1
|
Hussain M, Khan I, Chaudhary MN, Ali K, Mushtaq A, Jiang B, Zheng L, Pan Y, Hu J, Zou X. Phosphatidylserine: A comprehensive overview of synthesis, metabolism, and nutrition. Chem Phys Lipids 2024; 264:105422. [PMID: 39097133 DOI: 10.1016/j.chemphyslip.2024.105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Phosphatidylserine (PtdS) is classified as a glycerophospholipid and a primary anionic phospholipid and is particularly abundant in the inner leaflet of the plasma membrane in neural tissues. It is synthesized from phosphatidylcholine or phosphatidylethanolamine by exchanging the base head group with serine, and this reaction is catalyzed by PtdS synthase-1 and PtdS synthase-2 located in the endoplasmic reticulum. PtdS exposure on the outside surface of the cell is essential for eliminating apoptotic cells and initiating the blood clotting cascade. It is also a precursor of phosphatidylethanolamine, produced by PtdS decarboxylase in bacteria, yeast, and mammalian cells. Furthermore, PtdS acts as a cofactor for several necessary enzymes that participate in signaling pathways. Beyond these functions, several studies indicate that PtdS plays a role in various cerebral functions, including activating membrane signaling pathways, neuroinflammation, neurotransmission, and synaptic refinement associated with the central nervous system (CNS). This review discusses the occurrence of PtdS in nature and biosynthesis via enzymes and genes in plants, yeast, prokaryotes, mammalian cells, and the brain, and enzymatic synthesis through phospholipase D (PLD). Furthermore, we discuss metabolism, its role in the CNS, the fortification of foods, and supplementation for improving some memory functions, the results of which remain unclear. PtdS can be a potentially beneficial addition to foods for kids, seniors, athletes, and others, especially with the rising consumer trend favoring functional foods over conventional pills and capsules. Clinical studies have shown that PtdS is safe and well tolerated by patients.
Collapse
Affiliation(s)
- Mudassar Hussain
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Imad Khan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Muneeba Naseer Chaudhary
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing, 400715, China
| | - Khubaib Ali
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Anam Mushtaq
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Bangzhi Jiang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Lei Zheng
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yuechao Pan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jijie Hu
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiaoqiang Zou
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Montefusco A, Helfmann L, Okunola T, Winkelmann S, Schütte C. Partial mean-field model for neurotransmission dynamics. Math Biosci 2024; 369:109143. [PMID: 38220067 DOI: 10.1016/j.mbs.2024.109143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/07/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
This article addresses reaction networks in which spatial and stochastic effects are of crucial importance. For such systems, particle-based models allow us to describe all microscopic details with high accuracy. However, they suffer from computational inefficiency if particle numbers and density get too large. Alternative coarse-grained-resolution models reduce computational effort tremendously, e.g., by replacing the particle distribution by a continuous concentration field governed by reaction-diffusion PDEs. We demonstrate how models on the different resolution levels can be combined into hybrid models that seamlessly combine the best of both worlds, describing molecular species with large copy numbers by macroscopic equations with spatial resolution while keeping the spatial-stochastic particle-based resolution level for the species with low copy numbers. To this end, we introduce a simple particle-based model for the binding dynamics of ions and vesicles at the heart of the neurotransmission process. Within this framework, we derive a novel hybrid model and present results from numerical experiments which demonstrate that the hybrid model allows for an accurate approximation of the full particle-based model in realistic scenarios.
Collapse
Affiliation(s)
- Alberto Montefusco
- Mathematics of Complex Systems, Zuse-Institut Berlin, Takustraße 7, Berlin, 14195, Germany
| | - Luzie Helfmann
- Mathematics of Complex Systems, Zuse-Institut Berlin, Takustraße 7, Berlin, 14195, Germany
| | - Toluwani Okunola
- Mathematics of Complex Systems, Zuse-Institut Berlin, Takustraße 7, Berlin, 14195, Germany; Institute Of Mathematics, Technische Universität Berlin, Straße des 17. Juni 136, Berlin, 10623, Germany
| | - Stefanie Winkelmann
- Mathematics of Complex Systems, Zuse-Institut Berlin, Takustraße 7, Berlin, 14195, Germany.
| | - Christof Schütte
- Mathematics of Complex Systems, Zuse-Institut Berlin, Takustraße 7, Berlin, 14195, Germany; Institute of Mathematics, Freie Universität Berlin, Arnimallee 6, Berlin, 14195, Germany
| |
Collapse
|
3
|
Breitbart H, Grinshtein E. Mechanisms That Protect Mammalian Sperm from the Spontaneous Acrosome Reaction. Int J Mol Sci 2023; 24:17005. [PMID: 38069328 PMCID: PMC10707520 DOI: 10.3390/ijms242317005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
To acquire the capacity to fertilize the oocyte, mammalian spermatozoa must undergo a series of biochemical reactions in the female reproductive tract, which are collectively called capacitation. The capacitated spermatozoa subsequently interact with the oocyte zona-pellucida and undergo the acrosome reaction, which enables the penetration of the oocyte and subsequent fertilization. However, the spontaneous acrosome reaction (sAR) can occur prematurely in the sperm before reaching the oocyte cumulus oophorus, thereby jeopardizing fertilization. One of the main processes in capacitation involves actin polymerization, and the resulting F-actin is subsequently dispersed prior to the acrosome reaction. Several biochemical reactions that occur during sperm capacitation, including actin polymerization, protect sperm from sAR. In the present review, we describe the protective mechanisms that regulate sperm capacitation and prevent sAR.
Collapse
Affiliation(s)
- Haim Breitbart
- The Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | | |
Collapse
|
4
|
Shi J, Li W, Jia Z, Peng Y, Hou J, Li N, Meng R, Fu W, Feng Y, Wu L, Zhou L, Wang D, Shen J, Chang J, Wang Y, Cao J. Synaptotagmin 1 Suppresses Colorectal Cancer Metastasis by Inhibiting ERK/MAPK Signaling-Mediated Tumor Cell Pseudopodial Formation and Migration. Cancers (Basel) 2023; 15:5282. [PMID: 37958455 PMCID: PMC10649299 DOI: 10.3390/cancers15215282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Although synaptotagmin 1 (SYT1) has been identified participating in a variety of cancers, its role in colorectal cancer (CRC) remains an enigma. This study aimed to demonstrate the effect of SYT1 on CRC metastasis and the underlying mechanism. We first found that SYT1 expressions in CRC tissues were lower than in normal colorectal tissues from the CRC database and collected CRC patients. In addition to this, SYT1 expression was also lower in CRC cell lines than in the normal colorectal cell line. SYT1 expression was downregulated by TGF-β (an EMT mediator) in CRC cell lines. In vitro, SYT1 overexpression repressed pseudopodial formation and reduced cell migration and invasion of CRC cells. SYT1 overexpression also suppressed CRC metastasis in tumor-bearing nude mice in vivo. Moreover, SYT1 overexpression promoted the dephosphorylation of ERK1/2 and downregulated the expressions of Slug and Vimentin, two proteins tightly associated with EMT in tumor metastasis. In conclusion, SYT1 expression is downregulated in CRC. Overexpression of SYT1 suppresses CRC cell migration, invasion, and metastasis by inhibiting ERK/MAPK signaling-mediated CRC cell pseudopodial formation. The study suggests that SYT1 is a suppressor of CRC and may have the potential to be a therapeutic target for CRC.
Collapse
Affiliation(s)
- Jianyun Shi
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Wenjing Li
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Zhenhua Jia
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Ying Peng
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Jiayi Hou
- Department of Clinical Laboratory, Shanxi Provincial Academy of Traditional Chinese Medicine, Taiyuan 030071, China
| | - Ning Li
- Department of Gastrointestinal and Pancreatic Surgery & Hernia and Abdominal Surgery, Shanxi Provincial People’s Hospital, Taiyuan 030045, China
| | - Ruijuan Meng
- Department of Radiology, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030606, China
| | - Wei Fu
- Department of Radiology, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030606, China
| | - Yanlin Feng
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Lifei Wu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Lan Zhou
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Deping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Jing Shen
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Jiasong Chang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Yanqiang Wang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan 030606, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| |
Collapse
|
5
|
Ernst A, Unger N, Schütte C, Walter A, Winkelmann S. Rate-limiting recovery processes in neurotransmission under sustained stimulation. Math Biosci 2023:109023. [PMID: 37245846 DOI: 10.1016/j.mbs.2023.109023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/31/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
At active zones of chemical synapses, an arriving electric signal induces the fusion of vesicles with the presynaptic membrane, thereby releasing neurotransmitters into the synaptic cleft. After a fusion event, both the release site and the vesicle undergo a recovery process before becoming available for reuse again. Of central interest is the question which of the two restoration steps acts as the limiting factor during neurotransmission under high-frequency sustained stimulation. In order to investigate this problem, we introduce a non-linear reaction network which involves explicit recovery steps for both the vesicles and the release sites, and includes the induced time-dependent output current. The associated reaction dynamics are formulated by means of ordinary differential equations (ODEs), as well as via the associated stochastic jump process. While the stochastic jump model describes the dynamics at a single active zone, the average over many active zones is close to the ODE solution and shares its periodic structure. The reason for this can be traced back to the insight that recovery dynamics of vesicles and release sites are statistically almost independent. A sensitivity analysis on the recovery rates based on the ODE formulation reveals that neither the vesicle nor the release site recovery step can be identified as the essential rate-limiting step but that the rate-limiting feature changes over the course of stimulation. Under sustained stimulation, the dynamics given by the ODEs exhibit transient changes leading from an initial depression of the postsynaptic response to an asymptotic periodic orbit, while the individual trajectories of the stochastic jump model lack the oscillatory behavior and asymptotic periodicity of the ODE-solution.
