1
|
Mucker EM, Freyn AW, Bixler SL, Cizmeci D, Atyeo C, Earl PL, Natarajan H, Santos G, Frey TR, Levin RH, Meni A, Arunkumar GA, Stadlbauer D, Jorquera PA, Bennett H, Johnson JC, Hardcastle K, Americo JL, Cotter CA, Koehler JW, Davis CI, Shamblin JD, Ostrowski K, Raymond JL, Ricks KM, Carfi A, Yu WH, Sullivan NJ, Moss B, Alter G, Hooper JW. Comparison of protection against mpox following mRNA or modified vaccinia Ankara vaccination in nonhuman primates. Cell 2024; 187:5540-5553.e10. [PMID: 39236707 DOI: 10.1016/j.cell.2024.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024]
Abstract
In 2022, mpox virus (MPXV) spread worldwide, causing 99,581 mpox cases in 121 countries. Modified vaccinia Ankara (MVA) vaccine use reduced disease in at-risk populations but failed to deliver complete protection. Lag in manufacturing and distribution of MVA resulted in additional MPXV spread, with 12,000 reported cases in 2023 and an additional outbreak in Central Africa of clade I virus. These outbreaks highlight the threat of zoonotic spillover by Orthopoxviruses. mRNA-1769, an mRNA-lipid nanoparticle (LNP) vaccine expressing MPXV surface proteins, was tested in a lethal MPXV primate model. Similar to MVA, mRNA-1769 conferred protection against challenge and further mitigated symptoms and disease duration. Antibody profiling revealed a collaborative role between neutralizing and Fc-functional extracellular virion (EV)-specific antibodies in viral restriction and ospinophagocytic and cytotoxic antibody functions in protection against lesions. mRNA-1769 enhanced viral control and disease attenuation compared with MVA, highlighting the potential for mRNA vaccines to mitigate future pandemic threats.
Collapse
Affiliation(s)
- Eric M Mucker
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | | | - Sandra L Bixler
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | | | | | - Patricia L Earl
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Jeffrey L Americo
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Catherine A Cotter
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeff W Koehler
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Christopher I Davis
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Joshua D Shamblin
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Kristin Ostrowski
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Jo Lynne Raymond
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Keersten M Ricks
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | | | | | - Nancy J Sullivan
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA; Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Biology, Boston University, Boston, MA, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Jay W Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA.
| |
Collapse
|
2
|
Wang J, Shahed-Ai-Mahmud M, Chen A, Li K, Tan H, Joyce R. An Overview of Antivirals against Monkeypox Virus and Other Orthopoxviruses. J Med Chem 2023; 66:4468-4490. [PMID: 36961984 DOI: 10.1021/acs.jmedchem.3c00069] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The current monkeypox outbreaks during the COVID-19 pandemic have reignited interest in orthopoxvirus antivirals. Monkeypox belongs to the Orthopoxvirus genus of the Poxviridae family, which also includes the variola virus, vaccinia virus, and cowpox virus. Two orally bioavailable drugs, tecovirimat and brincidofovir, have been approved for treating smallpox infections. Given their human safety profiles and in vivo antiviral efficacy in animal models, both drugs have also been recommended to treat monkeypox infection. To facilitate the development of additional orthopoxvirus antivirals, we summarize the antiviral activity, mechanism of action, and mechanism of resistance of orthopoxvirus antivirals. This perspective covers both direct-acting and host-targeting antivirals with an emphasis on drug candidates showing in vivo antiviral efficacy in animal models. We hope to speed the orthopoxvirus antiviral drug discovery by providing medicinal chemists with insights into prioritizing proper drug targets and hits for further development.
