1
|
Tacke C, Landgraf P, Dieterich DC, Kröger A. The fate of neuronal synapse homeostasis in aging, infection, and inflammation. Am J Physiol Cell Physiol 2024; 327:C1546-C1563. [PMID: 39495249 DOI: 10.1152/ajpcell.00466.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Neuroplasticity is the brain's ability to reorganize and modify its neuronal connections in response to environmental stimuli, experiences, learning, and disease processes. This encompasses a variety of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in neuronal structure and function, and the generation of new neurons. Proper functioning of synapses, which facilitate neuron-to-neuron communication, is crucial for brain activity. Neuronal synapse homeostasis, which involves regulating and maintaining synaptic strength and function in the central nervous system (CNS), is vital for this process. Disruptions in synaptic balance, due to factors like inflammation, aging, or infection, can lead to impaired brain function. This review highlights the main aspects and mechanisms underlying synaptic homeostasis, particularly in the context of aging, infection, and inflammation.
Collapse
Affiliation(s)
- Charlotte Tacke
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology Group, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter Landgraf
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela C Dieterich
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Andrea Kröger
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology Group, Otto-von-Guericke University, Magdeburg, Germany
- Helmholtz Center for Infection Research, Innate Immunity and Infection Group, Braunschweig, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
2
|
Barber TJ, Imaz A, Boffito M, Niubó J, Pozniak A, Fortuny R, Alonso J, Davies N, Mandalia S, Podzamczer D, Gazzard B. CSF inflammatory markers and neurocognitive function after addition of maraviroc to monotherapy darunavir/ritonavir in stable HIV patients: the CINAMMON study. J Neurovirol 2017; 24:98-105. [PMID: 29280108 DOI: 10.1007/s13365-017-0600-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/19/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022]
Abstract
CINAMMON is a phase IV, open-label, single-arm, pilot study assessing maraviroc (MVC) in the central nervous system (CNS) when added to darunavir/ritonavir monotherapy (DRV/r) in virologically suppressed HIV-infected subjects. CCR5 tropic participants on DRV/r were recruited. Participants remained on DRV/r for 12 week (w) (control phase). MVC 150 mg qd was added w12-w36 (intervention phase). Lumbar puncture (LP) and neurocognitive function (Cogstate) examinations scheduled at baseline, w12 and w36; MRI before w12, again at w36. Primary endpoint was CSF inflammatory marker changes during intervention phase. Secondary endpoints included changes in NC function and MRI parameters. CSF/plasma DRV/r concentrations measured at w12 and w36, MVC at w36. Nineteen patients recruited, 15 completed (17M, 2F). Dropouts: headache (2), knee problem (could not attend, 1), personal reasons (1). Mean age (range) 45.4 years (27.2-65.1), 13/19 white, 10/19 MSM. No changes in selected CSF markers were seen w12-w36. Overall NC function did not improve w12-w36: total age adjusted z score improved by 0.27 (weighted paired t test; p = 0.11); for executive function only, age adjusted z score improved by 0.54 (p = 0.03). MRI brain parameters unchanged. DRV plasma:CSF concentration ratio unchanged between w12 (132) and w36 (112; p = 0.577, Wilcoxon signed-rank). MVC plasma:CSF concentration ratio was 35 at w36. No changes in neuroinflammatory markers seen. In this small study, addition of 24w MVC 150 mg qd to stable DRV/r monotherapy showed possible improvement in executive function with no global NC effect. Learning effect cannot be excluded. This effect should be further evaluated.
Collapse
Affiliation(s)
- T J Barber
- Chelsea and Westminster NHS Foundation Trust and St Stephen's AIDS Trust, 4th Floor, St Stephen's Centre, Chelsea and Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK. .,Imperial College London, London, UK.
| | - A Imaz
- Bellvitge University Hospital, Barcelona, Spain
| | - M Boffito
- Chelsea and Westminster NHS Foundation Trust and St Stephen's AIDS Trust, 4th Floor, St Stephen's Centre, Chelsea and Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK.,Imperial College London, London, UK
| | - J Niubó
- Bellvitge University Hospital, Barcelona, Spain
| | - A Pozniak
- Chelsea and Westminster NHS Foundation Trust and St Stephen's AIDS Trust, 4th Floor, St Stephen's Centre, Chelsea and Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK
| | - R Fortuny
- Bellvitge University Hospital, Barcelona, Spain
| | - J Alonso
- Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - N Davies
- Chelsea and Westminster NHS Foundation Trust and St Stephen's AIDS Trust, 4th Floor, St Stephen's Centre, Chelsea and Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK.,Imperial College London, London, UK
| | - S Mandalia
- Chelsea and Westminster NHS Foundation Trust and St Stephen's AIDS Trust, 4th Floor, St Stephen's Centre, Chelsea and Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK.,Imperial College London, London, UK
| | | | - B Gazzard
- Chelsea and Westminster NHS Foundation Trust and St Stephen's AIDS Trust, 4th Floor, St Stephen's Centre, Chelsea and Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK.,Imperial College London, London, UK
| |
Collapse
|
3
|
HIV-associated CD4+/CD8+ depletion in infancy is associated with neurometabolic reductions in the basal ganglia at age 5 years despite early antiretroviral therapy. AIDS 2016; 30:1353-62. [PMID: 26959509 DOI: 10.1097/qad.0000000000001082] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Investigating consequences of early or late antiretroviral therapy (ART) initiation in infancy on young brain development using magnetic resonance spectroscopy. DESIGN Most pediatric HIV/ART-related neurological studies are from neuropsychological/clinical perspectives. Magnetic resonance spectroscopy can elucidate the mechanisms underpinning neurocognitive outcomes by quantifying the brain's chemical condition through localized metabolism to provide insights into health and development. METHODS Basal ganglia metabolite concentrations were assessed in thirty-eight 5-year-old HIV-infected children previously participating in a randomized trial comparing early limited ART to deferred continuous ART, as well as 15 uninfected controls (12 HIV exposed). Metabolite levels were compared between 26 infected children who initiated ART at/before 12 weeks and 12 who initiated afterward, and were correlated with clinical HIV and treatment-related measures. RESULTS HIV-infected children initiating ART after 12 weeks had lower creatine, choline and glutamate (P < 0.05) than those initiating ART at/before 12 weeks. The CD4/CD8 ratio at baseline correlated with N-acetyl-aspartate (r = 0.56, P = 0.003) and choline (r = 0.36, P = 0.03) at 5 years, irrespective of treatment regimen and ART interruption. In comparison with uninfected controls, 80% of whom were HIV-exposed in utero, children on early treatment had higher N-acetyl-aspartate (P = 0.006) and choline (P = 0.03). CONCLUSIONS Despite early ART (<12 weeks), low baseline CD4/CD8 predicts brain metabolite levels in later childhood. Also, HIV exposure and antiretroviral exposure for preventing vertical HIV transmission may hinder metabolite health, but needs further investigation.