Collapse
Affiliation(s)
| | | | - Christof Schütte
- Zuse Institute Berlin, Berlin, Germany; Freie Universität Berlin, Faculty of Mathematics and Computer Science, Berlin, Germany
| | - Alexander Walter
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Neuroscience, Copenhagen, Denmark; Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP im CharitéCrossOver, Berlin, Germany.
| | | |
Collapse
|
6
|
Ma X, Li X, Wang W, Zhang M, Yang B, Miao Z. Phosphatidylserine, inflammation, and central nervous system diseases. Front Aging Neurosci 2022; 14:975176. [PMID: 35992593 PMCID: PMC9382310 DOI: 10.3389/fnagi.2022.975176] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphatidylserine (PS) is an anionic phospholipid in the eukaryotic membrane and is abundant in the brain. Accumulated studies have revealed that PS is involved in the multiple functions of the brain, such as activation of membrane signaling pathways, neuroinflammation, neurotransmission, and synaptic refinement. Those functions of PS are related to central nervous system (CNS) diseases. In this review, we discuss the metabolism of PS, the anti-inflammation function of PS in the brain; the alterations of PS in different CNS diseases, and the possibility of PS to serve as a therapeutic agent for diseases. Clinical studies have showed that PS has no side effects and is well tolerated. Therefore, PS and PS liposome could be a promising supplementation for these neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Xiaohua Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiaojing Li
- Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Wenjuan Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Meng Zhang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Bo Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Bo Yang,
| | - Zhigang Miao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
- Zhigang Miao,
| |
Collapse
|
7
|
Pisanu C, Congiu D, Severino G, Ardau R, Chillotti C, Del Zompo M, Baune BT, Squassina A. Investigation of genetic loci shared between bipolar disorder and risk-taking propensity: potential implications for pharmacological interventions. Neuropsychopharmacology 2021; 46:1680-1692. [PMID: 34035470 PMCID: PMC8280111 DOI: 10.1038/s41386-021-01045-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 11/09/2022]
Abstract
Patients with bipolar disorder (BD) often show increased risk-taking propensity, which may contribute to poor clinical outcome. While these two phenotypes are genetically correlated, there is scarce knowledge on the shared genetic determinants. Using GWAS datasets on BD (41,917 BD cases and 371,549 controls) and risk-taking (n = 466,571), we dissected shared genetic determinants using conjunctional false discovery rate (conjFDR) and local genetic covariance analysis. We investigated specificity of identified targets using GWAS datasets on schizophrenia (SCZ) and attention-deficit hyperactivity disorder (ADHD). The putative functional role of identified targets was evaluated using different tools and GTEx v. 8. Target druggability was evaluated using DGIdb and enrichment for drug targets with genome for REPositioning drugs (GREP). Among 102 loci shared between BD and risk-taking, 87% showed the same direction of effect. Sixty-two were specifically shared between risk-taking propensity and BD, while the others were also shared between risk-taking propensity and either SCZ or ADHD. By leveraging pleiotropic enrichment, we reported 15 novel and specific loci associated with BD and 22 with risk-taking. Among cross-disorder genes, CACNA1C (a known target of calcium channel blockers) was significantly associated with risk-taking propensity and both BD and SCZ using conjFDR (p = 0.001 for both) as well as local genetic covariance analysis, and predicted to be differentially expressed in the cerebellar hemisphere in an eQTL-informed gene-based analysis (BD, Z = 7.48, p = 3.8E-14; risk-taking: Z = 4.66, p = 1.6E-06). We reported for the first time shared genetic determinants between BD and risk-taking propensity. Further investigation into calcium channel blockers or development of innovative ligands of calcium channels might form the basis for innovative pharmacotherapy in patients with BD with increased risk-taking propensity.
Collapse
Affiliation(s)
- Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Donatella Congiu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Giovanni Severino
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Raffaella Ardau
- Unit of Clinical Pharmacology of the University Hospital of Cagliari, Cagliari, Italy
| | - Caterina Chillotti
- Unit of Clinical Pharmacology of the University Hospital of Cagliari, Cagliari, Italy
| | - Maria Del Zompo
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
- Unit of Clinical Pharmacology of the University Hospital of Cagliari, Cagliari, Italy
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
8
|
Proteins involved in actin filament organization are key host factors for Japanese encephalitis virus life-cycle in human neuronal cells. Microb Pathog 2020; 149:104565. [DOI: 10.1016/j.micpath.2020.104565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/22/2022]
|
9
|
Finkelstein M, Etkovitz N, Breitbart H. Ca 2+ signaling in mammalian spermatozoa. Mol Cell Endocrinol 2020; 516:110953. [PMID: 32712383 DOI: 10.1016/j.mce.2020.110953] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/08/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Calcium is an essential ion which regulates sperm motility, capacitation and the acrosome reaction (AR), three processes necessary for successful fertilization. The AR enables the spermatozoon to penetrate into the egg. In order to undergo the AR, the spermatozoon must reside in the female reproductive tract for several hours, during which a series of biochemical transformations takes place, collectively called capacitation. An early event in capacitation is relatively small elevation of intracellular Ca2+ (in the nM range) and bicarbonate, which collectively activate the soluble adenylyl cyclase to produce cyclic-AMP; c-AMP activates protein kinase A (PKA), leading to indirect tyrosine phosphorylation of proteins. During capacitation, there is an increase in the membrane-bound phospholipase C (PLC) which is activated prior to the AR by relatively high increase in intracellular Ca2+ (in the μM range). PLC catalyzes the hydrolysis of phosphatidyl-inositol-4,5-bisphosphate (PIP2) to diacylglycerol and inositol-trisphosphate (IP3), leading to activation of protein kinase C (PKC) and the IP3-receptor. PKC activates a Ca2+- channel in the plasma membrane, and IP3 activates the Ca2+- channel in the outer acrosomal membrane, leading to Ca2+ depletion from the acrosome. As a result, the plasma-membrane store-operated Ca2+ channel (SOCC) is activated to increase cytosolic Ca2+ concentration, enabling completion of the acrosome reaction. The hydrolysis of PIP2 by PLC results in the release and activation of PIP2-bound gelsolin, leading to F-actin dispersion, an essential step prior to the AR. Ca2+ is also involved in the regulation of sperm motility. During capacitation, the sperm develops a unique motility pattern called hyper-activated motility (HAM) which is essential for successful fertilization. The main Ca2+-channel that mediates HAM is the sperm-specific CatSper located in the sperm tail.
Collapse
Affiliation(s)
| | - Nir Etkovitz
- Sperm Bank, Sheba Hospital, Tel-Hashomer, Israel
| | - Haim Breitbart
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
10
|
Bittner T, Wittwer C, Hauke S, Wohlwend D, Mundinger S, Dutta AK, Bezold D, Dürr T, Friedrich T, Schultz C, Jessen HJ. Photolysis of Caged Inositol Pyrophosphate InsP 8 Directly Modulates Intracellular Ca 2+ Oscillations and Controls C2AB Domain Localization. J Am Chem Soc 2020; 142:10606-10611. [PMID: 32459478 DOI: 10.1021/jacs.0c01697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inositol pyrophosphates constitute a family of hyperphosphorylated signaling molecules involved in the regulation of glucose uptake and insulin sensitivity. While our understanding of the biological roles of inositol heptaphosphates (PP-InsP5) has greatly improved, the functions of the inositol octaphosphates ((PP)2-InsP4) have remained unclear. Here we present the synthesis of two enantiomeric cell-permeant and photocaged (PP)2-InsP4 derivatives and apply them to study the functions in living β-cells. Photorelease of the naturally occurring isomer 1,5-(PP)2-InsP4 led to an immediate and concentration-dependent reduction of intracellular calcium oscillations, while other caged inositol pyrophosphates (3,5-(PP)2-InsP4, 5-PP-InsP5, 1-PP-InsP5, 3-PP-InsP5) showed no immediate effect. Furthermore, uncaging of 1,5-(PP)2-InsP4 but not 3,5-(PP)2-InsP4 induced translocation of the C2AB domain of granuphilin from the plasma membrane to the cytosol. Granuphilin is involved in membrane docking of secretory vesicles. This suggests that 1,5-(PP)2-InsP4 impacts β-cell activity by regulating granule localization and/or priming and calcium signaling in concert.
Collapse
Affiliation(s)
- Tamara Bittner
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Christopher Wittwer
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Sebastian Hauke
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Daniel Wohlwend
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Stephan Mundinger
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Amit K Dutta
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Dominik Bezold
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Tobias Dürr
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Thorsten Friedrich
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Carsten Schultz
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.,Department of Chemical Physiology and Biochemistry, Oregon Health & Science University (OHSU), Sam Jackson Park Road, Portland, Oregon 97239-3098, United States
| | - Henning J Jessen
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, 79104 Freiburg i.B., Germany.,Freiburg Research Institute for Advanced Studies (FRIAS), Albert-Ludwigs University Freiburg, Albertstrasse 19, 79104 Freiburg i.B., Germany
| |
Collapse
|
11
|
Chakrabarti R, Wichmann C. Nanomachinery Organizing Release at Neuronal and Ribbon Synapses. Int J Mol Sci 2019; 20:E2147. [PMID: 31052288 PMCID: PMC6539712 DOI: 10.3390/ijms20092147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 11/17/2022] Open
Abstract
A critical aim in neuroscience is to obtain a comprehensive view of how regulated neurotransmission is achieved. Our current understanding of synapses relies mainly on data from electrophysiological recordings, imaging, and molecular biology. Based on these methodologies, proteins involved in a synaptic vesicle (SV) formation, mobility, and fusion at the active zone (AZ) membrane have been identified. In the last decade, electron tomography (ET) combined with a rapid freezing immobilization of neuronal samples opened a window for understanding the structural machinery with the highest spatial resolution in situ. ET provides significant insights into the molecular architecture of the AZ and the organelles within the presynaptic nerve terminal. The specialized sensory ribbon synapses exhibit a distinct architecture from neuronal synapses due to the presence of the electron-dense synaptic ribbon. However, both synapse types share the filamentous structures, also commonly termed as tethers that are proposed to contribute to different steps of SV recruitment and exocytosis. In this review, we discuss the emerging views on the role of filamentous structures in SV exocytosis gained from ultrastructural studies of excitatory, mainly central neuronal compared to ribbon-type synapses with a focus on inner hair cell (IHC) ribbon synapses. Moreover, we will speculate on the molecular entities that may be involved in filament formation and hence play a crucial role in the SV cycle.
Collapse
Affiliation(s)
- Rituparna Chakrabarti
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", 37099 Göttingen, Germany.