Collapse
Affiliation(s)
- Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Md Shahed-Ai-Mahmud
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Angelo Chen
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Kan Li
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Ryan Joyce
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
3
|
Zheng Z, Dian L, Yuan Y, Zhang-Negrerie D, Du Y, Zhao K. PhI(OAc)2-mediated intramolecular oxidative aryl-aldehyde Csp(2)-Csp(2) bond formation: metal-free synthesis of acridone derivatives. J Org Chem 2014; 79:7451-8. [PMID: 25068595 DOI: 10.1021/jo5011697] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A metal-free protocol for direct aryl-aldehyde Csp(2)-Csp(2) bond formation via a PhI(OAc)2-mediated intramolecular cross-dehydrogenative coupling (CDC) of various 2-(N-arylamino)aldehydes was developed. The novel methodology requires no need of preactivation of the aldehyde group, is applicable to a large variety of functionalized substrates, and most of all provides a convenient approach to the construction of biologically important acridone derivatives.
Collapse
Affiliation(s)
- Zisheng Zheng
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, China
| | | | | | | | | | | |
Collapse
|
4
|
Smee DF, Bailey KW, Wong MH, Tarbet EB. Topical treatment of cutaneous vaccinia virus infections in immunosuppressed hairless mice with selected antiviral substances. Antivir Chem Chemother 2011; 21:201-8. [PMID: 21566266 DOI: 10.3851/imp1734] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Certain nucleoside, nucleotide and pyrophosphate analogues may be useful for treating severe complications arising as a result of virus dissemination following smallpox (live vaccinia virus) vaccinations, especially in immunocompromised individuals. We used an immunosuppressed hairless mouse model to study the effects of 10 antiviral agents on progressive vaccinia infections. METHODS Hairless mice were immunosuppressed by treatment with cyclophosphamide (100 mg/kg) every 4 days starting 1 day prior to vaccinia virus (WR strain) infection of wounded skin. Topical treatments with antiviral agents were applied twice a day for 7 days starting 5 days after virus exposure. RESULTS Topical 1% cidofovir cream treatment was effective in significantly reducing primary lesion severity and decreasing the number of satellite lesions. Topical 1% cyclic HPMPC and 1% phosphonoacetic acid were not quite as active as cidofovir. Ribavirin (5%) treatment reduced lesion severity and diminished the numbers of satellite lesions, but the mice died significantly sooner than placebos. 2-Amino-7-[(1,3,-dihydroxy-2-propoxy)methyl]purine (compound S2242; 1%) moderately reduced primary lesion sizes. Ineffective treatments included 5% arabinosyladenine, 1% arabinosylcytosine, 1% 5-chloro-arabinosylcytosine, 5% arabinosylhypoxanthine 5-monophosphate and 5% viramidine. CONCLUSIONS Of the compounds tested, topically applied cidofovir was the most effective treatment of cutaneous vaccinia virus infections in immunosuppressed mice. Topical treatment with cidofovir could be considered as an adjunct to intravenous drug therapy for serious infections.
Collapse
Affiliation(s)
- Donald F Smee
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.
| | | | | | | |
Collapse
|
5
|
Cidofovir Activity against Poxvirus Infections. Viruses 2010; 2:2803-30. [PMID: 21994641 PMCID: PMC3185586 DOI: 10.3390/v2122803] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/09/2010] [Accepted: 12/10/2010] [Indexed: 01/26/2023] Open
Abstract
Cidofovir [(S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine, HPMPC] is an acyclic nucleoside analog approved since 1996 for clinical use in the treatment of cytomegalovirus (CMV) retinitis in AIDS patients. Cidofovir (CDV) has broad-spectrum activity against DNA viruses, including herpes-, adeno-, polyoma-, papilloma- and poxviruses. Among poxviruses, cidofovir has shown in vitro activity against orthopox [vaccinia, variola (smallpox), cowpox, monkeypox, camelpox, ectromelia], molluscipox [molluscum contagiosum] and parapox [orf] viruses. The anti-poxvirus activity of cidofovir in vivo has been shown in different models of infection when the compound was administered either intraperitoneal, intranasal (aerosolized) or topically. In humans, cidofovir has been successfully used for the treatment of recalcitrant molluscum contagiosum virus and orf virus in immunocompromised patients. CDV remains a reference compound against poxviruses and holds potential for the therapy and short-term prophylaxis of not only orthopox- but also parapox- and molluscipoxvirus infections.