Collapse
|
4
|
Kennedy PGE. Viruses, apoptosis, and neuroinflammation--a double-edged sword. J Neurovirol 2015; 21:1-7. [PMID: 25604493 DOI: 10.1007/s13365-014-0306-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/17/2014] [Accepted: 11/20/2014] [Indexed: 11/26/2022]
Abstract
Apoptosis, or programmed cell death, is a fundamental and widespread cell biological process that is distinct from cell necrosis and can be induced by a wide variety of stimuli including viral infections. Apoptosis may occur via either the intrinsic or extrinsic pathways and confers several advantages to the virally infected host including the prevention of further viral propagation and the potential inhibition and resolution of inflammatory processes. Several viruses have been shown to have the capacity to induce apoptosis in susceptible cells including herpes simplex virus, Varicella-zoster virus, rabies virus, human immunodeficiency virus, and reovirus. Apoptosis has also been observed in human African trypanosomiasis which is an infection caused by a protozoan parasite. The mechanisms leading to apoptosis may differ depending on the type of infection. Apoptosis has been reported in several neurodegenerative diseases and also psychiatric disorders but the true clinical significance of such observations is not certain, and, though interesting, it is very difficult to ascribe causation in these conditions. The presence of inflammation in the central nervous system in any neurological condition, including those associated with a viral infection, is not necessarily an absolute marker of serious disease and the notion of 'good' versus 'bad' inflammation is considered to be valid in some circumstances. The precise relationship between viruses, apoptosis, and inflammation is viewed as a complex one requiring further investigation to unravel and understand its nature.
Collapse
Affiliation(s)
- Peter G E Kennedy
- Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow University, Glasgow, G51 4TF, Scotland, UK,
| |
Collapse
|
5
|
Hoare J, Ransford GL, Phillips N, Amos T, Donald K, Stein DJ. Systematic review of neuroimaging studies in vertically transmitted HIV positive children and adolescents. Metab Brain Dis 2014; 29:221-9. [PMID: 24338026 DOI: 10.1007/s11011-013-9456-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/21/2013] [Indexed: 11/29/2022]
Abstract
One of the most serious consequences of vertical HIV-infection is its impact on the central nervous system (CNS). Although much work has been done to elucidate the complex mechanism of HIV associated neurotoxicity, several questions remain unanswered. The purpose of this review is to summarise what is already known in the field of neuroimaging in vertically acquired HIV, addressing three aims and to highlight possible future directions in using neuroimaging and neurocognitive testing to understand the spectrum of neurocognitive disorders in HIV positve children. Here we aim to address several clinically relevant questions in pediatric neuroHIV, using the current evidence base by conducting a systematic review. We aim to investigate what is known about the relationship between cognitive impairment and central nervous system damage in HIV as seen in neuroimaging studies, and to search for any evidence in the current literature which suggests a spectrum of neuocognitive disorders in vertically infected HIV. Secondly, we aim to enquire whether children with a clinical diagnosis of encephalopathy are clearly distinguishable from HIV positive children without encephalopathy on neuroimaging and neurocognitive testing. Finally aim to investigate what is known about the effect on the CNS of antiretroviral therapy in paediatric HIV. Three separate databases were searched and two investigators systematically evaluated the titles, abstracts, and keywords associated with each individual article to determine those that may have met the inclusion and exclusion criteria. Following this process 11 studies were included in the review. Thus there was limited available data to address the 3 questions posed.
Collapse
Affiliation(s)
- Jacqueline Hoare
- Department of Psychiatry and Mental Health, University of Cape Town, Anzio Road Observatory, 7925, Cape Town, South Africa,
| | | | | | | | | | | |
Collapse
|
6
|
Miller F, Afonso PV, Gessain A, Ceccaldi PE. Blood-brain barrier and retroviral infections. Virulence 2012; 3:222-9. [PMID: 22460635 PMCID: PMC3396701 DOI: 10.4161/viru.19697] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Homeostasis in the central nervous system (CNS) is maintained by active interfaces between the bloodstream and the brain parenchyma. The blood-brain barrier (BBB) constitutes a selective filter for exchange of water, solutes, nutrients, and controls toxic compounds or pathogens entry. Some parasites, bacteria, and viruses have however developed various CNS invasion strategies, and can bypass the brain barriers. Concerning viruses, these strategies include transport along neural pathways, transcytosis, infection of the brain endothelial cells, breaching of the BBB, and passage of infected-leukocytes. Moreover, neurotropic viruses can alter BBB functions, thus compromising CNS homeostasis. Retroviruses have been associated to human neurological diseases: HIV (human immunodeficiency virus 1) can induce HIV-associated dementia, and HTLV-1 (human T lymphotropic virus 1) is the etiological factor of tropical spastic paraparesis/HTLV-1 associated myelopathy (TSP/HAM). The present review focuses on how the different retroviruses interact with this structure, bypass it and alter its functions.