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", 37099 Göttingen, Germany.
- Collaborative Research Center 1286 "Quantitative Synaptology", 37099 Göttingen, Germany.
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.
| |
Collapse
|
12
|
Ugur B, Bao H, Stawarski M, Duraine LR, Zuo Z, Lin YQ, Neely GG, Macleod GT, Chapman ER, Bellen HJ. The Krebs Cycle Enzyme Isocitrate Dehydrogenase 3A Couples Mitochondrial Metabolism to Synaptic Transmission. Cell Rep 2019; 21:3794-3806. [PMID: 29281828 DOI: 10.1016/j.celrep.2017.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 11/10/2017] [Accepted: 12/01/2017] [Indexed: 10/18/2022] Open
Abstract
Neurotransmission is a tightly regulated Ca2+-dependent process. Upon Ca2+ influx, Synaptotagmin1 (Syt1) promotes fusion of synaptic vesicles (SVs) with the plasma membrane. This requires regulation at multiple levels, but the role of metabolites in SV release is unclear. Here, we uncover a role for isocitrate dehydrogenase 3a (idh3a), a Krebs cycle enzyme, in neurotransmission. Loss of idh3a leads to a reduction of the metabolite, alpha-ketoglutarate (αKG), causing defects in synaptic transmission similar to the loss of syt1. Supplementing idh3a flies with αKG suppresses these defects through an ATP or neurotransmitter-independent mechanism. Indeed, αKG, but not glutamate, enhances Syt1-dependent fusion in a reconstitution assay. αKG promotes interaction between the C2-domains of Syt1 and phospholipids. The data reveal conserved metabolic regulation of synaptic transmission via αKG. Our studies provide a synaptic role for αKG, a metabolite that has been proposed as a treatment for aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Berrak Ugur
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Huan Bao
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA; Howard Hughes Medical Institute, University of Wisconsin, Madison, WI 53705, USA
| | - Michal Stawarski
- Department of Biological Sciences and Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Lita R Duraine
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yong Qi Lin
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - G Gregory Neely
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Gregory T Macleod
- Department of Biological Sciences and Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Edwin R Chapman
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA; Howard Hughes Medical Institute, University of Wisconsin, Madison, WI 53705, USA
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
13
|
Chen C, Satterfield R, Young SM, Jonas P. Triple Function of Synaptotagmin 7 Ensures Efficiency of High-Frequency Transmission at Central GABAergic Synapses. Cell Rep 2018; 21:2082-2089. [PMID: 29166601 PMCID: PMC5863544 DOI: 10.1016/j.celrep.2017.10.122] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/06/2017] [Accepted: 10/29/2017] [Indexed: 12/21/2022] Open
Abstract
Synaptotagmin 7 (Syt7) is thought to be a Ca2+ sensor that mediates asynchronous transmitter release and facilitation at synapses. However, Syt7 is strongly expressed in fast-spiking, parvalbumin-expressing GABAergic interneurons, and the output synapses of these neurons produce only minimal asynchronous release and show depression rather than facilitation. To resolve this apparent contradiction, we examined the effects of genetic elimination of Syt7 on synaptic transmission at the GABAergic basket cell (BC)-Purkinje cell (PC) synapse in cerebellum. Our results indicate that at the BC-PC synapse, Syt7 contributes to asynchronous release, pool replenishment, and facilitation. In combination, these three effects ensure efficient transmitter release during high-frequency activity and guarantee frequency independence of inhibition. Our results identify a distinct function of Syt7: ensuring the efficiency of high-frequency inhibitory synaptic transmission.
Collapse
Affiliation(s)
- Chong Chen
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, A-3400 Klosterneuburg, Austria
| | - Rachel Satterfield
- Max Planck Florida Institute for Neuroscience, Research Group Molecular Mechanisms of Synaptic Function, Jupiter, FL 33458, USA
| | - Samuel M Young
- Max Planck Florida Institute for Neuroscience, Research Group Molecular Mechanisms of Synaptic Function, Jupiter, FL 33458, USA; Department of Anatomy and Cell Biology, Department of Otolaryngology, Iowa Neuroscience Institute, Aging Mind Brain Initiative, University of Iowa, Iowa City, IA 52242, USA
| | - Peter Jonas
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, A-3400 Klosterneuburg, Austria.
| |
Collapse
|
14
|
Sugie A, Marchetti G, Tavosanis G. Structural aspects of plasticity in the nervous system of Drosophila. Neural Dev 2018; 13:14. [PMID: 29960596 PMCID: PMC6026517 DOI: 10.1186/s13064-018-0111-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/12/2018] [Indexed: 12/15/2022] Open
Abstract
Neurons extend and retract dynamically their neurites during development to form complex morphologies and to reach out to their appropriate synaptic partners. Their capacity to undergo structural rearrangements is in part maintained during adult life when it supports the animal's ability to adapt to a changing environment or to form lasting memories. Nonetheless, the signals triggering structural plasticity and the mechanisms that support it are not yet fully understood at the molecular level. Here, we focus on the nervous system of the fruit fly to ask to which extent activity modulates neuronal morphology and connectivity during development. Further, we summarize the evidence indicating that the adult nervous system of flies retains some capacity for structural plasticity at the synaptic or circuit level. For simplicity, we selected examples mostly derived from studies on the visual system and on the mushroom body, two regions of the fly brain with extensively studied neuroanatomy.
Collapse
Affiliation(s)
- Atsushi Sugie
- Center for Transdisciplinary Research, Niigata University, Niigata, 951-8585 Japan
- Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
| | | | - Gaia Tavosanis
- Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| |
Collapse
|
15
|
Riemann D, Petkova A, Dresbach T, Wallrafen R. An Optical Assay for Synaptic Vesicle Recycling in Cultured Neurons Overexpressing Presynaptic Proteins. J Vis Exp 2018:58043. [PMID: 30010661 PMCID: PMC6101998 DOI: 10.3791/58043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
At active presynaptic nerve terminals, synaptic vesicles undergo cycles of exo- and endocytosis. During recycling, the luminal domains of SV transmembrane proteins become exposed at the cell surface. One of these proteins is Synaptotagmin-1 (Syt1). An antibody directed against the luminal domain of Syt1, once added to the culture medium, is taken up during the exo-endocytotic cycle. This uptake is proportional to the amount of SV recycling and can be quantified through immunofluorescence. Here, we combine Syt1 antibody uptake with double transfection of cultured hippocampal neurons. This allows us to (1) localize presynaptic sites based on expression of recombinant presynaptic marker Synaptophysin, (2) determine their functionality using Syt1 uptake, and (3) characterize the targeting and effects of a protein of interest, GFP-Rogdi.
Collapse
Affiliation(s)
- Donatus Riemann
- Institute for Anatomy and Embryology, University Medical Centre Göttingen
| | - Andoniya Petkova
- Institute for Anatomy and Embryology, University Medical Centre Göttingen
| | - Thomas Dresbach
- Institute for Anatomy and Embryology, University Medical Centre Göttingen;
| | - Rebecca Wallrafen
- Institute for Anatomy and Embryology, University Medical Centre Göttingen
| |
Collapse
|
16
|
Chen C, Arai I, Satterfield R, Young SM, Jonas P. Synaptotagmin 2 Is the Fast Ca 2+ Sensor at a Central Inhibitory Synapse. Cell Rep 2017; 18:723-736. [PMID: 28099850 PMCID: PMC5276807 DOI: 10.1016/j.celrep.2016.12.067] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/18/2016] [Accepted: 12/20/2016] [Indexed: 11/24/2022] Open
Abstract
GABAergic synapses in brain circuits generate inhibitory output signals with submillisecond latency and temporal precision. Whether the molecular identity of the release sensor contributes to these signaling properties remains unclear. Here, we examined the Ca2+ sensor of exocytosis at GABAergic basket cell (BC) to Purkinje cell (PC) synapses in cerebellum. Immunolabeling suggested that BC terminals selectively expressed synaptotagmin 2 (Syt2), whereas synaptotagmin 1 (Syt1) was enriched in excitatory terminals. Genetic elimination of Syt2 reduced action potential-evoked release to ∼10%, identifying Syt2 as the major Ca2+ sensor at BC-PC synapses. Differential adenovirus-mediated rescue revealed that Syt2 triggered release with shorter latency and higher temporal precision and mediated faster vesicle pool replenishment than Syt1. Furthermore, deletion of Syt2 severely reduced and delayed disynaptic inhibition following parallel fiber stimulation. Thus, the selective use of Syt2 as release sensor at BC-PC synapses ensures fast and efficient feedforward inhibition in cerebellar microcircuits. Syt2 is the Ca2+ sensor of fast transmitter release at a cerebellar GABAergic synapse Syt2 triggers transmitter release with faster time course than Syt1 Syt2 ensures faster replenishment of the readily releasable pool than Syt1 Syt2 is essential for fast feedforward inhibition in cerebellar microcircuits
Collapse
Affiliation(s)
- Chong Chen
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Itaru Arai
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Rachel Satterfield
- Max Planck Florida Institute for Neuroscience, Research Group Molecular Mechanisms of Synaptic Function, Jupiter, FL 33458, USA
| | - Samuel M Young
- Max Planck Florida Institute for Neuroscience, Research Group Molecular Mechanisms of Synaptic Function, Jupiter, FL 33458, USA
| | - Peter Jonas
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
17
|
Kaempf N, Maritzen T. Safeguards of Neurotransmission: Endocytic Adaptors as Regulators of Synaptic Vesicle Composition and Function. Front Cell Neurosci 2017; 11:320. [PMID: 29085282 PMCID: PMC5649181 DOI: 10.3389/fncel.2017.00320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/26/2017] [Indexed: 11/13/2022] Open
Abstract
Communication between neurons relies on neurotransmitters which are released from synaptic vesicles (SVs) upon Ca2+ stimuli. To efficiently load neurotransmitters, sense the rise in intracellular Ca2+ and fuse with the presynaptic membrane, SVs need to be equipped with a stringently controlled set of transmembrane proteins. In fact, changes in SV protein composition quickly compromise neurotransmission and most prominently give rise to epileptic seizures. During exocytosis SVs fully collapse into the presynaptic membrane and consequently have to be replenished to sustain neurotransmission. Therefore, surface-stranded SV proteins have to be efficiently retrieved post-fusion to be used for the generation of a new set of fully functional SVs, a process in which dedicated endocytic sorting adaptors play a crucial role. The question of how the precise reformation of SVs is achieved is intimately linked to how SV membranes are retrieved. For a long time both processes were believed to be two sides of the same coin since Clathrin-mediated endocytosis (CME), the proposed predominant SV recycling mode, will jointly retrieve SV membranes and proteins. However, with the recent proposal of Clathrin-independent SV recycling pathways SV membrane retrieval and SV reformation turn into separable events. This review highlights the progress made in unraveling the molecular mechanisms mediating the high-fidelity retrieval of SV proteins and discusses how the gathered knowledge about SV protein recycling fits in with the new notions of SV membrane endocytosis.