Collapse
|
6
|
Vinogradov IV, Kochneva GV, Malkova EM, Shchelkunov SN, Ryabchikova EI. Comparative study of pathological changes in the mouse viscera in infection caused by two orthopoxviruses. Bull Exp Biol Med 2006; 141:448-52. [PMID: 17152368 DOI: 10.1007/s10517-006-0196-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The mechanisms of infection development in intraperitoneal inoculation of mice by ectromelia virus strain K-1 and cowpox strain EP-2 were studied. Ultrastructural parameters of virus assembly and maturation are described. Differences in the types of cells replicating the viruses and in the type of visceral injuries were detected. The studies showed a local type of strain EP-2 cowpox infection and dissemination of ectromelia strain K-1.
Collapse
Affiliation(s)
- I V Vinogradov
- Vector State Research Center of Virology and Biotechnology, Novosibirsk
| | | | | | | | | |
Collapse
|
7
|
Kornbluth RS, Smee DF, Sidwell RW, Snarsky V, Evans DH, Hostetler KY. Mutations in the E9L polymerase gene of cidofovir-resistant vaccinia virus strain WR are associated with the drug resistance phenotype. Antimicrob Agents Chemother 2006; 50:4038-43. [PMID: 16982794 PMCID: PMC1694007 DOI: 10.1128/aac.00380-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 05/08/2006] [Accepted: 09/07/2006] [Indexed: 11/20/2022] Open
Abstract
Cidofovir (CDV) is an effective drug against viruses of the Orthopoxviridae family and is active in vitro against variola virus, the cause of smallpox. However, CDV-resistant poxviruses can be generated by repeated in vitro passage in the presence of suboptimal concentrations of CDV. To determine if mutations in the E9L polymerase gene could confer resistance to this nucleoside analog, this gene was sequenced from CDV-resistant vaccinia virus and found to encode five amino acid changes, centered on an N-terminal region associated with 3'-->5' exonuclease activity. Transfer of this mutant E9L gene into wild-type vaccinia virus by marker rescue sufficed to confer the resistance phenotype. E9L polymerase mutations occurred sequentially during passage in CDV, and an H296Y/S338F double mutant that conferred an intermediate CDV resistance phenotype was identified. In vitro, the marker-rescued CDV-resistant vaccinia virus containing all five mutations grew nearly as well as wild-type vaccinia virus. However, the virulence of this virus for mice was reduced, as 10- to 30-fold more CDV-resistant virus than wild-type virus was required for lethality following intranasal challenge. Cidofovir and hexadecyloxypropyl-cidofovir gave partial protection to mice infected with the virus when used at 50 and 100 mg/kg of body weight given as single treatments 24 h after virus exposure, whereas 2-amino-7-[(1,3-dihydroxy-2-propoxy)methyl]purine (compound S2242) was completely protective at 25, 50, and 100 mg/kg/day when given daily for 5 days. These findings suggest that drug therapy for poxviruses may be complicated by drug resistance but that treatment of the infection with currently known compounds is possible.