Collapse
Affiliation(s)
- Florence Miller
- School of Pharmaceutical Sciences, University of Geneva-University of Lausanne, Geneva, Switzerland
| | | | | | | |
Collapse
|
7
|
Grover VPB, Pavese N, Koh SB, Wylezinska M, Saxby BK, Gerhard A, Forton DM, Brooks DJ, Thomas HC, Taylor-Robinson SD. Cerebral microglial activation in patients with hepatitis C: in vivo evidence of neuroinflammation. J Viral Hepat 2012; 19:e89-96. [PMID: 22239531 DOI: 10.1111/j.1365-2893.2011.01510.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Patients with chronic hepatitis C infection may exhibit neuropsychological symptoms and cognitive impairment. Post-mortem studies of hepatitis C virus HCV quasispecies and replicative intermediates indicate that the brain might act as a separate compartment for viral replication and microglia may be the locus for infection and subsequent neuroinflammatory activity. We sought to use two independent in vivo imaging techniques to determine evidence of neuroinflammation in patients with histologically mild chronic hepatitis C. Using positron emission tomography (PET) with a ligand for microglial/brain macrophage activation, (11)C-(R)-PK11195 (PK11195) and cerebral proton magnetic resonance spectroscopy, we determined whether there was evidence of neuroinflammation in a pilot study of 11 patients with biopsy-proven mild chronic hepatitis C, compared to healthy volunteers. Patients were characterized by cognitive testing and the fatigue impact scale to assess for CNS impairment. PK11195 binding potential was significantly increased in the caudate nucleus of patients, compared to normal controls (P = 0.03). The caudate and thalamic binding potential were more significantly increased in six patients with genotype 1 infection (P = 0.007) and positively correlated with viraemia (r = 0.77, P = 0.005). Basal ganglia myo-inositol/creatine and choline/creatine ratios were also significantly elevated in patients with chronic hepatitis C compared to normal controls (P = 0.0004 and P = 0.01, respectively). Using PET, we demonstrated evidence of microglial activation, which positively correlated with HCV viraemia and altered cerebral metabolism in the brains of patients with mild hepatitis C. This provides further in vivo evidence for a neurotropic role for HCV.
Collapse
Affiliation(s)
- V P B Grover
- Liver Unit, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
It is becoming increasingly evident that peripheral organ-centered inflammatory diseases, including chronic inflammatory liver diseases, are associated with changes in central neural transmission that result in alterations in behavior. These behavioral changes include sickness behaviors, such as fatigue, cognitive dysfunction, mood disorders, and sleep disturbances. While such behaviors have a significant impact on quality of life, the changes within the brain and the communication pathways between the liver and the brain that give rise to changes in central neural activity are not fully understood. Traditionally, neural and humoral communication pathways have been described, with the three cytokines TNFα, IL-1β, and IL-6 receiving the most attention in mediating communication between the periphery and the brain, in the setting of peripheral inflammation. However, more recently, we described an immune-mediated communication pathway in experimentally induced liver inflammation whereby, in response to activation of resident immune cells in the brain (i.e., the microglia), peripheral circulating monocytes transmigrate into the brain, leading to development of sickness behaviors. These signaling pathways drive changes in behavior by altering central neurotransmitter systems. Specifically, changes in serotonergic and corticotropin-releasing hormone neurotransmission have been demonstrated and implicated in liver inflammation-associated sickness behaviors. Understanding how the liver communicates with the brain in the setting of chronic inflammatory liver diseases will help delineate novel therapeutic targets that can reduce the burden of symptoms in patients with liver disease.
Collapse
Affiliation(s)
- Charlotte D'Mello
- Snyder Institute of Infection, Immunity, and Inflammation, Liver Unit, Department of Medicine, University of Calgary, Alberta, Canada
| | | |
Collapse
|
9
|
Govender R, Eley B, Walker K, Petersen R, Wilmshurst JM. Neurologic and neurobehavioral sequelae in children with human immunodeficiency virus (HIV-1) infection. J Child Neurol 2011; 26:1355-64. [PMID: 21616924 DOI: 10.1177/0883073811405203] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The range and extent of neurologic and neurobehavioral complications of human immunodeficiency virus (HIV-1) infection in children are under-described. Seventy-eight children with HIV-1 infection (32 females) were assessed for neurologic complications. Forty-six children had abnormal neurology examinations. Thirty-three children had global pyramidal tract signs, 5 had a hemiparesis, 4 had peripheral neuropathy, 18 had visual impairment, and 5 had hearing impairment. Thirty-nine of 63 children over 1 year of age had neurobehavioral problems. Of 24 children with HIV encephalopathy, 74% had severe immunosuppression and 45% were not receiving antiretroviral therapy. Twelve children had prior opportunistic central nervous system infections, and 9 had epilepsy. Diverse neurologic and neurobehavioral deficits are common in children with HIV-1 infection. Children with severe immunosuppression, who were not receiving antiretroviral therapy, were growth impaired and less than 1 year of age, were at greatest risk for developing neurologic complications.
Collapse
Affiliation(s)
- Rajeshree Govender
- Department of Paediatric Neurology, Red Cross Children's Hospital, School of Child and Adolescent Health, University of Cape Town, South Africa.
| | | | | | | | | |
Collapse
|
10
|
Ratai EM, Pilkenton S, He J, Fell R, Bombardier JP, Joo CG, Lentz MR, Kim WK, Burdo TH, Autissier P, Annamalai L, Curran E, O'Neil SP, Westmoreland SV, Williams KC, Masliah E, Gilberto González R. CD8+ lymphocyte depletion without SIV infection does not produce metabolic changes or pathological abnormalities in the rhesus macaque brain. J Med Primatol 2011; 40:300-9. [PMID: 21463330 DOI: 10.1111/j.1600-0684.2011.00475.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Simian immunodeficiency virus (SIV) infection and persistent CD8(+) lymphocyte depletion rapidly leads to encephalitis and neuronal injury. The objective of this study is to confirm that CD8 depletion alone does not induce brain lesions in the absence of SIV infection. METHODS Four rhesus macaques were monitored by proton magnetic resonance spectroscopy ((1) H-MRS) before and biweekly after anti-CD8 antibody treatment for 8 weeks and compared with four SIV-infected animals. Post-mortem immunohistochemistry was performed on these eight animals and compared with six uninfected, non-CD8-depleted controls. RESULTS CD8-depleted animals showed stable metabolite levels and revealed no neuronal injury, astrogliosis or microglial activation in contrast to SIV-infected animals. CONCLUSIONS Alterations observed in MRS and lesions in this accelerated model of neuroAIDS result from unrestricted viral expansion in the setting of immunodeficiency rather than from CD8(+) lymphocyte depletion alone.
