1
|
Rodríguez-Badillo P, Rodríguez-Aldama JC, Gabián-Fortes LDC, Sifuentes-Rentería S, Valdez-González MT, Pérez-Flores BE, Velasco-Ramos R, Fernández-Vizcaya O, Crabtree-Ramírez B, Pérez-Barragán E. Mpox-Related Ophthalmic Disease: A Retrospective Observational Study in a Single Center in Mexico. J Infect Dis 2024; 229:S255-S259. [PMID: 37683095 DOI: 10.1093/infdis/jiad372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Mpox-related ophthalmic disease has been reported as infrequent. We retrospectively describe the ocular manifestations present in 11 of 100 patients with confirmed mpox; 9 were people with HIV. We suggest that an ophthalmological evaluation should be performed in all patients with ocular symptoms or moderate and severe mpox disease.
Collapse
Affiliation(s)
| | | | | | - Sergio Sifuentes-Rentería
- Department of Inflammatory Ocular Diseases, Fundación Hospital Nuestra Señora de la Luz, Mexico City, Mexico
| | | | | | - Regina Velasco-Ramos
- Department of Cornea, Fundación Hospital Nuestra Señora de la Luz, Mexico City, Mexico
| | | | - Brenda Crabtree-Ramírez
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico
| | - Edgar Pérez-Barragán
- Department of Infectious Diseases, Clínica Especializada Condesa Iztapalapa, Mexico City, Mexico
| |
Collapse
|
2
|
Cinatl J, Bechtel M, Reus P, Ott M, Rothweiler F, Michaelis M, Ciesek S, Bojkova D. Trifluridine for treatment of mpox infection in drug combinations in ophthalmic cell models. J Med Virol 2024; 96:e29354. [PMID: 38180134 DOI: 10.1002/jmv.29354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024]
Abstract
The Mpox virus can cause severe disease in the susceptible population with dermatologic and systemic manifestations. Furthermore, ophthalmic manifestations of mpox infection are well documented. Topical trifluridine (TFT) eye drops have been used for therapy of ophthalmic mpox infection in patients, however, its efficacy against mpox virus infection in this scenario has not been previously shown. In the present study, we have established ophthalmic cell models suitable for the infection with mpox virus. We show, that TFT is effective against a broad range of mpox isolates in conjunctival epithelial cells and keratocytes. Further, TFT remained effective against a tecovirimat-resistant virus strain. In the context of drug combinations, a nearly additive effect was observed for TFT combinations with brincidofovir and tecovirimat in conjunctival epithelial cells, while a slight antagonism was observed for both combinations in keratocytes. Altogether, our findings demonstrate TFT as a promising drug for treatment of ophthalmic mpox infection able to overcome tecovirimat resistance. However, conflicting results regarding the effect of drug combinations with approved compounds warrant close monitoring of such use in patients.
Collapse
Affiliation(s)
- Jindrich Cinatl
- Institute of Medical Virology, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
- Dr. Petra Joh-Forschungshaus, Frankfurt am Main, Germany
| | - Marco Bechtel
- Institute of Medical Virology, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Philipp Reus
- Institute of Medical Virology, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
- Discovery Research ScreeningPort, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
| | - Melanie Ott
- Dr. Petra Joh-Forschungshaus, Frankfurt am Main, Germany
| | | | - Martin Michaelis
- Dr. Petra Joh-Forschungshaus, Frankfurt am Main, Germany
- School of Biosciences, University of Kent, Canterbury, UK
| | - Sandra Ciesek
- Institute of Medical Virology, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
- German Center for Infection Research, DZIF, External Partner Site, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Denisa Bojkova
- Institute of Medical Virology, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Kumar S. The Overview of Potential Antiviral Bioactive Compounds in Poxviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:331-336. [PMID: 38801588 DOI: 10.1007/978-3-031-57165-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poxviruses belong to the family of double-stranded DNA viruses, and it is pathogenic for humans and spread worldwide. These viruses cause infections and various diseases in human. So, it is required to develop new drugs for the treatment of smallpox or other poxvirus infections. Very few potential compounds for the treatment of poxvirus such as smallpox, chickenpox, and monkeypox have been reported. Most of the compounds has used as vaccines. Cidofovir is most commonly used as a vaccine for the treatment of poxviruses. There are no phytochemicals reported for the treatment of poxviruses. Very few phytochemicals are under investigation for the treatment of poxviruses.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, Sant Kavi Baba Baijnath Government P.G. College Harakh, Barabanki (UP), 225121, India.
- Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, 224001, India.
| |
Collapse
|
4
|
Bruno G, Buccoliero GB. Antivirals against Monkeypox (Mpox) in Humans: An Updated Narrative Review. Life (Basel) 2023; 13:1969. [PMID: 37895350 PMCID: PMC10608433 DOI: 10.3390/life13101969] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
As of 29 August 2023, a total of 89,596 confirmed cases of Mpox (monkeypox) have been documented across 114 countries worldwide, with 157 reported fatalities. The Mpox outbreak that transpired in 2022 predominantly affected young men who have sex with men (MSM). While most cases exhibited a mild clinical course, individuals with compromised immune systems, particularly those living with HIV infection and possessing a CD4 count below 200 cells/mm3, experienced a more severe clinical trajectory marked by heightened morbidity and mortality. The approach to managing Mpox is primarily symptomatic and supportive. However, in instances characterized by severe or complicated manifestations, the utilization of antiviral medications becomes necessary. Despite tecovirimat's lack of official approval by the FDA for treating Mpox in humans, a wealth of positive clinical experiences exists, pending the outcomes of ongoing clinical trials. Brincidofovir and cidofovir have also been administered in select cases due to the unavailability of tecovirimat. Within the scope of this narrative review, our objective was to delve into the clinical attributes of Mpox and explore observational studies that shed light on the utilization of these antiviral agents.
Collapse
Affiliation(s)
- Giuseppe Bruno
- Infectious Diseases Unit, San Giuseppe Moscati Hospital, Azienda Sanitaria Locale Taranto, 74121 Taranto, Italy;
| | | |
Collapse
|
5
|
Dsouza L, Pant A, Offei S, Priyamvada L, Pope B, Satheshkumar PS, Wang Z, Yang Z. Antiviral activities of two nucleos(t)ide analogs against vaccinia, mpox, and cowpox viruses in primary human fibroblasts. Antiviral Res 2023:105651. [PMID: 37270160 PMCID: PMC10234405 DOI: 10.1016/j.antiviral.2023.105651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/21/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Many poxviruses are significant human and animal pathogens, including viruses that cause smallpox and mpox (formerly monkeypox). Identifying novel and potent antiviral compounds is critical to successful drug development targeting poxviruses. Here we tested two compounds, nucleoside trifluridine, and nucleotide adefovir dipivoxil, for antiviral activities against vaccinia virus (VACV), mpox virus (MPXV), and cowpox virus (CPXV) in physiologically relevant primary human fibroblasts. Both compounds potently inhibited the replication of VACV, CPXV, and MPXV (MA001 2022 isolate) in plaque assays. In our recently developed assay based on a recombinant VACV expressing secreted Gaussia luciferase, they both exhibited high potency in inhibiting VACV replication with EC50s in the low nanomolar range. In addition, both trifluridine and adefovir dipivoxil inhibited VACV DNA replication and downstream viral gene expression. Our results characterized trifluridine and adefovir dipivoxil as strong poxvirus antiviral compounds and further validate the VACV Gaussia luciferase assay as a highly efficient and reliable reporter tool for identifying poxvirus inhibitors. Given that both compounds are FDA-approved drugs, and trifluridine is already used to treat ocular vaccinia, further development of trifluridine and adefovir dipivoxil holds great promise in treating poxvirus infections, including mpox.