Collapse
Affiliation(s)
- Richard S Kornbluth
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0676, USA
| | | | | | | | | | | |
Collapse
|
8
|
Prichard MN, Keith KA, Quenelle DC, Kern ER. Activity and mechanism of action of N-methanocarbathymidine against herpesvirus and orthopoxvirus infections. Antimicrob Agents Chemother 2006; 50:1336-41. [PMID: 16569849 PMCID: PMC1426929 DOI: 10.1128/aac.50.4.1336-1341.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-Methanocarbathymidine [(N)-MCT] is a conformationally locked nucleoside analog that is active against some herpesviruses and orthopoxviruses in vitro. The antiviral activity of this molecule is dependent on the type I thymidine kinase (TK) in herpes simplex virus and also appears to be dependent on the type II TK expressed by cowpox and vaccinia viruses, suggesting that it is a substrate for both of these divergent forms of the enzyme. The drug is also a good inhibitor of viral DNA synthesis in both viruses and is consistent with inhibition of the viral DNA polymerase once it is activated by the viral TK homologs. This mechanism of action explains the rather unusual spectrum of activity, which is limited to orthopoxviruses, alphaherpesviruses, and Epstein-Barr virus, since these viruses express molecules with TK activity that can phosphorylate and thus activate the drug. The compound is also effective in vivo and reduces the mortality of mice infected with orthopoxviruses, as well as those infected with herpes simplex virus type 1 when treatment is initiated 24 h after infection. These results indicate that (N)-MCT is active in vitro and in vivo, and its mechanism of action suggests that the molecule may be an effective therapeutic for orthopoxvirus and herpesvirus infections, thus warranting further development.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL 35233, USA.
| | | | | | | |
Collapse
|
9
|
Smee DF, Wandersee MK, Bailey KW, Wong MH, Chu CK, Gadthula S, Sidwell RW. Cell line dependency for antiviral activity and in vivo efficacy of N-methanocarbathymidine against orthopoxvirus infections in mice. Antiviral Res 2006; 73:69-77. [PMID: 16712967 DOI: 10.1016/j.antiviral.2006.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 04/12/2006] [Accepted: 04/13/2006] [Indexed: 10/24/2022]
Abstract
A novel carbocyclic thymidine analog, N-methanocarbathymidine [(N)-MCT], was evaluated for inhibition of orthopoxvirus infections. Efficacy in vitro was assessed by plaque reduction assays against wild-type and cidofovir-resistant strains of cowpox and vaccinia viruses in nine different cell lines. Minimal differences were seen in antiviral activity against wild-type and cidofovir-resistant viruses. (N)-MCT's efficacy was affected by the cell line used for assay, with 50% poxvirus-inhibitory concentrations in cells as follows: mouse=0.6-2.2 microM, rabbit=52-90 microM, monkey=87 to >1000 microM, and human=39-220 microM. Limited studies performed with carbocyclic thymidine indicated a similar cell line dependency for antiviral activity. (N)-MCT did not inhibit actively dividing uninfected cells at 1000 microM. The potency of (N)-MCT against an S-variant thymidine kinase-deficient vaccinia virus was similar to that seen against S-variant and wild-type viruses in mouse, monkey, and human cells, implicating a cellular enzyme in the phosphorylation of the compound. Mice were intranasally infected with cowpox and vaccinia viruses followed 24h later by intraperitoneal treatment with (N)-MCT (twice a day for 7 days) or cidofovir (once a day for 2 days). (N)-MCT treatment at 100 and 30 mg/kg/day resulted in 90 and 20% survival from cowpox virus infection, respectively, compared to 0% survival in the placebo group. Statistically significant reductions in lung virus titers on day 5 occurred in 10, 30, and 100mg/kg/day treated mice. These same doses were also active against a lethal vaccinia virus (WR strain) challenge, and protection was seen down to 10mg/kg/day against a lethal vaccinia virus (IHD strain) infection. Cidofovir (100mg/kg/day) protected animals from death in all three infections.