Collapse
Affiliation(s)
- Natalie Kaempf
- Molecular Physiology and Cell Biology Section, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Tanja Maritzen
- Molecular Physiology and Cell Biology Section, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| |
Collapse
|
18
|
Li XY, Wang F, Chen GH, Li XW, Yang QG, Cao L, Yan WW. Inflammatory insult during pregnancy accelerates age-related behavioral and neurobiochemical changes in CD-1 mice. AGE (DORDRECHT, NETHERLANDS) 2016; 38:59. [PMID: 27194408 PMCID: PMC5005951 DOI: 10.1007/s11357-016-9920-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/02/2016] [Indexed: 05/08/2023]
Abstract
Data shows that inflammation during pregnancy significantly exerts a long-term influence on offspring, such as increasing the risk of adult cognition decline in animals. However, it is unclear whether gestational inflammation affects the neurobehavioral and neurobiochemical outcomes in the mother-self during aging. In this study, pregnant CD-1 mice intraperitoneally received lipopolysaccharide (LPS) in two doses (25 and 50 g/kg, respectively) or normal saline daily during gestational days 15-17. At the age of 15 months, a battery of behavioral tasks was employed to evaluate their species-typical behaviors, sensorimotor ability, anxiety levels, and spatial learning and memory abilities. An immunohistochemical method was utilized preliminarily to detect neurobiochemical indicators consisting of amyloid-β, phosphorylated tau, presynaptic proteins synaptotagmin-1 and syntaxin-1, glial fibrillary acidic protein (GFAP), and histone-4 acetylation on the K8 site (H4K8ac). The behavioral results showed that LPS exposure during pregnancy exacerbated a decline in 15-month-old CD-1 mice's abilities to nest, their sensorimotor and spatial learning and memory capabilities, and increased their anxiety levels. The neurobiochemical results indicated that gestational LPS exposure also intensified age-related hippocampal changes, including increased amyloid-β42, phosphorylated tau, synaptotagmin-1 and GFAP, and decreased syntaxin-1 and H4K8ac. Our results suggested that the inflammatory insult during pregnancy could be an important risk factor for the development of Alzheimer's disease, and the H4K8 acetylation might play an important role in the underlying mechanism. This study offers a perspective for improving strategies that support healthy development and successful aging.
Collapse
Affiliation(s)
- Xue-Yan Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People's Republic of China
| | - Fang Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People's Republic of China
| | - Gui-Hai Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People's Republic of China.
- Department of Neurology, The Affiliated Chaohu Hospital of Anhui Medical University and the Center of Anhui Province in Psychologic Medicine, Chaohu, Hefei, 238000, Anhui Province, People's Republic of China.
- Department of Neurology, The First People's Hospital of Chenzhou, Chenzhou, 423000, Hunan Province, People's Republic of China.
| | - Xue-Wei Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People's Republic of China
| | - Qi-Gang Yang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People's Republic of China
| | - Lei Cao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People's Republic of China
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, People's Republic of China
| | - Wen-Wen Yan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People's Republic of China
| |
Collapse
|
19
|
Inoue Y, Kamikubo Y, Ezure H, Ito J, Kato Y, Moriyama H, Otsuka N. Presynaptic protein Synaptotagmin1 regulates the neuronal polarity and axon differentiation in cultured hippocampal neurons. BMC Neurosci 2015; 16:92. [PMID: 26667128 PMCID: PMC4678605 DOI: 10.1186/s12868-015-0231-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 12/04/2015] [Indexed: 11/26/2022] Open
Abstract
Background Hippocampal neurons in the brain polarize to form multiple dendrites and one long axon. The formation of central synapses remains poorly understood. Although several of the intracellular proteins involved in the clustering of central neurotransmitter receptors and ion channels have been identified, the signals involved in pre- and postsynaptic differentiation remain elusive. Synaptotagmin1 is an abundant and important presynaptic vesicle protein that binds Ca2+ (J Biol Chem 277:7629–7632, 2002) in regulation of synaptic vesicle exocytosis at the synapse. Synapse consists of the formation of synaptic connections and requires precise coordination of Synaptotagmin1. It was reported Synaptotagmin1 plays an important roles in the formation of axonal filopodia and branches in chicken forebrain neurons (Dev Neurobiol 73:27–44, 2013). To determine if Synaptotagmin1 could have a role in formation of axon in hippocampal neurons, we investigated the effects of Synaptotagmin1 overexpression and knockdown using the shRNA on the growth and branching of the axons of primary hippocampal neurons. We showed that overexpression of Synaptotagmin1 leads to abnormal multiple axon formation in cultured rat hippocampal neurons. Results We first examined the effects of Synaptotagmin1 on the numbers of axon and dendrites. We found that the overexpression of Synaptotagmin1 led to the formation of multiple axons and induced an increase in the number of endogenous postsynaptic protein Homer1c clusters in cultured hippocampal neurons. Endogenous initial segment of axon was detected with anti-sodium channel (anti-NaCh) antibody and with anti-Tau1 (J Neurosci 24: 4605–4613, 2004). The endogenous initial segment of axon was stained with anti-NaCh antibodies and with anti-Tau1 antibodies. Then the numbers of prominence dyed positive were counted as axon. We attempted to specifically knockdown the endogenous Synaptotagmin1 with small hairpin RNAs (shRNAs). To further dissect the functions of endogenous Synaptotagmin1 in neuronal polarity, we used the shRNA of Synaptotagmin1 that specifically blocks the existence of endogenous Synaptotagmin1. When the shRNA of Synaptotagmin1 was introduced to the cells, the number of axons and dendrites did not change. Conclusions These results indicate that the accumulation of Synaptotagmin1 may play an important role in axon/dendrite differentiation.
Collapse
Affiliation(s)
- Yuriko Inoue
- Department of Anatomy, Showa University School of Medicine, Tokyo, 142-8555, Japan.
| | - Yuji Kamikubo
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan.
| | - Hiromitsu Ezure
- Department of Anatomy, Showa University School of Medicine, Tokyo, 142-8555, Japan.
| | - Junji Ito
- School of Nursing and Rehabilitation Sciences, Showa University Department of Nursing, Tokyo, 226-8555, Japan.
| | - Yu Kato
- Department of Neurosurgery, Showa University School of Medicine, Tokyo, 142-8555, Japan.
| | - Hiroshi Moriyama
- Department of Anatomy, Showa University School of Medicine, Tokyo, 142-8555, Japan.
| | - Naruhito Otsuka
- Department of Anatomy, Showa University School of Medicine, Tokyo, 142-8555, Japan.
| |
Collapse
|
20
|
Wang H, Han S, Siao W, Song C, Xiang Y, Wu X, Cheng P, Li H, Jásik J, Mičieta K, Turňa J, Voigt B, Baluška F, Liu J, Wang Y, Zhao H. Arabidopsis Synaptotagmin 2 Participates in Pollen Germination and Tube Growth and Is Delivered to Plasma Membrane via Conventional Secretion. MOLECULAR PLANT 2015; 8:1737-50. [PMID: 26384245 DOI: 10.1016/j.molp.2015.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 08/18/2015] [Accepted: 09/05/2015] [Indexed: 05/15/2023]
Abstract
Arabidopsis synaptotagmin 2 (SYT2) has been reported to participate in an unconventional secretory pathway in somatic cells. Our results showed that SYT2 was expressed mainly in the pollen of Arabidopsis thaliana. The pollen of syt2 T-DNA and RNA interference mutant lines exhibited reduced total germination and impeded pollen tube growth. Analysis of the expression of SYT2-GFP fusion protein in the pollen tube indicates that SYT2 was localized to distinct, patchy compartments but could co-localize with the Golgi markers, BODIPY TR C5 ceramide and GmMan1-mCherry. However, SYT2-DsRed-E5 was localized to the plasma membrane in Arabidopsis suspension cells, in addition to the Golgi apparatus. The localization of SYT2 at the plasma membrane was further supported by immunofluorescence staining in pollen tubes. Moreover, brefeldin A treatment inhibited the transport of SYT2 to the plasma membrane and caused SYT2 to aggregate and form enlarged compartments. Truncation of the SYT2-C2AB domains also resulted in retention of SYT2 in the Golgi apparatus. An in vitro phospholipid-binding assay showed that SYT2-C2AB domains bind to the phospholipid membrane in a calcium-dependent manner. Take together, our results indicated that SYT2 was required for pollen germination and pollen tube growth, and was involved in conventional exocytosis.