Collapse
Affiliation(s)
- E-M Ratai
- Neuroradiology Division and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chen L, Swartz KR, Toborek M. Vessel microport technique for applications in cerebrovascular research. J Neurosci Res 2009; 87:1718-27. [PMID: 19115415 DOI: 10.1002/jnr.21973] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cerebrovascular research suffers from a lack of reliable methods with which to deliver exogenous substances effectively into the central nervous system (CNS) of small experimental animals. Here we describe a novel vessel microport surgical technique for a variety of cerebrovascular applications that is reproducible and well tolerated in mice. The procedure is based on the insertion of a vessel microport into the external carotid artery for substance delivery into the CNS via the internal carotid artery. The method results in selective substance delivery into the ipsilateral hemisphere. Other novel aspects of this surgical technique include the ability to perform multiple injections, study of conscious mice well removed from surgery, and lack of occlusion of the common or internal carotid artery that allows carotid flow to be maintained. The feasibility of this technique has been validated by infusion of HIV Tat protein to induce permeability of the blood-brain barrier and by implantation of tumor cells to establish a brain metastasis model. Thus, the described vessel microport technique can be employed in a variety of cerebrovascular research applications.
Collapse
Affiliation(s)
- Lei Chen
- Molecular Neuroscience and Vascular Biology Laboratory, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|
12
|
Huang W, Eum SY, András IE, Hennig B, Toborek M. PPARalpha and PPARgamma attenuate HIV-induced dysregulation of tight junction proteins by modulations of matrix metalloproteinase and proteasome activities. FASEB J 2009; 23:1596-606. [PMID: 19141539 DOI: 10.1096/fj.08-121624] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The blood-brain barrier (BBB) plays an important role in HIV trafficking into the brain and the development of the central nervous system complications in HIV infection. Tight junctions are the main structural and functional elements that regulate the BBB integrity. Exposure of human brain microvascular endothelial cells (hCMEC/D3 cell line) to HIV-infected monocytes resulted in decreased expression of tight junction proteins, such as junctional adhesion molecule-A (JAM)-A, occludin, and zonula occludens (ZO)-1. Control experiments involved exposure to uninfected monocytes. Alterations of tight junction protein expression were associated with increased endothelial permeability and elevated transendothelial migration of HIV-infected monocytes across an in vitro model of the BBB. Notably, overexpression of the peroxisome proliferator-activated receptor (PPAR)alpha or PPARgamma attenuated HIV-mediated dysregulation of tight junction proteins. With the use of exogenous PPARgamma agonists and silencing of PPARalpha or PPARgamma, these protective effects were connected to down-regulation of matrix metalloproteinase (MMP) and proteasome activities. Indeed, the HIV-induced decrease in the expression of JAM-A and occludin was restored by inhibition of MMP activity. Moreover, both MMP and proteasome inhibitors attenuated HIV-mediated altered expression of ZO-1. The present data indicate that down-regulation of MMP and proteasome activities constitutes a novel mechanism of PPAR-induced protections against HIV-induced disruption of brain endothelial cells.
Collapse
Affiliation(s)
- Wen Huang
- Molecular Neuroscience and Vascular Biology Laboratory, Department of Neurosurgery, University of Kentucky Medical Center, 593 Wethington Bldg., 900 S Limestone, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
13
|
Lentz MR, Lee V, Westmoreland SV, Ratai EM, Halpern EF, González RG. Factor analysis reveals differences in brain metabolism in macaques with SIV/AIDS and those with SIV-induced encephalitis. NMR IN BIOMEDICINE 2008; 21:878-887. [PMID: 18574793 PMCID: PMC2562421 DOI: 10.1002/nbm.1276] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
MRS has often been used to study metabolic processes in the HIV-infected brain. However, it remains unclear how changes in individual metabolites are related to one another in this context of virus-induced central nervous system dysfunction. We used factor analysis (FA) to identify patterns of metabolite distributions from an MRS study of healthy macaques and those infected with simian immunodeficiency virus (SIV) which were moribund with AIDS. FA summarized the correlations from nine metabolites into three main factors. Factor 3 identified patterns that discern healthy animals from those with SIV/AIDS. Factor 2 was able to differentiate between animals that had encephalitis and those moribund with AIDS but lacking encephalitis. Specifically, Factor 2 was able to distinguish animals with moderate to severe encephalitis from animals with mild or no encephalitis as well as uninfected controls. FA not only confirmed the involvement of neuronal metabolites (N-acetylaspartate and glutamate) in disease severity, but also detected changes in creatine and myo-inositol that have not been observed in the SIV macaque model previously. These results suggest that the divergent pathways of N-acetylaspartate and creatine in this disease may enable the commonly reported ratio N-acetylaspartate/creatine to be a more sensitive marker of disease severity.
Collapse
Affiliation(s)
- Margaret R. Lentz
- Department of Neuroradiology/A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Vallent Lee
- Department of Neuroradiology/A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | - Eva-Maria Ratai
- Department of Neuroradiology/A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Elkan F. Halpern
- Department of Neuroradiology/A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - R. Gilberto González
- Department of Neuroradiology/A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
14
|
Cerebral immune activation in chronic hepatitis C infection: a magnetic resonance spectroscopy study. J Hepatol 2008; 49:316-22. [PMID: 18538439 DOI: 10.1016/j.jhep.2008.03.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2008] [Accepted: 03/06/2008] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS Abnormal cerebral metabolism and cognitive impairments have been reported in patients with chronic hepatitis C (HCV) but studies have failed to demonstrate a relationship between these findings. METHODS Twenty-five HCV-positive patients with histologically-mild liver disease were studied with cerebral proton magnetic resonance spectroscopy (MRS), using acquisition parameters to quantify myo-inositol (mI) and other metabolites in frontal white matter (FWM). Patients underwent automated attention and working memory tests (Cognitive Drug Research test system). RESULTS The mean mI/ creatine ratio in the HCV+ve patients (0.64, SD 0.21) was significantly higher (p=0.02) than in healthy controls (0.52, SD 0.10). On cognitive testing, the HCV+ve patients showed impairments in 2/4 composite scores, reflecting working memory and attention, compared to normative data from healthy volunteers (p<0.005) and HCV-ve controls (p=0.03). There was a significant association between elevated FWM mI/creatine and prolonged working memory reaction times (R=0.72, p=0.002). CONCLUSIONS Elevated FWM mI/ creatine is a feature of HIV-related minor cognitive-motor disorder. It is associated with infection and immune activation of microglial cells. The similar findings in this study suggest that cerebral immune activation may also occur in HCV infection. This may underlie the mild neurocognitive impairment and neuropsychological symptoms observed in a proportion of patients.