Collapse
Affiliation(s)
- Donald F Smee
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322-5600, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Smee DF, Wandersee MK, Bailey KW, Hostetler KY, Holy A, Sidwell RW. Characterization and treatment of cidofovir-resistant vaccinia (WR strain) virus infections in cell culture and in mice. Antivir Chem Chemother 2005; 16:203-11. [PMID: 16004083 DOI: 10.1177/095632020501600306] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The wild-type (WT) vaccinia (WR strain) virus is highly virulent to mice by intranasal inoculation, yet death can be prevented by cidofovir treatment. A cidofovir-resistant (CDV-R) mutant of the virus was developed by 15 Vero cell culture passages in order to determine cross-resistance to other inhibitors, growth characteristics, virulence in infected mice, and suitability of the animal model for studying antiviral therapies. Comparisons were made to the original WT virus and to a WT virus passaged 15 times in culture (WTp15 virus). Cidofovir inhibited WT, WTp15, and CDV-R viruses by 50% at 61, 56 and 790 microM, respectively, in plaque reduction assays, with similar inhibition seen in virus yield studies. Cross-resistance occurred with compounds related to cidofovir, but not with unrelated nucleosides. The resistant virus produced 300-fold fewer infectious particles (PFU) than WT and WTp15 viruses in mouse C1271 cells, yet replicated similarly in Vero (monkey) cells. The CDV-R virus was completely attenuated for virulence at 10(7) PFU per mouse in normal BALB/c mice and in severe combined immunodeficient (SCID) mice. The WTp15 virus was 100-fold less virulent than WT virus in BALB/c mice. Thus, the lack of virulence of the resistant virus in the animal model is explained partly by its reduced ability to replicate in mouse cells and by attenuation occurring as a result of extensive cell culturing (inferred from what occurred with the WTp15 virus). Lung and snout virus titre reduction parameters were used to assess antiviral activity of compounds in BALB/c mice infected intranasally with the CDV-R virus. Cidofovir, HDP-cidofovir and arabinofuranosyladenine treatments reduced lung virus titres <fourfold, and snout virus titres > or = eight-fold. The animal model appears to have limited utility in drug efficacy testing.
Collapse
Affiliation(s)
- Donald F Smee
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Lenaerts L, Verbeken E, De Clercq E, Naesens L. Mouse adenovirus type 1 infection in SCID mice: an experimental model for antiviral therapy of systemic adenovirus infections. Antimicrob Agents Chemother 2005; 49:4689-99. [PMID: 16251313 PMCID: PMC1280150 DOI: 10.1128/aac.49.11.4689-4699.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 07/15/2005] [Accepted: 08/16/2005] [Indexed: 11/20/2022] Open
Abstract
The importance of human adenovirus infections in immunocompromised patients urges for new and adequate antiadenovirus compounds. Since human adenoviruses are species specific, animal models for systemic adenovirus infections rely on a nonhuman adenovirus. We established mouse adenovirus type 1 (MAV-1) infection of BALB/c SCID mice as a model for the evaluation of antiadenovirus therapy. In vitro studies with mouse embryonic fibroblasts pointed to the acyclic nucleoside phosphonate cidofovir and the N-7-substituted acyclic derivative 2-amino-7-(1,3-dihydroxy-2-propoxymethyl)purine (S-2242) as markedly active compounds against MAV-1. SCID mice, infected intranasally with MAV-1, developed a fatal disseminated infection after approximately 19 days, characterized by hemorrhagic enteritis. Several techniques were optimized to monitor viral, immunological, and pathological aspects of MAV-1 infection. Real-time PCR quantification of viral DNA revealed that after replication in the lungs, virus disseminated to several organs, including the brain, liver, spleen, intestine, heart, and kidneys (resulting in viruria). Immunohistochemical staining showed that MAV-1 was localized in the endothelial cells of the affected organs. Using reverse transcription-PCR, tissue levels of proinflammatory cytokines (i.e., interleukin-1beta and tumor necrosis factor alpha) were found to be markedly increased. The MAV-1/SCID model appears to be an appropriate model for in vivo evaluation of antiadenovirus agents. Treatment with cidofovir or S-2242 at a dose of 100 mg per kg of body weight resulted in a significant delay in MAV-1-related death, although these antivirals were unable to completely suppress virus replication despite continued drug treatment. These findings suggest that complete virus clearance during antiviral therapy for disseminated adenovirus infection may require an efficient adaptive immune response from the host.