Collapse
Affiliation(s)
- Hui Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Wei Siao
- Department of Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Chunqing Song
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Yun Xiang
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Xiaorong Wu
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Pengyu Cheng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Hongjuan Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Ján Jásik
- Comenius University Science Park, Comenius University, Bratislava, Mlynská dolina, 842 15 Bratislava 4, Slovakia
| | - Karol Mičieta
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02 Bratislava 1, Slovakia
| | - Ján Turňa
- Department of Molecular Biology, Comenius University, Faculty of Natural Sciences, Mlynská dolina, pavilion B-2, 842 15 Bratislava 4, Slovakia
| | - Boris Voigt
- Department of Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - František Baluška
- Department of Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany; Institute of Botany, Slovak Academy of Sciences, Dubravska cesta 9, SK-84523 Bratislava, Slovak Republic.
| | - Jin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
21
|
Galazka M, Soszynski D, Dmitruk K. Central Action of Botulinum Toxin Type A – Is It Possible? NEUROPHYSIOLOGY+ 2015. [DOI: 10.1007/s11062-015-9540-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Omotuyi O, Ueda H. Energetics and protomer communication in the dynamical structure of S100A13 in free and protein-bound states. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2015.1091936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Oi Omotuyi
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Center for Drug Discovery and Therapeutic Innovation, Nagasaki University, Nagasaki, Japan
| | - H Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Center for Drug Discovery and Therapeutic Innovation, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
23
|
Gogoi P, Chandravanshi M, Mandal SK, Srivastava A, Kanaujia SP. Heterogeneous behavior of metalloproteins toward metal ion binding and selectivity: insights from molecular dynamics studies. J Biomol Struct Dyn 2015; 34:1470-85. [PMID: 26248730 DOI: 10.1080/07391102.2015.1080629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
About one-third of the existing proteins require metal ions as cofactors for their catalytic activities and structural complexities. While many of them bind only to a specific metal, others bind to multiple (different) metal ions. However, the exact mechanism of their metal preference has not been deduced to clarity. In this study, we used molecular dynamics (MD) simulations to investigate whether a cognate metal (bound to the structure) can be replaced with other similar metal ions. We have chosen seven different proteins (phospholipase A2, sucrose phosphatase, pyrazinamidase, cysteine dioxygenase (CDO), plastocyanin, monoclonal anti-CD4 antibody Q425, and synaptotagmin 1 C2B domain) bound to seven different divalent metal ions (Ca(2+), Mg(2+), Zn(2+), Fe(2+), Cu(2+), Ba(2+), and Sr(2+), respectively). In total, 49 MD simulations each of 50 ns were performed and each trajectory was analyzed independently. Results demonstrate that in some cases, cognate metal ions can be exchanged with similar metal ions. On the contrary, some proteins show binding affinity specifically to their cognate metal ions. Surprisingly, two proteins CDO and plastocyanin which are known to bind Fe(2+) and Cu(2+), respectively, do not exhibit binding affinity to any metal ion. Furthermore, the study reveals that in some cases, the active site topology remains rigid even without cognate metals, whereas, some require them for their active site stability. Thus, it will be interesting to experimentally verify the accuracy of these observations obtained computationally. Moreover, the study can help in designing novel active sites for proteins to sequester metal ions particularly of toxic nature.
Collapse
Affiliation(s)
- Prerana Gogoi
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam 781039 , India
| | - Monika Chandravanshi
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam 781039 , India
| | - Suraj Kumar Mandal
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam 781039 , India
| | - Ambuj Srivastava
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam 781039 , India
| | - Shankar Prasad Kanaujia
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam 781039 , India
| |
Collapse
|
24
|
Structural elements that underlie Doc2β function during asynchronous synaptic transmission. Proc Natl Acad Sci U S A 2015. [PMID: 26195798 DOI: 10.1073/pnas.1502288112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Double C2-like domain-containing proteins alpha and beta (Doc2α and Doc2β) are tandem C2-domain proteins proposed to function as Ca(2+) sensors for asynchronous neurotransmitter release. Here, we systematically analyze each of the negatively charged residues that mediate binding of Ca(2+) to the β isoform. The Ca(2+) ligands in the C2A domain were dispensable for Ca(2+)-dependent translocation to the plasma membrane, with one exception: neutralization of D220 resulted in constitutive translocation. In contrast, three of the five Ca(2+) ligands in the C2B domain are required for translocation. Importantly, translocation was correlated with the ability of the mutants to enhance asynchronous release when overexpressed in neurons. Finally, replacement of specific Ca(2+)/lipid-binding loops of synaptotagmin 1, a Ca(2+) sensor for synchronous release, with corresponding loops from Doc2β, resulted in chimeras that yielded slower kinetics in vitro and slower excitatory postsynaptic current decays in neurons. Together, these data reveal the key determinants of Doc2β that underlie its function during the slow phase of synaptic transmission.
Collapse
|
25
|
Evstratova A, Chamberland S, Faundez V, Tóth K. Vesicles derived via AP-3-dependent recycling contribute to asynchronous release and influence information transfer. Nat Commun 2014; 5:5530. [PMID: 25410111 PMCID: PMC4239664 DOI: 10.1038/ncomms6530] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 10/10/2014] [Indexed: 12/21/2022] Open
Abstract
Action potentials trigger synchronous and asynchronous neurotransmitter release. Temporal properties of both types of release could be altered in an activity-dependent manner. While the effects of activity-dependent changes in synchronous release on postsynaptic signal integration have been studied, the contribution of asynchronous release to information transfer during natural stimulus patterns is unknown. Here we find that during trains of stimulations, asynchronous release contributes to the precision of action potential firing. Our data show that this form of release is selectively diminished in AP-3b2 KO animals, which lack functional neuronal AP-3, an adaptor protein regulating vesicle formation from endosomes generated during bulk endocytosis. We find that in the absence of neuronal AP-3, asynchronous release is attenuated and the activity-dependent increase in the precision of action potential timing is compromised. Lack of asynchronous release decreases the capacity of synaptic information transfer and renders synaptic communication less reliable in response to natural stimulus patterns.
Collapse
Affiliation(s)
- Alesya Evstratova
- Department of Psychiatry and Neuroscience, Quebec Mental Health Institute, Université Laval, Quebec City, Quebec, Canada G1J 2G3
| | - Simon Chamberland
- Department of Psychiatry and Neuroscience, Quebec Mental Health Institute, Université Laval, Quebec City, Quebec, Canada G1J 2G3
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Katalin Tóth
- Department of Psychiatry and Neuroscience, Quebec Mental Health Institute, Université Laval, Quebec City, Quebec, Canada G1J 2G3
| |
Collapse
|
26
|
Luan X, Luo L, Cao Z, Li R, Liu D, Gao M, Liu M, Wang L. Molecular cloning and expression analysis of the synaptotagmin-1 gene in the hypothalamus and pituitary of Huoyan goose during different stages of the egg-laying cycle. Reprod Biol Endocrinol 2014; 12:83. [PMID: 25146222 PMCID: PMC4147189 DOI: 10.1186/1477-7827-12-83] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 08/16/2014] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Synaptotagmin-1 (Syt1) is an abundant, evolutionarily conserved integral membrane protein that plays essential roles in neurotransmitter release and hormone secretion. Neurotransmitters secreted by hypothalamic neurons can alter GnRH (gonadotropin-releasing hormones) neuronal activity by binding to and activating specific membrane receptors in pituitary cells and, in turn, control the release of gonadotropin hormones from the pituitary gland. To reveal the influence of Syt1 on the process of goose egg-laying, we cloned and characterized the cDNA of goose Syt1 originating from hypothalamus and pituitary tissues of Huoyan goose and investigated the mRNA expression profiles during different stages of the egg-laying cycle. METHODS Hypothalamus and pituitary tissues were obtained from 36 Huoyan geese in the pre-laying period, early laying period, peak-laying period, and ceased period. The cDNA sequences of goose Syt1 were cloned and characterized from Huoyan goose tissues using 5'-RACE and 3'-RACE methods. Multiple alignments and phylogenetic analyses of the deduced Syt1 amino acid sequence were conducted using bioinformatics tools. The expression profiles of the Syt1 mRNA in the hypothalamus and pituitary during pre-laying, early laying, peak-laying and ceased period were examined using real-time PCR (qRT-PCR). RESULTS The cDNA of Syt1 consisted of a 274 bp 5' UTR, a 1266 bp open reading frame (ORF) encoding 421 amino acids, and a 519 bp 3' UTR. The deduced amino acid sequence of goose Syt1 is highly conserved with the sequence from other species, especially with birds (more than 98%), and contains two protein kinase C2 conserved regions (C2 domain) from amino acids residue 157 to 259 and 288 to 402. The results of qRT-PCR demonstrated that the expression of Syt1 mRNA increased from the pre-laying period to the peak-laying period, reached its peak in the peak-laying period, and then decreased in the ceased period. CONCLUSIONS To the best of our knowledge, this study is the first to obtain full-length cDNA sequences of the goose Syt1 gene, and the results of Syt1 mRNA expression profiling in the hypothalamus and pituitary tissues suggested that Syt1 may play an important role in regulating the secretion of hormones relevant to the reproduction and egg-laying of female geese.
Collapse
Affiliation(s)
- Xinhong Luan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 China
| | - Lina Luo
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 China
| | - Zhongzan Cao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 China
| | - Rongrong Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 China
| | - Dawei Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 China
| | - Ming Gao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 China
| | - Mei Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 China
| | - Laiyou Wang
- Liaoning Province Livestock and Poultry Genetic Resources Conservation and Utilization Center, Liaoyang, 111000 China
| |
Collapse
|
27
|
Luan X, Cao Z, Xu W, Gao M, Wang L, Zhang S. Gene expression profiling in the pituitary gland of laying period and ceased period huoyan geese. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:921-9. [PMID: 25049869 PMCID: PMC4093504 DOI: 10.5713/ajas.2013.13083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/02/2013] [Accepted: 03/22/2013] [Indexed: 11/27/2022]
Abstract
Huoyan goose is a Chinese local breed famous for its higher laying performance, but the problems of variety degeneration have emerged recently, especially a decrease in the number of eggs laid. In order to better understand the molecular mechanism that underlies egg laying in Huoyan geese, gene profiles in the pituitary gland of Huoyan geese taken during the laying period and ceased period were investigated using the suppression subtractive hybridization (SSH) method. Total RNA was extracted from pituitary glands of ceased period and laying period geese. The cDNA in the pituitary glands of ceased geese was subtracted from the cDNA in the pituitary glands of laying geese (forward subtraction); the reverse subtraction was also performed. After sequencing and annotation, a total of 30 and 24 up and down-regulated genes were obtained from the forward and reverse SSH libraries, respectively. These genes mostly related to biosynthetic process, cellular nitrogen compound metabolic process, transport, cell differentiation, cellular protein modification process, signal transduction, small molecule metabolic process. Furthermore, eleven genes were selected for further analyses by quantitative real-time PCR (qRT-PCR). The qRT-PCR results for the most part were consistent with the SSH results. Among these genes, Synaptotagmin-1 (SYT1) and Stathmin-2 (STMN2) were substantially over-expressed in laying period compared to ceased period. These results could serve as an important reference for elucidating the molecular mechanism of higher laying performance in Huoyan geese.