Collapse
Affiliation(s)
- Lara Dsouza
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Anil Pant
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Samuel Offei
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lalita Priyamvada
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Blake Pope
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | | | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Zhilong Yang
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
6
|
Abstract
BACKGROUND Mpox was declared a Public Health Emergency of International Concern (PHEIC) by the World Health Organization (WHO) on 23 July 2022, following the identification of thousands of cases in several non-endemic countries in previous months. There are currently no licenced therapeutics for treating mpox; however, some medications may be authorized for use in an outbreak. The efficacy and safety of possible therapeutic options has not been studied in humans with mpox. There is a need to investigate the evidence on safety and effectiveness of treatments for mpox in humans; should any therapeutic option be efficacious and safe, it may be approved for use around the world. OBJECTIVES There are two parts to this Cochrane Review: a review of evidence from randomized controlled trials (RCTs), and a narrative review of safety data from non-randomized studies. Randomized controlled trials review To systematically review the existing evidence on the effectiveness of therapeutics for mpox infection in humans compared to: a) another different therapeutic for mpox, or b) placebo, or c) supportive care, defined as the treatment of physical and psychological symptoms arising from the disease. Non-randomized studies review To assess the safety of therapeutics for mpox infection from non-randomized studies (NRS). SEARCH METHODS Randomized controlled trials review We searched the following databases up to 25 January 2023: MEDLINE (OVID), Embase (OVID), Biosis previews (Web of Science), CAB Abstracts (Web of science), and Cochrane CENTRAL (Issue 1 2023). We conducted a search of trial registries (Clinicaltrials.gov and International Clinical Trials Registry Platform (ICTRP)) on 25 January 2023. There were no date or language limits placed on the search. We undertook a call to experts in the field for relevant studies or ongoing trials to be considered for inclusion in the review. Non-randomized studies review We searched the following databases on 22 September 2022: Cochrane Central Register of Controlled Trials (CENTRAL; Issue 9 of 12, 2022), published in the Cochrane Library; MEDLINE (Ovid); Embase (Ovid); and Scopus (Elsevier). We also searched the WHO International Clinical Trials Registry Platform and ClinicalTrials.gov for trials in progress. SELECTION CRITERIA For the RCT review and the narrative review, any therapeutic for the treatment of mpox in humans was eligible for inclusion, including tecovirimat, brincidofovir, cidofovir, NIOCH-14, immunomodulators, and vaccine immune globulin. Randomized controlled trials review Studies were eligible for the main review if they were of randomized controlled design and investigated the effectiveness or safety of therapeutics in human mpox infection. Non-randomized studies review Studies were eligible for inclusion in the review of non-randomized studies if they were of non-randomized design and contained data concerning the safety of any therapeutic in human mpox infection. DATA COLLECTION AND ANALYSIS Randomized controlled trials review Two review authors independently applied study inclusion criteria to identify eligible studies. If we had identified any eligible studies, we planned to assess the risk of bias, and report results with 95% confidence intervals (CI). The critical outcomes were serious adverse events, development of disease-related complications, admission to hospital for non-hospitalized participants, pain as judged by any visual or numerical pain scale, level of virus detected in clinical samples, time to healing of all skin lesions, and mortality. We planned to perform subgroup analysis to explore whether the effect of the therapeutic on the planned outcomes was modified by disease severity and days from symptom onset to therapeutic administration. We also intended to explore the following subgroups of absolute effects: immunosuppression, age, and pre-existing skin disease. Non-randomized studies review One review author applied study inclusion criteria to identify eligible studies and extracted data. Studies of a non-randomized design containing data on the safety of therapeutics could