Collapse
Affiliation(s)
- L Lenaerts
- Rega Institute for Medical Research, Division of Virology and Chemotherapy, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
12
|
Smee DF, Wong MH, Bailey KW, Beadle JR, Hostetler KY, Sidwell RW. Effects of four antiviral substances on lethal vaccinia virus (IHD strain) respiratory infections in mice. Int J Antimicrob Agents 2004; 23:430-7. [PMID: 15120719 DOI: 10.1016/j.ijantimicag.2003.10.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Accepted: 10/06/2003] [Indexed: 11/28/2022]
Abstract
Intranasal infection of BALB/c mice with the IHD strain of vaccinia virus was found to cause pneumonia, profound weight loss and death. Cidofovir, hexadecyloxypropyl-cidofovir (HDP-CDV), the diacetate ester prodrug of 2-amino-7-[(1,3-dihydroxy-2-propoxy)methyl]purine (HOE961), and ribavirin were used to treat the infections starting 24h after virus exposure. Single intraperitoneal (i.p.) cidofovir treatments of 100 and 30 mg/kg led to 90-100% survival compared with no survivors in the placebo group, whereas a 10 mg/kg dose was ineffective. The 100 mg/kg treatment reduced lung and snout virus titres on day 3 of the infection by 20- and 8-fold, respectively. Mean arterial oxygen saturation levels in these two cidofovir treatment groups were significantly higher than placebo on days 4 through 6 of the infection, indicating an improvement in lung function. Effects of cidofovir on viral pathogenesis were studied on days 1, 3 and 5 of the infection, and demonstrated statistically significant reductions in lung consolidation scores, lung weights, lung virus titre and snout virus titres on days 3 and 5. Cidofovir treatment also reduced virus titres in other tissues and body fluid, including blood, brain, heart, liver, salivary gland and spleen. HDP-CDV was given by oral gavage at 100, 50 and 25mg/kg doses one time only, resulting in 80-100% survival. Lower daily oral doses of 10 and 5mg/kg per day given for 5 days protected only 30% of animals from death. Oral doses (100, 50 and 25 mg/kg per day) of HOE961 for 5 days protected all animals, whereas equivalent oral doses of ribavirin were completely ineffective. The rapidity of recovery from weight loss during the infection was a function of dose of compound administered. These data indicate the utility of parenteral cidofovir, oral HDP-CDV and oral HOE961 in treating severe respiratory infections caused by this virus.
Collapse
Affiliation(s)
- Donald F Smee
- Department of Animal, Dairy and Veterinary Sciences, Institute for Antiviral Research, Utah State University, Logan, UT 84322-5600, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Smee DF, Sidwell RW. Anti-cowpox virus activities of certain adenosine analogs, arabinofuranosyl nucleosides, and 2'-fluoro-arabinofuranosyl nucleosides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2004; 23:375-83. [PMID: 15043161 DOI: 10.1081/ncn-120028334] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nucleoside analogs were investigated for their potential to inhibit cowpox virus (a surrogate for variola and monkeypox viruses) in cell culture and in lethal respiratory infections in mice. Cell culture antiviral activity was determined by plaque reduction assays, with cytotoxicity determined by cell proliferation assays. Selectivity indices (SI's, 50% cytotoxic concentration divided by 50% virus-inhibitory concentration) were determined for 15 compounds. Three arabinofuranosyl (Ara) nucleosides showed activity in mouse mammary tumor (C127I) cells: guanine (Ara-G), thymine (Ara-T), and adenine (Ara-A) with SI's of 113, 61, and 95, respectively. The 2'-fluoro-Ara nucleosides of 5-F-cytosine (FIAC), 5-methyluracil (FMAU), and 5-iodouracil (FIAU) exhibited SI's of 148, 77, and 29, respectively. Other potent compounds included cidofovir (a positive control) and 3'-O-methyladenosine, with SI values of 164 and 56, respectively. In general, assays performed in African green monkey kidney (Vero) cells produced lower SI's than in C127I cells, except for 5-iodo-2'-deoxyuridine (IDU) which had an SI of > 71 in Vero cells and 3.1 in C127I cells. Intranasal infection of mice with cowpox virus was followed a day later by twice daily intraperitoneal treatment with compounds for 5 days. Ara-A was active at 300 mg/kg/day (40% survival), FMAU at 100 mg/kg/day (70% survival), and cidofovir (given for 1 day only) at 100 mg/kg (80-100% survival). None of the other compounds, including IDU, prevented death nor delayed the time to death. Cidofovir had the best potential for treating orthopoxvirus infections of those tested.