Collapse
Affiliation(s)
- Xinhong Luan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhongzan Cao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Wen Xu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ming Gao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Laiyou Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Shuwei Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
28
|
Liu H, Bai H, Xue R, Takahashi H, Edwardson JM, Chapman ER. Linker mutations reveal the complexity of synaptotagmin 1 action during synaptic transmission. Nat Neurosci 2014; 17:670-7. [PMID: 24657966 PMCID: PMC4139111 DOI: 10.1038/nn.3681] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/21/2014] [Indexed: 12/13/2022]
Abstract
The Ca(2+) sensor for rapid synaptic vesicle exocytosis, synaptotagmin 1 (syt), is largely composed of two Ca(2+)-sensing C2 domains, C2A and C2B. We investigated the apparent synergy between the tandem C2 domains by altering the length and rigidity of the linker that connects them. The behavior of the linker mutants revealed a correlation between the ability of the C2 domains to penetrate membranes in response to Ca(2+) and to drive evoked neurotransmitter release in cultured mouse neurons, uncovering a step in excitation-secretion coupling. Using atomic force microscopy, we found that the synergy between these C2 domains involved intra-molecular interactions between them. Thus, syt function is markedly affected by changes in the physical nature of the linker that connects its tandem C2 domains. Moreover, the linker mutations uncoupled syt-mediated regulation of evoked and spontaneous release, revealing that syt also acts as a fusion clamp before the Ca(2+) trigger.
Collapse
Affiliation(s)
- Huisheng Liu
- 1] Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, USA. [2] [3]
| | - Hua Bai
- 1] Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, USA. [2]
| | - Renhao Xue
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | - Edwin R Chapman
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
29
|
Trouillon R, Ewing AG. Actin controls the vesicular fraction of dopamine released during extended kiss and run exocytosis. ACS Chem Biol 2014; 9:812-20. [PMID: 24400601 PMCID: PMC3985473 DOI: 10.1021/cb400665f] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
The effect of latrunculin A, an inhibitor
of actin cross-linking,
on exocytosis in PC12 cells was investigated with single cell amperometry.
This analysis strongly suggests that the actin cytoskeleton might
be involved in regulating exocytosis, especially by mediating the
constriction of the pore. In an extended kiss-and-run release mode,
actin could actually control the fraction of neurotransmitters released
by the vesicle. This scaffold appears to contribute, with the lipid
membrane and the protein machinery, to the closing dynamics of the
pore, in competition with other forces mediating the opening of the
exocytotic channel.
Collapse
Affiliation(s)
- Raphaël Trouillon
- Department
of Chemistry and Molecular Biology, University of Gothenburg, S-41296 Gothenburg, Sweden
| | - Andrew G. Ewing
- Department
of Chemistry and Molecular Biology, University of Gothenburg, S-41296 Gothenburg, Sweden
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, S-41296 Gothenburg, Sweden
| |
Collapse
|
30
|
Liu H, Bai H, Hui E, Yang L, Evans CS, Wang Z, Kwon SE, Chapman ER. Synaptotagmin 7 functions as a Ca2+-sensor for synaptic vesicle replenishment. eLife 2014; 3:e01524. [PMID: 24569478 PMCID: PMC3930910 DOI: 10.7554/elife.01524] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Synaptotagmin (syt) 7 is one of three syt isoforms found in all metazoans; it is ubiquitously expressed, yet its function in neurons remains obscure. Here, we resolved Ca(2+)-dependent and Ca(2+)-independent synaptic vesicle (SV) replenishment pathways, and found that syt 7 plays a selective and critical role in the Ca(2+)-dependent pathway. Mutations that disrupt Ca(2+)-binding to syt 7 abolish this function, suggesting that syt 7 functions as a Ca(2+)-sensor for replenishment. The Ca(2+)-binding protein calmodulin (CaM) has also been implicated in SV replenishment, and we found that loss of syt 7 was phenocopied by a CaM antagonist. Moreover, we discovered that syt 7 binds to CaM in a highly specific and Ca(2+)-dependent manner; this interaction requires intact Ca(2+)-binding sites within syt 7. Together, these data indicate that a complex of two conserved Ca(2+)-binding proteins, syt 7 and CaM, serve as a key regulator of SV replenishment in presynaptic nerve terminals. DOI: http://dx.doi.org/10.7554/eLife.01524.001.
Collapse
Affiliation(s)
- Huisheng Liu
- Department of Neuroscience, Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, United States
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Moghadam PK, Jackson MB. The functional significance of synaptotagmin diversity in neuroendocrine secretion. Front Endocrinol (Lausanne) 2013; 4:124. [PMID: 24065953 PMCID: PMC3776153 DOI: 10.3389/fendo.2013.00124] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 08/31/2013] [Indexed: 11/25/2022] Open
Abstract
Synaptotagmins (syts) are abundant, evolutionarily conserved integral membrane proteins that play essential roles in regulated exocytosis in nervous and endocrine systems. There are at least 17 syt isoforms in mammals, all with tandem C-terminal C2 domains with highly variable capacities for Ca(2+) binding. Many syts play roles in neurotransmitter release or hormone secretion or both, and a growing body of work supports a role for some syts as Ca(2+) sensors of exocytosis. Work in many types of endocrine cells has documented the presence of a number of syt isoforms on dense-core vesicles containing various hormones. Syts can influence the kinetics of exocytotic fusion pores and the choice of release mode between kiss-and-run and full-fusion. Vesicles harboring different syt isoforms can preferentially undergo distinct modes of exocytosis with different forms of stimulation. The diverse properties of syt isoforms enable these proteins to shape Ca(2+) sensing in endocrine cells, thus contributing to the regulation of hormone release and the organization of complex endocrine functions.
Collapse
Affiliation(s)
| | - Meyer B. Jackson
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
- *Correspondence: Meyer B. Jackson, Department of Neuroscience, University of Wisconsin, 1300 University Avenue, Madison, WI 53706-1510, USA e-mail:
| |
Collapse
|
32
|
Snapin accelerates exocytosis at low intracellular calcium concentration in mouse chromaffin cells. Cell Calcium 2013; 54:105-10. [DOI: 10.1016/j.ceca.2013.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/30/2013] [Accepted: 05/03/2013] [Indexed: 11/20/2022]
|
33
|
Cordeiro JM, Boda B, Gonçalves PP, Dunant Y. Synaptotagmin 1 is required for vesicular Ca2+
/H+
-antiport activity. J Neurochem 2013; 126:37-46. [PMID: 23607712 DOI: 10.1111/jnc.12278] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Joao Miguel Cordeiro
- Neurosciences fondamentales; Faculté de Médecine; Université de Genève; Genève Switzerland
- Departamento de Biologia and CESAM; Universidade de Aveiro; Aveiro Portugal
| | - Bernadett Boda
- Neurosciences fondamentales; Faculté de Médecine; Université de Genève; Genève Switzerland
| | - Paula P. Gonçalves
- Departamento de Biologia and CESAM; Universidade de Aveiro; Aveiro Portugal
| | - Yves Dunant
- Neurosciences fondamentales; Faculté de Médecine; Université de Genève; Genève Switzerland
| |
Collapse
|
34
|
Bossio C, Mastrangelo R, Morini R, Tonna N, Coco S, Verderio C, Matteoli M, Bianco F. A simple method to generate adipose stem cell-derived neurons for screening purposes. J Mol Neurosci 2013; 51:274-81. [PMID: 23468184 DOI: 10.1007/s12031-013-9985-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 02/20/2013] [Indexed: 01/22/2023]
Abstract
Strategies involved in mesenchymal stem cell (MSC) differentiation toward neuronal cells for screening purposes are characterized by quality and quantity issues. Differentiated cells are often scarce with respect to starting undifferentiated population, and the differentiation process is usually quite long, with high risk of contamination and low yield efficiency. Here, we describe a novel simple method to induce direct differentiation of MSCs into neuronal cells, without neurosphere formation. Differentiated cells are characterized by clear morphological changes, expression of neuronal specific markers, showing functional response to depolarizing stimuli and electrophysiological properties similar to those of developing neurons. The method described here represents a valuable tool for future strategies aimed at personalized screening of therapeutic agents in vitro.
Collapse
|
35
|
Catterall WA, Leal K, Nanou E. Calcium channels and short-term synaptic plasticity. J Biol Chem 2013; 288:10742-9. [PMID: 23400776 DOI: 10.1074/jbc.r112.411645] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Voltage-gated Ca(2+) channels in presynaptic nerve terminals initiate neurotransmitter release in response to depolarization by action potentials from the nerve axon. The strength of synaptic transmission is dependent on the third to fourth power of Ca(2+) entry, placing the Ca(2+) channels in a unique position for regulation of synaptic strength. Short-term synaptic plasticity regulates the strength of neurotransmission through facilitation and depression on the millisecond time scale and plays a key role in encoding information in the nervous system. Ca(V)2.1 channels are the major source of Ca(2+) entry for neurotransmission in the central nervous system. They are tightly regulated by Ca(2+), calmodulin, and related Ca(2+) sensor proteins, which cause facilitation and inactivation of channel activity. Emerging evidence reviewed here points to this mode of regulation of Ca(V)2.1 channels as a major contributor to short-term synaptic plasticity of neurotransmission and its diversity among synapses.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280, USA
| | | | | |
Collapse
|
36
|
Negative coupling as a mechanism for signal propagation between C2 domains of synaptotagmin I. PLoS One 2012; 7:e46748. [PMID: 23071627 PMCID: PMC3465270 DOI: 10.1371/journal.pone.0046748] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/05/2012] [Indexed: 11/28/2022] Open
Abstract
Synaptotagmin I (Syt I) is a vesicle-localized protein implicated in sensing the calcium influx that triggers fast synchronous release of neurotransmitter. How Syt I utilizes its two C2 domains to integrate signals and mediate neurotransmission has continued to be a controversial area of research, though prevalent hypotheses favor independent function. Using differential scanning calorimetry and fluorescence lifetime spectroscopy in a thermodynamic denaturation approach, we tested an alternative hypothesis in which both domains interact to cooperatively disseminate binding information. The free energy of stability was determined for C2A, C2B, and C2AB constructs by globally fitting both methods to a two-state model of unfolding. By comparing the additive free energies of C2A and C2B with C2AB, we identified a negative coupling interaction between the C2 domains of Syt I. This interaction not only provides a mechanistic means for propagating signals, but also a possible means for coordinating the molecular events of neurotransmission.