not be meta-analyzed due to the absence of a comparator; we summarized these data narratively in an appendix. MAIN RESULTS Randomized controlled trials review We did not identify any completed RCTs investigating the effectiveness of therapeutics for treating mpox for the main review. We identified five ongoing trials that plan to assess the effectiveness of one therapeutic option, tecovirimat, for treating mpox in adults and children. One of these ongoing trials intends to include populations with, or at greater risk of, severe disease, which will allow an assessment of safety in more vulnerable populations. Non-randomized studies review Three non-randomized studies met the inclusion criteria for the narrative review, concerning data on the safety of therapeutics in mpox. Very low-certainty evidence from non-randomized studies of small numbers of people indicates no serious safety signals emerging for the use of tecovirimat in people with mpox infection, but a possible safety signal for brincidofovir. All three participants who received brincidofovir had raised alanine aminotransferase (ALT), but not bilirubin, suggesting mild liver injury. No study reported severe drug-induced liver injury with brincidofovir. AUTHORS' CONCLUSIONS Randomized controlled trials review This review found no evidence from randomized controlled trials concerning the efficacy and safety of therapeutics in humans with mpox. Non-randomized studies review Very low-certainty evidence from non-randomized studies indicates no serious safety signals emerging for the use of tecovirimat in people with mpox infection. In contrast, very low-certainty evidence raises a safety signal that brincidofovir may cause liver injury. This is also suggested by indirect evidence from brincidofovir use in smallpox. This warrants further investigation and monitoring. This Cochrane Review will be updated as new evidence becomes available to assist policymakers, health professionals, and consumers in making appropriate decisions for the treatment of mpox.
Collapse
Affiliation(s)
- Tilly Fox
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Susan Gould
- Royal Liverpool University Hospital, Liverpool, UK
| | - Naveena Princy
- Department of Infectious Diseases, Christian Medical College Vellore, Vellore, India
| | - Tim Rowland
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Vittoria Lutje
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Rebecca Kuehn
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
7
|
Shamim MA, Padhi BK, Satapathy P, Veeramachaneni SD, Chatterjee C, Tripathy S, Akhtar N, Pradhan A, Dwivedi P, Mohanty A, Rodriguez-Morales AJ, Sah R, Al-Tammemi AB, Al-Tawfiq JA, Nowrouzi-Kia B, Chattu VK. The use of antivirals in the treatment of human monkeypox outbreaks: a systematic review. Int J Infect Dis 2023; 127:150-161. [PMID: 36470502 PMCID: PMC9719850 DOI: 10.1016/j.ijid.2022.11.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Human monkeypox virus (MPXV) infection is a recently declared public health emergency of international concern by the World Health Organization. Besides, there is scant literature available on the use of antivirals in MPXV infection. This systematic review compiles all evidence of various antivirals used on their efficacy and safety and summarizes their mechanisms of action. METHODS A review was done of all original studies mentioning individual patient data on the use of antivirals in patients with MPXV infection. RESULTS Of the total 487 non-duplicate studies, 18 studies with 71 individuals were included. Tecovirimat was used in 61 individuals, followed by cidofovir in seven and brincidofovir (BCV) in three individuals. Topical trifluridine was used in four ophthalmic cases in addition to tecovirimat. Of the total, 59 (83.1%) were reported to have complete resolution of symptoms; one was experiencing waxing and waning of symptoms, only one (1.8%) had died, and the others were having a resolution of symptoms. The death was thought unrelated to tecovirimat. Elevated hepatic panels were reported among all individuals treated with BCV (leading to treatment discontinuation) and five treated with tecovirimat. CONCLUSION Tecovirimat is the most used and has proven beneficial in several aggravating cases. No major safety concerns were detected upon its use. Topical trifluridine was used as an adjuvant treatment option along with tecovirimat. BCV and cidofovir were seldom used, with the latter often being used due to the unavailability of tecovirimat. BCV was associated with treatment discontinuation due to adverse events.