Collapse
Affiliation(s)
- Donald F Smee
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah 84322-5600, USA.
| | | |
Collapse
|
14
|
Abstract
Vaccination against smallpox may result in a variety of complications, ranging in severity from benign to lethal. Universal vaccination was halted in the US in 1972, so almost half the present population has never been vaccinated. Because side effects occur most often in first-time vaccinees, current plans for rapid large-scale vaccination in the event of bioterrorist attack raise concerns about the occurrence of a large number of adverse events. Most complications result from the excessive replication of vaccinia virus, making them potential targets for antiviral therapy. Effective treatment is especially needed for persons with atopic dermatitis or eczema, who are unusually susceptible to the initiation and spread of vaccinia infection because of defects of innate immunity in the skin, and for individuals with defective cell-mediated immunity, who are unable to eliminate vaccinia infection once it has begun. In the past, many complications were treated with vaccinia immune globulin (VIG) and/or the antiviral drug methisazone, but neither was tested in placebo-controlled trials. New antiviral drugs are now available, but have not yet been evaluated for treating vaccinia infections in humans. Both laboratory research and clinical studies are needed to help prevent serious complications in any major vaccination campaign.
Collapse
Affiliation(s)
- Mike Bray
- Biodefense Clinical Research Branch, Office of Clinical Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Abstract
The events of 11 September 2001, in New York City, and subsequent identification of anthrax in the United States Postal System, have generated a new sense of awareness for the potential of biological terrorism, if not warfare. Among those agents identified by the Centers for Disease Control and Prevention as 'Class A Bioterrorist Threats', smallpox is among the most dangerous. The ease of transmission of this agent, the lack of immunity in the population at large to this agent, and rapidity of its spread, if released, all generate significant concern for its deployment. A vaccine directed against smallpox is available but it is also associated with significant adverse events-some of which are life-threatening. Further, no antiviral drug has proven efficacious for therapy of human disease, although one licensed drug, cidofovir, does have in vitro activity. Regardless, heightened awareness should lead to the development of a vaccine without significant adverse events and safe and efficacious antiviral drugs. The availability of a vaccine and antiviral drugs that are safe would significantly remove any major threat of smallpox deployment by a terrorist.
Collapse
Affiliation(s)
- Richard J Whitley
- Department of Pediatrics, Microbiology and Medicine Children's Hospital, The University of Alabama at Birmingham, ACC 616, 1600 7th Avenue South, Birmingham, AL 35233, USA.