Collapse
|
15
|
Price RW, Spudich S. Antiretroviral therapy and central nervous system HIV type 1 infection. J Infect Dis 2008; 197 Suppl 3:S294-306. [PMID: 18447615 DOI: 10.1086/533419] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Central nervous system (CNS) human immunodeficiency virus type 1 (HIV-1) infection begins during primary viremia and continues throughout the course of untreated systemic infection. Although frequently accompanied by local inflammatory reactions detectable in cerebrospinal fluid (CSF), CNS HIV-1 infection usually is not clinically apparent. In a minority of patients, CNS HIV-1 infection evolves into encephalitis during the late stages of systemic infection, which compromises brain function and presents clinically as acquired immunodeficiency syndrome dementia complex (ADC). Combination antiretroviral therapy (ART) has had a major impact on all aspects of CNS HIV-1 infection and disease. In those with asymptomatic infection, ART usually effectively suppresses HIV-1 in CSF and markedly reduces the incidence of symptomatic ADC. In those presenting with ADC, ART characteristically prevents neurological progression and leads to variable, and at times substantial, recovery. Similarly, treatment has reduced CNS opportunistic infections. With better control of these severe disorders, attention has turned to the possible consequences of chronic silent infection and the issue of whether indolent, low-grade brain injury might require earlier treatment intervention.
Collapse
Affiliation(s)
- Richard W Price
- Department of Neurology, University of California-San Francisco, San Francisco General Hospital, 1001 Potrero Avenue, San Francisco, CA 94117, USA.
| | | |
Collapse
|
16
|
Lentz MR, Westmoreland SV, Lee V, Ratai EM, Halpern EF, González RG. Metabolic markers of neuronal injury correlate with SIV CNS disease severity and inoculum in the macaque model of neuroAIDS. Magn Reson Med 2008; 59:475-84. [PMID: 18306400 DOI: 10.1002/mrm.21556] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In vivo MR spectroscopy (MRS) studies have shown reductions in NAA/Cr levels in patients with severe neurocognitive deficits due to AIDS dementia complex (ADC), also known as neuroAIDS. The relationship between the cellular changes within the brain during neuroAIDS and the role of NAA/Cr as a metabolic marker remains unclear. In order to clarify the relationship between NAA/Cr and disease severity we utilized the simian immunodeficiency virus (SIV)/macaque model of encephalitis. High-field proton MRS was performed on extracted metabolites from frontal cortex tissue samples of 29 rhesus macaques (6 healthy, 23 moribund with AIDS). Neuropathologic determination of encephalitis severity for each animal was completed and was found to correlate with NAA/Cr levels. Decreases in Glu/Cr and GABA/Cr may indicate that both excitatory and inhibitory neurons are affected. Highly significant correlations between NAA/Cr, Glu/Cr, and GABA/Cr were observed. These neuronal metabolites were also decreased in the absence of classical SIV encephalitis (SIVE). At any disease classification, animals inoculated with SIVmac251 were found to have lower levels of NAA/Cr than animals inoculated with SIVmac239. In considering therapy for neuroAIDS the findings here support prevention of the encephalitic process, but suggest that suppressing the formation of multinucleated giant cells alone would be insufficient to prevent neuronal injury.
Collapse
Affiliation(s)
- Margaret R Lentz
- Massachusetts General Hospital, Department of Neuroradiology, Boston, Massachusetts 02114-2696, USA
| | | | | | | | | | | |
Collapse
|
17
|
De Keyser J, Mostert JP, Koch MW. Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J Neurol Sci 2008; 267:3-16. [DOI: 10.1016/j.jns.2007.08.044] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Revised: 08/29/2007] [Accepted: 08/30/2007] [Indexed: 11/29/2022]
|
18
|
Limited role of COX-2 in HIV Tat-induced alterations of tight junction protein expression and disruption of the blood-brain barrier. Brain Res 2007; 1184:333-44. [PMID: 17976544 DOI: 10.1016/j.brainres.2007.09.063] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Revised: 09/21/2007] [Accepted: 09/24/2007] [Indexed: 12/30/2022]
Abstract
Tat protein released from HIV-infected blood-borne leukocytes can contribute to the breakdown of the blood-brain barrier (BBB) and induction of inflammatory responses and can provide entry for HIV into the brain. To mimic this pathology, Tat was injected into the tail vein of C57BL/6 mice. Treatment with Tat markedly upregulated expression of cyclooxygenase-2 (COX-2) and decreased expression of tight junction proteins, occludin and zonula occludens-1 (ZO-1). These alterations were associated with the disruption of the BBB integrity as quantified by extravasation of Evans blue dye into the brain tissue. In addition, direct treatment of brain microvessels with prostaglandin E(2), a product of COX-2 activity, resulted in decreased expression of both occludin and ZO-1. To determine if upregulation of COX-2 is involved in the disruption of tight junction proteins and BBB integrity, mice were pretreated with rofecoxib, a specific inhibitor of COX-2, prior to Tat treatment. COX-2 inhibition attenuated Tat-induced alterations of occludin expression. However, rofecoxib was ineffective in preventing downregulation of ZO-1 expression and increased BBB permeability. These results suggest only a limited role of COX-2 overexpression in the loss of tight junction integrity and the BBB breakdown in HIV-related brain diseases.
Collapse
|
19
|
Wiley CA, Lopresti BJ, Becker JT, Boada F, Lopez OL, Mellors J, Meltzer CC, Wisniewski SR, Mathis CA. Positron emission tomography imaging of peripheral benzodiazepine receptor binding in human immunodeficiency virus-infected subjects with and without cognitive impairment. J Neurovirol 2006; 12:262-71. [PMID: 16966217 DOI: 10.1080/13550280600873868] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The pathology associated with late-stage dementia in human immunodeficiency virus (HIV) infection has been studied extensively. Neuropathological examination has demonstrated abundant activation and infection of macrophages/microglia termed HIV encephalitis. For obvious reasons, less is known regarding the neuropathology of minor cognitive impairment seen in earlier stages of HIV infection. The authors examined the utility of the peripheral benzodiazepine receptor ligand PK11195 in positron emission tomography (PET) imaging to assess microglial/macrophage activation in the brains of HIV-infected subjects with minor neurocognitive impairment in a cross-sectional study of 12 HIV infected individuals and 5 age-matched noninfected controls. Subjects were given a battery of neuropsychological tests in addition to assessing CD4 T-cell count and peripheral viremia followed by contrast enhanced magnetic resonance imaging (MRI) and PET with [15O]H2O followed by [11C](R)-PK11195. Two of the six neurocognitively impaired HIV-infected subjects demonstrated plasma viral breakthrough, whereas only one of six nonimpaired individuals demonstrated plasma viral load near the limits of detection. MRI demonstrated no abnormal enhancement and although atrophy was more prominent in impaired subjects, it was also present though to a lesser extent in nonimpaired subjects. None of the 12 HIV-infected subjects demonstrated increased retention of [11C](R)-PK11195 in the brain parenchyma compared to the 5 controls. These results suggest that either [11C](R)-PK11195 PET assessment is insensitive to the degree of macrophage activation in HIV-associated minor neurocognitive impairment or macrophage activation is not the pathological substrate of this neurological condition.