Collapse
Affiliation(s)
| | - Bijaya Kumar Padhi
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India,Corresponding authors
| | - Prakasini Satapathy
- Department of Virology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | - Snehasish Tripathy
- Department of Preventive Oncology, Homi Bhabha Cancer Hospital and Research Centre, Muzaffarpur, India
| | - Naushaba Akhtar
- Indian Council of Medical Research - Regional Medical Research Centre, Bhubaneswar, India
| | - Anindita Pradhan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India
| | - Pradeep Dwivedi
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India,Centre of Excellence for Tribal Health, All India Institute of Medical Sciences, Jodhpur, India
| | - Aroop Mohanty
- All India Institute of Medical Sciences, Gorakhpur, India
| | - Alfonso J. Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas, Pereira, Colombia,Institución Universitaria Visión de las Américas, Pereira, Colombia,Clinical Epidemiology and Biostatistics, Universidad Cientifica del Sur, Lima, Peru
| | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, Nepal,Harvard Medical School, Boston, USA,Dr. D.Y. Patil Medical College, Hospital and Research Center, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India,Corresponding authors
| | - Ala'a B. Al-Tammemi
- Migration Health Division, International Organization for Migration (IOM), Amman, Jordan
| | - Jaffar A. Al-Tawfiq
- Infectious Diseases Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, USA,Infectious Disease Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA,Specialty Internal Medicine and Quality Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Behdin Nowrouzi-Kia
- ReSTORE Lab, Department of Occupational Science & Occupational Therapy, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Vijay Kumar Chattu
- ReSTORE Lab, Department of Occupational Science & Occupational Therapy, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada,Center for Transdisciplinary Research, Saveetha Institute of Medical and Technological Sciences, Saveetha University, Chennai, India,Department of Community Medicine, Faculty of Medicine, Datta Meghe Institute of Medical Sciences, Wardha, India,Corresponding authors
| |
Collapse
|
8
|
Carrubba S, Geevarghese A, Solli E, Guttha S, Sims J, Sperber L, Meehan S, Ostrovsky A. Novel severe oculocutaneous manifestations of human monkeypox virus infection and their historical analogues. THE LANCET. INFECTIOUS DISEASES 2023; 23:e190-e197. [PMID: 36702137 PMCID: PMC9870321 DOI: 10.1016/s1473-3099(22)00869-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 01/25/2023]
Abstract
WHO has declared human mpox (formerly known as monkeypox) a global public health emergency since July, 2022. When case numbers were increasing, so did clinicians' exposures to new elements of the disease. Additionally, the burden of mpox is particularly apparent in immunocompromised patients, who can have more variable and severe manifestations of disease across organ systems. In this Grand Round, we report novel and severe oculocutaneous manifestations of mpox in this population, which are both sight and life threatening. Specifically, we highlight two patients with mpox and AIDS who had refractory skin necrosis that progressed to either ocular compromise or panfacial gangrene, or both. Both patients ultimately died due to systemic complications of their infections. Through clinical analogies, we show how past experiences with related orthopoxviruses, such as variola virus (smallpox) and vaccinia virus, can add useful context for understanding and treating these new disease states. We suspect that in patients who are immunocompromised, monkeypox virus can clinically evolve not only via viraemia but also through direct intradermal spread. We propose that intradermal spread occurs by a process clinically and immunologically analogous to progressive vaccinia, a complication previously seen after conventional smallpox vaccination. We share evidence in support of this theory and implications regarding early management and post-exposure prophylaxis for at-risk populations. Content note: this Grand Round contains graphic images of mpox lesions of the eyes and face.