| |
Collapse
|
16
|
Neyts J, De Clercq E. Therapy and short-term prophylaxis of poxvirus infections: historical background and perspectives. Antiviral Res 2003; 57:25-33. [PMID: 12615300 DOI: 10.1016/s0166-3542(02)00197-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The era of antiviral chemotherapy started more than 50 years with the findings by Domagk and his colleagues that thiosemicarbazones showed activity against vaccinia virus. One of the derivatives, methisazone, was even investigated in the prophylaxis of smallpox. With the successful implementation of the smallpox vaccine, the use of methisazone was not further pursued. Should there be a threat of smallpox or other poxvirus infections, that could not be immediately controlled by vaccination, a therapeutic intervention could be envisaged based on several therapeutic strategies targeted at such cellular enzymes as IMP dehydrogenase, SAH hydrolase, OMP decarboxylase and CTP synthetase, as well as viral enzymes such as the DNA polymerase. Most advanced as a therapeutic or early prophylactic modality to tackle poxvirus infection is cidofovir, which was found active (i) in vitro against all poxviruses studied so far; (ii) in vivo, against vaccinia and cowpox virus infections in experimental animal models; as well as (iii) some human poxvirus infections, such as molluscum contagiosum. In case of an inadvertent poxvirus epidemic, antiviral therapy (i.e. with cidofovir) will offer the possibility to provide short-term prophylaxis, or therapy. Cidofovir should also allow to treat severe complications of vaccination as may happen in for example immunosuppressed patients.
Collapse
Affiliation(s)
- Johan Neyts
- Rega Institute for Medical Research, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | | |
Collapse
|
17
|
Abstract
Several animal models using mice (most frequently), rabbits, or monkeys have been used to identify compounds active against orthopoxvirus infections. The treatment of vaccinia virus infections has been well studied in models involving infection of scarified skin or eyes, or resulting from intravenous, intraperitoneal, intracerebral, or intranasal virus inoculation. Cowpox virus has been used in intranasal or aerosol infection studies to evaluate the treatment of lethal respiratory infections. Rabbitpox, monkeypox, and variola viruses have been employed to a lesser extent than the other viruses in chemotherapy experiments. A review of the literature over the past 50 years has identified a number of compounds effective in treating one or more of these infections, which include thiosemicarbazones, nucleoside and nucleotide analogs, interferon, interferon inducers, and other unrelated compounds. Substances that appear to have the greatest potential as anti-orthopoxvirus agents are the acyclic nucleotides, (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine (cidofovir, HPMPC) and 1-[((S)-2-hydroxy-2-oxo-1,4,2-dioxaphosphorinan-5-yl)methyl]cytosine (cyclic HPMPC), and the acyclic nucleoside analog, 2-amino-7-[(1,3-dihydroxy-2-propoxy)methyl]purine (S2242). Other classes of compounds that have not been sufficiently studied in lethal infection models and deserve further consideration are thiosemicarbazones related to methisazone, and analogs of adenosine-N(1)-oxide and 1-(benzyloxy)adenosine.
Collapse
Affiliation(s)
- Donald F Smee
- Department of Animal, Dairy and Veterinary Sciences, Institute for Antiviral Research, Utah State University, Logan, UT 84322-5600, USA.
| | | |
Collapse
|
18
|
Affiliation(s)
- B W J Mahy
- National Center for Infectious Diseases, 1600 Clifton Road, CDC, Mailstop C12, Atlanta, GA 30333, USA.
| |
Collapse
|
19
|
Abstract
The potential use of variola or another orthopoxvirus such as monkeypox as a weapon of bioterrorism has stimulated efforts to develop new drugs for treatment of smallpox or other poxvirus infections. At the present time only cidofovir is approved for use in the emergency treatment of smallpox outbreaks. Although cidofovir is very active against the orthopoxviruses in vitro and in animal model infections, it is not active when given orally and must be administered with precaution so as to avoid renal toxicity. In an attempt to identify alternative treatment modalities for these infections we have determined the anti-poxvirus activity in vitro of most of the approved antiviral agents as well as a number of cidofovir analogs and prodrugs. From these studies, we have identified the nucleotide analog, adefovir dipivoxil, some alkoxyalkyl esters of cidofovir and a number of prodrugs of cidofovir that warrant further investigation as potential therapies for smallpox or other orthopoxvirus infections.
Collapse
Affiliation(s)
- Earl R Kern
- Department of Pediatrics, University of Alabama School of Medicine, BBRB 309, 845 19th Street South, Birmingham, AL 35294-2170, USA.
| |
Collapse
|