirus type 1 (BHV-1) marker vaccines, a glycoprotein E (gE)-negative BHV-1 strain was isolated from the nasal secretions of two cows, eight months after vaccination with a gE-negative live-attenuated vaccine, initially given intranasally, then intramuscularly. The strain isolated was characterised using immunofluorescence, restriction analysis and PCR. All the techniques used identified the isolated virus as a gE-negative BHV-1 phenotypically and genotypically identical to the Za strain used as a control.
Collapse
Affiliation(s)
- M Dispas
- Department Biocontrol/Section Epidemiology, Veterinary and Agrochemical Research Centre, Groeselenberg 99, 1180 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|