Collapse
Affiliation(s)
- Steven Carrubba
- Department of Ophthalmology, NYU Langone Medical Center, New York, NY, USA
| | - Alexi Geevarghese
- Department of Ophthalmology, NYU Langone Medical Center, New York, NY, USA
| | - Elena Solli
- Department of Ophthalmology, NYU Langone Medical Center, New York, NY, USA
| | - Samyuktha Guttha
- Department of Ophthalmology, NYU Langone Medical Center, New York, NY, USA
| | - Jeffrey Sims
- Department of Ophthalmology, NYU Langone Medical Center, New York, NY, USA
| | - Laurence Sperber
- Department of Ophthalmology, NYU Langone Medical Center, New York, NY, USA
| | - Shane Meehan
- Department of Dermatology, NYU Langone Medical Center, New York, NY, USA
| | - Ann Ostrovsky
- Department of Ophthalmology, NYU Langone Medical Center, New York, NY, USA,Correspondence to: Dr Ann Ostrovsky, New York, NY 10017, USA
| |
Collapse
|
9
|
Kaufman AR, Chodosh J, Pineda R. Monkeypox Virus and Ophthalmology-A Primer on the 2022 Monkeypox Outbreak and Monkeypox-Related Ophthalmic Disease. JAMA Ophthalmol 2023; 141:78-83. [PMID: 36326768 DOI: 10.1001/jamaophthalmol.2022.4567] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Importance An ongoing global monkeypox virus outbreak in 2022 includes the US and other nonendemic countries. Monkeypox ophthalmic manifestations may present to the ophthalmologist, or the ophthalmologist may be involved in comanagement. This narrative review creates a primer for the ophthalmologist of clinically relevant information regarding monkeypox, its ophthalmic manifestations, and the 2022 outbreak. Observations Monkeypox virus is an Orthopoxvirus (genus includes variola [smallpox] and vaccinia [smallpox vaccine]). The 2022 outbreak is of clade II (historically named West African clade), specifically subclade IIb. In addition to historic transmission patterns (skin lesions, bodily fluids, respiratory droplets), sexual transmission has also been theorized in the current outbreak due to disproportionate occurrence in men who have sex with men. Monkeypox causes a characteristic skin eruption and mucosal lesions and may cause ophthalmic disease. Monkeypox-related ophthalmic disease (MPXROD) includes a spectrum of ocular pathologies including eyelid/periorbital skin lesions, blepharoconjunctivitis, and keratitis). Smallpox vaccination may reduce MPXROD occurrence. MPXROD seems to be rarer in the 2022 outbreaks than in historical outbreaks. MPXROD may result in corneal scarring and blindness. Historical management strategies for MPXROD include lubrication and prevention/management of bacterial superinfection in monkeypox keratitis. Case reports and in vitro data for trifluridine suggest a possible role in MPXROD. Tecovirimat, cidofovoir, brincidofovir and vaccinia immune globulin intravenous may be used for systemic infection. There is a theoretical risk for monkeypox transmission by corneal transplantation, and the Eye Bank Association of America has provided guidance. Smallpox vaccines (JYNNEOS [Bavarian Nordic] and ACAM2000 [Emergent Product Development Gaithersburg Inc]) provide immunity against monkeypox. Conclusions and Relevance The ophthalmologist may play an important role in the diagnosis and management of monkeypox. MPXROD may be associated with severe ocular and visual morbidity. As the current outbreak evolves, up-to-date guidance from public health organizations and professional societies are critical.
Collapse
Affiliation(s)
- Aaron R Kaufman
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston.,Department of Ophthalmology & Visual Sciences, University of New Mexico School of Medicine, Albuquerque
| | - Roberto Pineda
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston
| |
Collapse
|
10
|
Abstract
INTRODUCTION A monkeypox outbreak is spreading in territories where the virus is not generally prevalent. The rapid and sudden emergence of monkeypox in numerous nations at the same time means that unreported transmission may have persisted. The number of reported cases is on a constant increase worldwide. At least 20 non-African countries, like Canada, Portugal, Spain, and the United Kingdom, have reported more than 57662 as of September 9th suspected or confirmed cases. This is the largest epidemic seen outside of Africa. Scientists are struggling to determine the responsible genes for the higher virulence and transmissibility of the virus. Because the viruses are related, several countries have begun acquiring smallpox vaccinations, which are believed to be very effective against monkeypox. METHODS Bibliographic databases and web-search engines were used to retrieve studies that assessed monkeypox basic biology, life cycle, and transmission. Data were evaluated and used to explain the therapeutics that are under use or have potential. Finally, here is a comparison between how vaccines are being made now and how they were made in the past to stop the spread of new viruses. CONCLUSIONS Available vaccines are believed to be effective if administered within four days of viral exposure, as the virus has a long incubation period. As the virus is zoonotic, there is still a great deal of concern about the viral genetic shift and the risk of spreading to humans. This review will discuss the virus's biology and how dangerous it is. It will also look at how it spreads, what vaccines and treatments are available, and what technologies could be used to make vaccines quickly using mRNA technologies.