Collapse
|
37
|
Kasai H, Takahashi N, Tokumaru H. Distinct Initial SNARE Configurations Underlying the Diversity of Exocytosis. Physiol Rev 2012; 92:1915-64. [DOI: 10.1152/physrev.00007.2012] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dynamics of exocytosis are diverse and have been optimized for the functions of synapses and a wide variety of cell types. For example, the kinetics of exocytosis varies by more than five orders of magnitude between ultrafast exocytosis in synaptic vesicles and slow exocytosis in large dense-core vesicles. However, in all cases, exocytosis is mediated by the same fundamental mechanism, i.e., the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. It is often assumed that vesicles need to be docked at the plasma membrane and SNARE proteins must be preassembled before exocytosis is triggered. However, this model cannot account for the dynamics of exocytosis recently reported in synapses and other cells. For example, vesicles undergo exocytosis without prestimulus docking during tonic exocytosis of synaptic vesicles in the active zone. In addition, epithelial and hematopoietic cells utilize cAMP and kinases to trigger slow exocytosis of nondocked vesicles. In this review, we summarize the manner in which the diversity of exocytosis reflects the initial configurations of SNARE assembly, including trans-SNARE, binary-SNARE, unitary-SNARE, and cis-SNARE configurations. The initial SNARE configurations depend on the particular SNARE subtype (syntaxin, SNAP25, or VAMP), priming proteins (Munc18, Munc13, CAPS, complexin, or snapin), triggering proteins (synaptotagmins, Doc2, and various protein kinases), and the submembraneous cytomatrix, and they are the key to determining the kinetics of subsequent exocytosis. These distinct initial configurations will help us clarify the common SNARE assembly processes underlying exocytosis and membrane trafficking in eukaryotic cells.
Collapse
Affiliation(s)
- Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Hiroshi Tokumaru
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| |
Collapse
|
38
|
Yeo H, Kim HW, Mo J, Lee D, Han S, Hong S, Koh MJ, Sun W, Choi S, Rhyu IJ, Kim H, Lee HW. Developmental expression and subcellular distribution of synaptotagmin 11 in rat hippocampus. Neuroscience 2012; 225:35-43. [PMID: 22960622 DOI: 10.1016/j.neuroscience.2012.08.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/21/2012] [Accepted: 08/29/2012] [Indexed: 11/18/2022]
Abstract
Synaptotagmins are required for Ca(2+)-dependent membrane-trafficking in either neuronal synaptic vesicles or cellular membranes. Previous reports suggested that the synaptotagmin 11 (syt11) gene is involved in the development of schizophrenia based on the genomic analysis of patients. Parkin protein binds to the C2 domains of Syt11 which leads to the polyubiquitination of Syt11. However, where and how Syt11 performs its role in the brain is largely unknown. Here, we report that Syt11 is expressed mainly in the brain. In addition, exogenously expressed Syt11 in HEK293 cells can form higher molecular weight complex via its transmembrane domain. Also, Syt11 is targeted to both dendrite and axon compartments. Immunocytochemistry showed that Syt11 is juxtaposed to postsynaptic markers in both excitatory and inhibitory synapses. Both neuroligin 1 and 2, which are postsynaptic cell adhesion molecules and differentially induce excitatory and inhibitory presynapses, respectively, recruit Syt11 in neuron coculture. Immunogold electron microscopy analysis revealed that Syt11 exists mainly in presynaptic neurotransmitter vesicles and plasma membrane, and rarely in postsynaptic sites. These results suggest that Syt11 may contribute to the regulation of neurotransmitter release in the excitatory and inhibitory presynapses, and postsynapse-targeted membrane trafficking in dendrites.
Collapse
Affiliation(s)
- H Yeo
- Department of Anatomy and Division of Brain Korea 21 Biomedical Science, College of Medicine, Korea University, 126-1, 5-Ka, Anam-Dong, Seongbuk-Gu, Seoul 136-705, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Prisila Dulcy C, Singh HK, Preethi J, Emmanuvel Rajan K. Standardized extract of Bacopa monniera (BESEB CDRI-08) attenuates contextual associative learning deficits in the aging rat's brain induced by D-galactose. J Neurosci Res 2012; 90:2053-64. [DOI: 10.1002/jnr.23080] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/20/2012] [Accepted: 04/12/2012] [Indexed: 12/22/2022]
|
40
|
Distinct subsets of Syt-IV/BDNF vesicles are sorted to axons versus dendrites and recruited to synapses by activity. J Neurosci 2012; 32:5398-413. [PMID: 22514304 DOI: 10.1523/jneurosci.4515-11.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BDNF plays a critical role in the regulation of synaptic strength and is essential for long-term potentiation, a phenomenon that underlies learning and memory. However, whether BDNF acts in a diffuse manner or is targeted to specific neuronal subcompartments or synaptic sites to affect circuit function remains unknown. Here, using photoactivation of BDNF or syt-IV (a regulator of exocytosis present on BDNF-containing vesicles) in transfected rat hippocampal neurons, we discovered that distinct subsets of BDNF vesicles are targeted to axons versus dendrites and are not shared between these compartments. Moreover, syt-IV- and BDNF-harboring vesicles are recruited to both presynaptic and postsynaptic sites in response to increased neuronal activity. Finally, using syt-IV knockout mouse neurons, we found that syt-IV is necessary for both presynaptic and postsynaptic scaling of synaptic strength in response to changes in network activity. These findings demonstrate that BDNF-containing vesicles can be targeted to specific sites in neurons and suggest that syt-IV-regulated BDNF secretion is subject to spatial control to regulate synaptic function in a site-specific manner.
Collapse
|
41
|
Jackson MB. Inferring structures of kinetic intermediates in Ca(2+)-triggered exocytosis. CURRENT TOPICS IN MEMBRANES 2012; 68:185-208. [PMID: 21771500 DOI: 10.1016/b978-0-12-385891-7.00008-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Meyer B Jackson
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
42
|
Regulation of voltage-gated calcium channels by synaptic proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:759-75. [PMID: 22453968 DOI: 10.1007/978-94-007-2888-2_33] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Calcium entry through neuronal voltage-gated calcium channels into presynaptic nerve terminal is a key step in synaptic exocytosis. In order to receive the calcium signal and trigger fast, efficient and spatially delimited neurotransmitter release, the vesicle-docking/release machinery must be located near the calcium source. In many cases, this close localization is achieved by a direct interaction of several members of the vesicle release machinery with the calcium channels. In turn, the binding of synaptic proteins to presynaptic calcium channels modulates channel activity to provide fine control over calcium entry, and thus modulates synaptic strength. In this chapter we summarize our present knowledge of the molecular mechanisms by which synaptic proteins regulate presynaptic calcium channel activity.
Collapse
|
43
|
Uncoupling the roles of synaptotagmin I during endo- and exocytosis of synaptic vesicles. Nat Neurosci 2011; 15:243-9. [PMID: 22197832 PMCID: PMC3435110 DOI: 10.1038/nn.3013] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/14/2011] [Indexed: 11/29/2022]
Abstract
Synaptotagmin I (syt1) is required for normal rates of synaptic vesicle endo- and exocytosis. However, whether the kinetic defects observed during endocytosis in syt1 knock-out neurons are secondary to defective exocytosis, or whether syt1 directly regulates the rate of vesicle retrieval, remains unresolved. In order to address this question, it is necessary to dissociate these two activities. Here, we have uncoupled the function of syt1 in exo- and endocytosis by re-targeting of the protein, or via mutagenesis of its tandem C2-domains; the impact of these manipulations on exo- and endocytosis were analyzed via electrophysiology, in conjunction with optical imaging of the vesicle cycle. These experiments uncovered a direct role for syt1 in endocytosis. Surprisingly, either C2-domain of syt1 - C2A or C2B - was able to function as Ca2+-sensor for endocytosis. Hence, syt1 functions as a dual Ca2+ sensor for both endo- and exocytosis, potentially coupling these two limbs of the vesicle cycle.
Collapse
|
44
|
Yao J, Gaffaney JD, Kwon SE, Chapman ER. Doc2 is a Ca2+ sensor required for asynchronous neurotransmitter release. Cell 2011; 147:666-77. [PMID: 22036572 DOI: 10.1016/j.cell.2011.09.046] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 07/19/2011] [Accepted: 09/29/2011] [Indexed: 11/26/2022]
Abstract
Synaptic transmission involves a fast synchronous phase and a slower asynchronous phase of neurotransmitter release that are regulated by distinct Ca(2+) sensors. Though the Ca(2+) sensor for rapid exocytosis, synaptotagmin I, has been studied in depth, the sensor for asynchronous release remains unknown. In a screen for neuronal Ca(2+) sensors that respond to changes in [Ca(2+)] with markedly slower kinetics than synaptotagmin I, we observed that Doc2--another Ca(2+), SNARE, and lipid-binding protein--operates on timescales consistent with asynchronous release. Moreover, up- and downregulation of Doc2 expression levels in hippocampal neurons increased or decreased, respectively, the slow phase of synaptic transmission. Synchronous release, when triggered by single action potentials, was unaffected by manipulation of Doc2 but was enhanced during repetitive stimulation in Doc2 knockdown neurons, potentially due to greater vesicle availability. In summary, we propose that Doc2 is a Ca(2+) sensor that is kinetically tuned to regulate asynchronous neurotransmitter release.