Collapse
Affiliation(s)
- Clayton A Wiley
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Keyserling H, Mukundan S. The Role of Conventional MR and CT in the Work-Up of Dementia Patients. Magn Reson Imaging Clin N Am 2006; 14:169-82. [PMID: 16873009 DOI: 10.1016/j.mric.2006.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Dementia is a clinical syndrome with many causes. There often is overlap in the clinical manifestations of various forms of dementia, making them difficult to categorize. Neuroimaging can play an important role in distinguishing one form of dementia from another. Advanced imaging techniques continue to provide greater insight into the underlying pathologic processes in patients who have dementia. Conventional MRI and CT, however, still can contribute useful information when interpreting radiologists are familiar with the patterns of volume loss and signal or density changes that are characteristic of various forms of dementia.
Collapse
Affiliation(s)
- Harold Keyserling
- Department of Radiology, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
21
|
González RG, Greco JB, He J, Lentz MR, O'Neil S, Pilkenton SJ, Ratai EM, Westmoreland S. New insights into the neuroimmunity of SIV infection by magnetic resonance spectroscopy. J Neuroimmune Pharmacol 2006; 1:152-9. [PMID: 18040781 DOI: 10.1007/s11481-006-9016-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 02/15/2006] [Indexed: 10/24/2022]
Abstract
(1)H magnetic resonance spectroscopy (MRS) was employed to noninvasively monitor neuronal injury in eight rhesus macaques infected with simian immunodeficiency virus (SIV), whose immune system was compromised by CD8 T lymphocyte depletion and treated with highly active antiretroviral therapy (HAART). SIV infection and CD8 depletion resulted in a rapid decline in cerebral N-acetylaspartate (NAA) levels, a sensitive marker of neuronal health. Within 3 months of SIV infection and CD8 depletion, four animals developed AIDS and severe SIV encephalitis. The other four macaques underwent daily doses of HAART beginning 4 weeks after infection/CD8 depletion. HAART involved drugs that do not penetrate the central nervous system (CNS) including 9-[2(R)-(phosphonomethoxy)propyl]adenine and a racemic mixture of D: -L: -enantiomers of 2',3'-dideoxy-5-fluoro-3'thiacytidine. HAART resulted in reversal of NAA/Cr decline after 4 weeks of therapy, and no virus or encephalitis was found in brain samples analyzed. These results indicate that the CNS injury in AIDS is entirely dependent on events involving the peripheral immune system mediated by trafficking of SIV-infected monocytes into the brain. The rapid decline in NAA/Cr with SIV infection/CD8 depletion and its rapid recovery with HAART suggest that: (1) infected monocyte turnover in the CNS is rapid, occurring in days to weeks; (2) there are endogenous mechanisms that reverse neuronal injury; and (3) a threshold level of infected monocytes/macrophages in the CNS is required to overcome the neuronal recovery processes. These observations explain the clinical success of antiretroviral therapy in reducing the incidence of HIV-associated dementia and minor cognitive/motor disorder and suggest novel targets for drug development.
Collapse
|
22
|
Keyserling H, Mukundan S. The role of conventional MR and CT in the work-up of dementia patients. Neuroimaging Clin N Am 2006; 15:789-802, x. [PMID: 16443491 DOI: 10.1016/j.nic.2005.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neuroimaging can play an important role in distinguishing one form of dementia from another. Advanced imaging techniques continue to provide greater insight into the underlying pathologic processes in patients who have dementia. Conventional MRI and CT, however, can contribute useful information when interpreting radiologists are familiar with the patterns of volume loss and signal or density changes that are characteristic of various forms of dementia.
Collapse
Affiliation(s)
- Harold Keyserling
- Department of Radiology, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
23
|
Forton DM, Allsop JM, Cox IJ, Hamilton G, Wesnes K, Thomas HC, Taylor-Robinson SD. A review of cognitive impairment and cerebral metabolite abnormalities in patients with hepatitis C infection. AIDS 2005; 19 Suppl 3:S53-63. [PMID: 16251829 DOI: 10.1097/01.aids.0000192071.72948.77] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Numerous studies have reported associations between chronic hepatitis C virus (HCV) infection and fatigue, depression and impairments in health-related quality of life, which are independent of the severity of liver disease. Although there are a large number of potential explanations for these symptoms, including a history of substance abuse and associated personality types, or the effect of the diagnosis of HCV infection itself, there has been recent interest in the possibility of a biological effect of HCV infection on cerebral function. There is emerging evidence of mild, but significant neurocognitive impairment in HCV infection, which cannot be wholly attributed to substance abuse, co-existent depression or hepatic encephalopathy. Impairments are predominantly in the domains of attention, concentration and information processing speed. Furthermore, in-vivo cerebral magnetic resonance spectroscopy studies in patients with hepatitis C and normal liver function have reported elevations in cerebral choline-containing compounds and reductions in N-acetyl aspartate, suggesting that a biological mechanism may underlie the cognitive findings. The recent detection of HCV genetic sequences in post-mortem brain tissue raises the intriguing possibility that HCV infection of the central nervous system may be related to the reported neuropsychological symptoms and cognitive impairment.
Collapse
Affiliation(s)
- Daniel M Forton
- Liver Unit, Division of Medicine, Faculty of Medicine, Imperial College London, St Mary's Hospital Campus, London, UK.
| | | | | | | | | | | | | |
Collapse
|
24
|
Ragin AB, Wu Y, Storey P, Cohen BA, Edelman RR, Epstein LG. Diffusion tensor imaging of subcortical brain injury in patients infected with human immunodeficiency virus. J Neurovirol 2005; 11:292-8. [PMID: 16036809 PMCID: PMC2365899 DOI: 10.1080/13550280590953799] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Diffusion tensor imaging (DTI) was used to derive in vivo tissue status measurements of subcortical brain regions that are vulnerable to injury in human immunodeficiency virus (HIV)-infected patients. Quantitative measurements, including the mean diffusivity (MD) and fractional anisotropy (FA), were determined in lateralized basal ganglia (caudate and putamen) and centrum semiovale in 11 well-characterized HIV patients and in 11 control subjects. DTI measurements were examined for patterns of relationship with markers of clinical and cognitive progression. DTI measures acquired in subcortical regions were significantly correlated with loss of function in specific cognitive domains. Significant relationships were identified between measures for putamen and verbal memory (MD), visual memory (FA), working memory (FA), and overall cognitive impairment (MD). Measures for caudate (FA) were significantly correlated with visual memory. Measures for centrum semiovale were significantly correlated with visual memory deficits (MD) and visuoconstruction (FA). Relationships between anisotropy measures and anemia (basal ganglia) and CD4 counts (centrum semiovale) were also observed. Findings from this investigation indicate that DTI is a sensitive tool for correlating neuroanatomic pathologic features with specific cognitive deficits in patients with HIV infection.
Collapse
Affiliation(s)
- Ann B Ragin
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-2927, USA.
| | | | | | | | | | | |
Collapse
|
25
|
András IE, Pu H, Tian J, Deli MA, Nath A, Hennig B, Toborek M. Signaling mechanisms of HIV-1 Tat-induced alterations of claudin-5 expression in brain endothelial cells. J Cereb Blood Flow Metab 2005; 25:1159-70. [PMID: 15815581 DOI: 10.1038/sj.jcbfm.9600115] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exposure of brain microvascular endothelial cells (BMEC) to human immunodeficiency virus-1 (HIV-1) Tat protein can decrease expression and change distribution of tight junction proteins, including claudin-5. Owing to the importance of claudin-5 in maintaining the blood-brain barrier (BBB) integrity, the present study focused on the regulatory mechanisms of Tat-induced alterations of claudin-5 mRNA and protein levels. Real-time reverse-transcription-polymerase chain reaction revealed that claudin-5 mRNA was markedly diminished in BMEC exposed to Tat. However, U0126 (an inhibitor of mitogen-activated protein kinase kinase1/2, MEK1/2) protected against this effect. In addition, inhibition of the vascular endothelial growth factor receptor type 2 (VEGFR-2) by SU1498, phosphatidylinositol-3 kinase (PI-3 K) by LY294002, nuclear factor-kappaB (NF-kappaB) by peptide SN50, and intracellular calcium by BAPTA/AM partially prevented Tat-mediated alterations in claudin-5 protein levels and immunoreactivity patterns. In contrast, inhibition of protein kinase C did not affect claudin-5 expression in Tat-treated cells. The present findings indicate that activation of VEGFR-2 and multiple redox-regulated signal transduction pathways are involved in Tat-induced alterations of claudin-5 expression. Because claudins constitute the major backbone of tight junctions, the present data are relevant to the disturbances of the BBB in the course of HIV-1 infection.
Collapse
Affiliation(s)
- Ibolya E András
- Department of Surgery, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Avison MJ, Nath A, Greene-Avison R, Schmitt FA, Greenberg RN, Berger JR. Neuroimaging correlates of HIV-associated BBB compromise. J Neuroimmunol 2005; 157:140-6. [PMID: 15579291 DOI: 10.1016/j.jneuroim.2004.08.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2004] [Indexed: 11/26/2022]
Abstract
The mechanisms underlying blood-brain barrier (BBB) compromise in human immunodeficiency virus (HIV) infection and the ways in which BBB compromise might impair neurocognitive function remain poorly understood. This study had two aims: (1) to examine the relationship between BBB breakdown, measured using contrast-enhanced magnetic resonance imaging (CE-MRI), plasma viral load, and neurological status; and (2) to examine the influence of highly active antiretroviral therapy (HAART) on the relationship between neuroinflammation using myoinositol/creatine (mI/Cr), a surrogate marker of glial activation as measured by magnetic resonance spectroscopy (MRS), and BBB compromise determined by CE-MRI. In 25 HIV-infected patients, we found that: (1) the severity of neurocognitive impairment correlated with the degree of BBB breakdown in the basal ganglia; (2) for any given degree of BBB compromise, patients with high plasma viral load were more severely impaired; (3) BBB compromise correlated with mI/Cr in the basal ganglia; and (4) for any given level of mI/Cr, the severity of BBB compromise and the severity of neurocognitive impairment were significantly less in patients on HAART than in those who were HAART-naive. These results confirm a role for BBB compromise in the pathogenesis of HIV-associated neurocognitive impairment and suggest that elevated plasma viral load in the presence of BBB compromise may increase the risk for development of HIV-associated dementia (HAD). Additionally, they suggest a salutary effect of HAART on the incidence and severity of HAD, which may, in part, be due to protection of BBB integrity.
Collapse
Affiliation(s)
- Malcolm J Avison
- Department of Neurology, University of Kentucky Medical Center,Lexington, KY, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Toborek M, Lee YW, Flora G, Pu H, András IE, Wylegala E, Hennig B, Nath A. Mechanisms of the blood-brain barrier disruption in HIV-1 infection. Cell Mol Neurobiol 2005; 25:181-99. [PMID: 15962513 DOI: 10.1007/s10571-004-1383-x] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
(1) Alterations of brain microvasculature and the disruption of the blood-brain barrier (BBB) integrity are commonly associated with human immunodeficiency virus type 1 (HIV-1) infection. These changes are most frequently found in human immunodeficiency virus-related encephalitis (HIVE) and in human immunodeficiency virus-associated dementia (HAD). (2) It has been hypothesized that the disruption of the BBB occurs early in the course of HIV-1 infection and can be responsible for HIV-1 entry into the CNS. (3) The current review discusses the mechanisms of injury to brain endothelial cells and alterations of the BBB integrity in HIV-infection with focus on the vascular effects of HIV Tat protein. In addition, this review describes the mechanisms of the BBB disruption due to HIV-1 or Tat protein interaction with selected risk factors for HIV infection, such as substance abuse and aging.