Collapse
Affiliation(s)
- Jun Yao
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
45
|
Troulinaki K, Tavernarakis N. Endocytosis and intracellular trafficking contribute to necrotic neurodegeneration in C. elegans. EMBO J 2011; 31:654-66. [PMID: 22157748 DOI: 10.1038/emboj.2011.447] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 11/09/2011] [Indexed: 11/09/2022] Open
Abstract
Unlike apoptosis, necrotic cell death is characterized by marked loss of plasma membrane integrity. Leakage of cytoplasmic material to the extracellular space contributes to cell demise, and is the cause of acute inflammatory responses, which typically accompany necrosis. The mechanisms underlying plasma membrane damage during necrotic cell death are not well understood. We report that endocytosis is critically required for the execution of necrosis. Depletion of the key endocytic machinery components dynamin, synaptotagmin and endophilin suppresses necrotic neurodegeneration induced by diverse genetic and environmental insults in C. elegans. We used genetically encoded fluorescent markers to monitor the formation and fate of specific types of endosomes during cell death in vivo. Strikingly, we find that the number of early and recycling endosomes increases sharply and transiently upon initiation of necrosis. Endosomes subsequently coalesce around the nucleus and disintegrate during the final stage of necrosis. Interfering with kinesin-mediated endosome trafficking impedes cell death. Endocytosis synergizes with autophagy and lysosomal proteolytic mechanisms to facilitate necrotic neurodegeneration. These findings demonstrate a prominent role for endocytosis in cellular destruction during neurodegeneration, which is likely conserved in metazoans.
Collapse
Affiliation(s)
- Kostoula Troulinaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
| | | |
Collapse
|
46
|
Pennucci R, Tavano S, Tonoli D, Gualdoni S, de Curtis I. Rac1 and Rac3 GTPases regulate the development of hilar mossy cells by affecting the migration of their precursors to the hilus. PLoS One 2011; 6:e24819. [PMID: 21949760 PMCID: PMC3176786 DOI: 10.1371/journal.pone.0024819] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 08/18/2011] [Indexed: 11/21/2022] Open
Abstract
We have previously shown that double deletion of the genes for Rac1 and Rac3 GTPases during neuronal development affects late developmental events that perturb the circuitry of the hippocampus, with ensuing epileptic phenotype. These effects include a defect in mossy cells, the major class of excitatory neurons of the hilus. Here, we have addressed the mechanisms that affect the loss of hilar mossy cells in the dorsal hippocampus of mice depleted of the two Rac GTPases. Quantification showed that the loss of mossy cells was evident already at postnatal day 8, soon after these cells become identifiable by a specific marker in the dorsal hilus. Comparative analysis of the hilar region from control and double mutant mice revealed that synaptogenesis was affected in the double mutants, with strongly reduced presynaptic input from dentate granule cells. We found that apoptosis was equally low in the hippocampus of both control and double knockout mice. Labelling with bromodeoxyuridine at embryonic day 12.5 showed no evident difference in the proliferation of neuronal precursors in the hippocampal primordium, while differences in the number of bromodeoxyuridine-labelled cells in the developing hilus revealed a defect in the migration of immature, developing mossy cells in the brain of double knockout mice. Overall, our data show that Rac1 and Rac3 GTPases participate in the normal development of hilar mossy cells, and indicate that they are involved in the regulation of the migration of the mossy cell precursor by preventing their arrival to the dorsal hilus.
Collapse
Affiliation(s)
- Roberta Pennucci
- Cell Adhesion Unit, Division of Neuroscience, San Raffaele Scientific Institute and San Raffaele University, Milano, Italy
| | | | | | | | | |
Collapse
|
47
|
Hui E, Gaffaney JD, Wang Z, Johnson CP, Evans CS, Chapman ER. Mechanism and function of synaptotagmin-mediated membrane apposition. Nat Struct Mol Biol 2011; 18:813-21. [PMID: 21642967 PMCID: PMC3130839 DOI: 10.1038/nsmb.2075] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 04/28/2011] [Indexed: 11/09/2022]
Abstract
Synaptotagmin-I (syt) is a Ca2+ sensor that triggers synchronous neurotransmitter release. The first documented biochemical property of syt was its ability to aggregate membranes in response to Ca2+. However, the mechanism and function of syt-mediated membrane aggregation are poorly understood. Here, we demonstrate that syt-mediated vesicle aggregation is driven by trans interactions between syt molecules bound to different membranes. We observed a strong correlation between the ability of Ca2+-syt to aggregate vesicles and to stimulate SNARE-mediated membrane fusion. Moreover, artificial aggregation of membranes - using non-syt proteins - also efficiently promoted fusion of SNARE-bearing liposomes. Finally, using a modified fusion assay, we observed that syt drives the assembly of otherwise non-fusogenic individual t-SNARE proteins into fusion competent heterodimers, in an aggregation-independent manner. Thus, membrane aggregation and t-SNARE assembly appear to be two key aspects of Ca2+-syt-regulated, SNARE-catalyzed fusion reactions.
Collapse
Affiliation(s)
- Enfu Hui
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | | | |
Collapse
|
48
|
Zhang Z, Wu Y, Wang Z, Dunning FM, Rehfuss J, Ramanan D, Chapman ER, Jackson MB. Release mode of large and small dense-core vesicles specified by different synaptotagmin isoforms in PC12 cells. Mol Biol Cell 2011; 22:2324-36. [PMID: 21551071 PMCID: PMC3128534 DOI: 10.1091/mbc.e11-02-0159] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Different synaptotagmin isoforms (syt I, VII, and IX) sort to populations of dense-core vesicles with different sizes. These isoforms differ in their sensitivities to divalent cations and trigger different modes of exocytosis. Exocytosis triggered by these isoforms also differs in its sensitivity to inhibition by another isoform, syt IV. Many cells release multiple substances in different proportions according to the specific character of a stimulus. PC12 cells, a model neuroendocrine cell line, express multiple isoforms of the exocytotic Ca2+ sensor synaptotagmin. We show that these isoforms sort to populations of dense-core vesicles that differ in size. These synaptotagmins differ in their Ca2+ sensitivities, their preference for full fusion or kiss-and-run, and their sensitivity to inhibition by synaptotagmin IV. In PC12 cells, vesicles that harbor these different synaptotagmin isoforms can be preferentially triggered to fuse by different forms of stimulation. The mode of fusion is specified by the synaptotagmin isoform activated, and because kiss-and-run exocytosis can filter small molecules through a size-limiting fusion pore, the activation of isoforms that favor kiss-and-run will select smaller molecules over larger molecules packaged in the same vesicle. Thus synaptotagmin isoforms can provide multiple levels of control in the release of different molecules from the same cell.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Physiology, University of Wisconsin School of Medical and Public Health, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Selga E, Pérez-Cano FJ, Franch A, Ramírez-Santana C, Rivero M, Ciudad CJ, Castellote C, Noé V. Gene expression profiles in rat mesenteric lymph nodes upon supplementation with conjugated linoleic acid during gestation and suckling. BMC Genomics 2011; 12:182. [PMID: 21481241 PMCID: PMC3094308 DOI: 10.1186/1471-2164-12-182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 04/11/2011] [Indexed: 12/25/2022] Open
Abstract
Background Diet plays a role on the development of the immune system, and polyunsaturated fatty acids can modulate the expression of a variety of genes. Human milk contains conjugated linoleic acid (CLA), a fatty acid that seems to contribute to immune development. Indeed, recent studies carried out in our group in suckling animals have shown that the immune function is enhanced after feeding them with an 80:20 isomer mix composed of c9,t11 and t10,c12 CLA. However, little work has been done on the effects of CLA on gene expression, and even less regarding immune system development in early life. Results The expression profile of mesenteric lymph nodes from animals supplemented with CLA during gestation and suckling through dam's milk (Group A) or by oral gavage (Group B), supplemented just during suckling (Group C) and control animals (Group D) was determined with the aid of the specific GeneChip® Rat Genome 230 2.0 (Affymettrix). Bioinformatics analyses were performed using the GeneSpring GX software package v10.0.2 and lead to the identification of 89 genes differentially expressed in all three dietary approaches. Generation of a biological association network evidenced several genes, such as connective tissue growth factor (Ctgf), tissue inhibitor of metalloproteinase 1 (Timp1), galanin (Gal), synaptotagmin 1 (Syt1), growth factor receptor bound protein 2 (Grb2), actin gamma 2 (Actg2) and smooth muscle alpha actin (Acta2), as highly interconnected nodes of the resulting network. Gene underexpression was confirmed by Real-Time RT-PCR. Conclusions Ctgf, Timp1, Gal and Syt1, among others, are genes modulated by CLA supplementation that may have a role on mucosal immune responses in early life.
Collapse
Affiliation(s)
- Elisabet Selga
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Stevens DR, Schirra C, Becherer U, Rettig J. Vesicle pools: lessons from adrenal chromaffin cells. Front Synaptic Neurosci 2011; 3:2. [PMID: 21423410 PMCID: PMC3059608 DOI: 10.3389/fnsyn.2011.00002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 01/17/2011] [Indexed: 11/30/2022] Open
Abstract
The adrenal chromaffin cell serves as a model system to study fast Ca2+-dependent exocytosis. Membrane capacitance measurements in combination with Ca2+ uncaging offers a temporal resolution in the millisecond range and reveals that catecholamine release occurs in three distinct phases. Release of a readily releasable (RRP) and a slowly releasable (SRP) pool are followed by sustained release, due to maturation, and release of vesicles which were not release-ready at the start of the stimulus. Trains of depolarizations, a more physiological stimulus, induce release from a small immediately releasable pool of vesicles residing adjacent to calcium channels, as well as from the RRP. The SRP is poorly activated by depolarization. A sequential model, in which non-releasable docked vesicles are primed to a slowly releasable state, and then further mature to the readily releasable state, has been proposed. The docked state, dependent on membrane proximity, requires SNAP-25, synaptotagmin, and syntaxin. The ablation or modification of SNAP-25 and syntaxin, components of the SNARE complex, as well as of synaptotagmin, the calcium sensor, and modulators such complexins and Snapin alter the properties and/or magnitudes of different phases of release, and in particular can ablate the RRP. These results indicate that the composition of the SNARE complex and its interaction with modulatory molecules drives priming and provides a molecular basis for different pools of releasable vesicles.
Collapse
Affiliation(s)
- David R Stevens
- Physiologisches Institut, Universität des Saarlandes Homburg, Saarland, Germany
| | | | | | | |
Collapse
|