Collapse
Affiliation(s)
- Michal Toborek
- Department of Surgery, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Avison MJ, Nath A, Greene-Avison R, Schmitt FA, Bales RA, Ethisham A, Greenberg RN, Berger JR. Inflammatory changes and breakdown of microvascular integrity in early human immunodeficiency virus dementia. J Neurovirol 2005; 10:223-32. [PMID: 15371152 DOI: 10.1080/13550280490463532] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Increased postcontrast enhancement in contrast-enhanced magnetic resonance imaging (CE-MRI) of the central nervous system (CNS) is a predictor of human immunodeficiency virus (HIV) dementia severity in HIV-infected subjects. The present study confirms this earlier finding in a mildly impaired patient cohort, and demonstrates that the increased postcontrast enhancement is correlated with increased cerebrospinal fluid (CSF) levels of monocyte chemoattractant protein (MCP)-1, an inflammatory chemokine, and increased CNS levels of mI, a microglial marker. These results suggest that early CNS inflammation may underlie the microvascular changes observed, and may be a factor in the development of HIV dementia.
Collapse
Affiliation(s)
- Malcolm J Avison
- Department of Neurology, University of Kentucky Medical Center, Lexington, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Greco JB, Westmoreland SV, Ratai EM, Lentz MR, Sakaie K, He J, Sehgal PK, Masliah E, Lackner AA, González RG. In vivo 1H MRS of brain injury and repair during acute SIV infection in the macaque model of neuroAIDS. Magn Reson Med 2004; 51:1108-14. [PMID: 15170829 DOI: 10.1002/mrm.20073] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The metabolic response of the rhesus macaque brain during acute simian immunodeficiency virus (SIV) infection was investigated with in vivo (1)H MR spectroscopy. Fifteen rhesus macaques were studied before inoculation, and once or twice after infection. In all, 13/15 macaques had elevations of Cho/NAA at 11-13 days postinoculation (dpi); all 10 macaques measured after 13 dpi had subsequent reduction of this ratio (ANOVA, P < 10(-6)). There were significant increases in Cho/Cr (20%, P = 0.04) and MI/Cr (14%, P = 0.003) at 11 dpi. At 13 dpi a 7.7% decrease (P = 0.02) in NAA/Cr was observed, while Cho/Cr was no longer significantly different from baseline. At 27 dpi Cho/Cr was decreased to 18% (P = 0.004) below preinoculation values, while NAA/Cr and MI/Cr were at baseline values. Absolute concentrations of Cho, MI, and NAA showed a similar time course, with no observed changes in Cr. There was a strong correlation between Cho/Cr change and plasma viral load (r(s) = 0.79, P < 0.01). Acute SIV produces extensive metabolic abnormalities in the brain, which may reflect inflammation and neuronal injury, which are reversed with immunological control of the virus. Similar events are likely to occur in acutely HIV-infected people, and may explain the neurobehavioral symptoms associated with acute HIV infection.
Collapse
Affiliation(s)
- Jane B Greco
- Massachusetts General Hospital NMR Center and Neuroradiology Division, Charlestown, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Venneti S, Lopresti BJ, Wang G, Bissel SJ, Mathis CA, Meltzer CC, Boada F, Capuano S, Kress GJ, Davis DK, Ruszkiewicz J, Reynolds IJ, Murphey-Corb M, Trichel AM, Wisniewski SR, Wiley CA. PET imaging of brain macrophages using the peripheral benzodiazepine receptor in a macaque model of neuroAIDS. J Clin Invest 2004; 113:981-9. [PMID: 15057304 PMCID: PMC379322 DOI: 10.1172/jci20227] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Accepted: 01/20/2004] [Indexed: 11/17/2022] Open
Abstract
HIV infection in humans and simian immunodeficiency virus (SIV) infection in macaques result in encephalitis in approximately one-quarter of infected individuals and is characterized by infiltration of the brain with infected and activated macrophages. 1-(2-chlorphenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline-carboxamide (PK11195) is a ligand specific for the peripheral benzodiazepine receptor abundant on macrophages and is expressed in low levels in the noninfected brain. We hypothesized that positron-emission tomography (PET) with the carbon-11-labeled, R-enantiomer form of PK11195 ([(11)C](R)-PK11195) could image brain macrophages and hence the development of encephalitis in vivo. [(11)C](R)-PK11195 binding was assessed in the brain using PET in 11 SIV infected macaques, six of which showed increased binding in vivo. Postmortem examination of the brain in these six macaques demonstrated encephalitis, while macaques that did not show an increase in [(11)C](R)-PK11195 binding did not develop SIV encephalitis. Brain tissue from SIV encephalitic macaques also showed increased [(3)H](R)-PK11195 binding compared with binding in nonencephalitic macaques. Increased PK11195 binding in vivo and in postmortem brain tissue correlated with abundance of macrophages but not astrocytes. Our results suggest that PET [(11)C](R)-PK11195 imaging can detect the presence of macrophages in SIV encephalitis in vivo and may be useful to predict the development of HIV encephalitis and in studies of the pathogenesis and treatment of HIV dementia.
Collapse
Affiliation(s)
- Sriram Venneti
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Venneti S, Lopresti BJ, Wang G, Bissel SJ, Mathis CA, Meltzer CC, Boada F, Capuano S, Kress GJ, Davis DK, Ruszkiewicz J, Reynolds IJ, Murphey-Corb M, Trichel AM, Wisniewski SR, Wiley CA. PET imaging of brain macrophages using the peripheral benzodiazepine receptor in a macaque model of neuroAIDS. J Clin Invest 2004. [DOI: 10.1172/jci200420227] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Abstract
Dementia and milder forms of cognitive impairment are important manifestations, with important socioeconomic consequences, of HIV infection. Early detection and aggressive treatment are essential to achieve stabilization and prevent progression. In some affected individuals, reversal of symptoms may follow initiation of effective therapy. Antiretroviral treatment needs to be individualized, taking into consideration the relative central nervous system penetration of the drugs, presence of drug resistant viral strains, possible drug interactions, and drug side effect profiles. Combination antiretroviral therapy is preferred. Zidovudine, stavudine, abacavir, navirapine and indinavir have relatively good penetration into the central nervous system. The aim of therapy should be for control of viral load in the periphery and the cerebrospinal fluid. Furthermore, although not established therapy, the use of neuroprotective agents and anti-inflammatory regimens may be considered. A comprehensive multidisciplinary approach to management with regular follow-up is essential for treatment.
Collapse
Affiliation(s)
- Avindra Nath
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| | | |
Collapse
|