Collapse
|
11
|
Abstract
Forty years after the last endemic smallpox case, variola virus (VARV) is still considered a major threat to humans due to its possible use as a bioterrorism agent. For many years, the risk of disease reemergence was thought to solely be through deliberate misuse of VARV strains kept in clandestine laboratories. However, recent experiments using synthetic biology have proven the feasibility of recreating a poxvirus de novo, implying that VARV could, in theory, be resurrected. Because of this new perspective, the WHO Advisory Committee on VARV Research released new recommendations concerning research on poxviruses that strongly encourages pursuing the development of new antiviral drugs against orthopoxviruses. In 2018, the U.S. FDA advised in favor of two molecules for smallpox treatment, tecovirimat and brincidofovir. This review highlights the difficulties to develop new drugs targeting an eradicated disease, especially as it requires working under the FDA "animal efficacy rule" with the few, and imperfect, animal models available.
Collapse
|
12
|
Effect of the side chain on the properties from cidofovir to brincidofovir, an experimental antiviral drug against to Ebola virus disease. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.06.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
13
|
Adalja A, Inglesby T. Broad-Spectrum Antiviral Agents: A Crucial Pandemic Tool. Expert Rev Anti Infect Ther 2019; 17:467-470. [PMID: 31216912 PMCID: PMC7103698 DOI: 10.1080/14787210.2019.1635009] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/19/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Amesh Adalja
- Center for Health Security, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Thomas Inglesby
- Center for Health Security, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
14
|
Hartline CB, Keith KA, Eagar J, Harden EA, Bowlin TL, Prichard MN. A standardized approach to the evaluation of antivirals against DNA viruses: Orthopox-, adeno-, and herpesviruses. Antiviral Res 2018; 159:104-112. [PMID: 30287226 DOI: 10.1016/j.antiviral.2018.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 01/07/2023]
Abstract
The search for new compounds with a broad spectrum of antiviral activity is important and requires the evaluation of many compounds against several distinct viruses. Researchers attempting to develop new antiviral therapies for DNA virus infections currently use a variety of cell lines, assay conditions and measurement methods to determine in vitro drug efficacy, making it difficult to compare results from within the same laboratory as well as between laboratories. In this paper we describe a common assay platform designed to facilitate the parallel evaluation of antiviral activity against herpes simplex virus type 1, herpes simplex virus type 2, varicella-zoster virus, cytomegalovirus, vaccinia virus, cowpox virus, and adenovirus. The automated assays utilize monolayers of primary human foreskin fibroblast cells in 384-well plates as a common cell substrate and cytopathic effects and cytotoxicity are quantified with CellTiter-Glo. Data presented demonstrate that each of the assays is highly robust and yields data that are comparable to those from other traditional assays, such as plaque reduction assays. The assays proved to be both accurate and robust and afford an in depth assessment of antiviral activity against the diverse class of viruses with very small quantities of test compounds. In an accompanying paper, we present a standardized approach to evaluating antivirals against lymphotropic herpesviruses and polyomaviruses and together these studies revealed new activities for reference compounds. This approach has the potential to accelerate the development of broad spectrum therapies for the DNA viruses.
Collapse
Affiliation(s)
- Caroll B Hartline
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL, 35233, United States
| | - Kathy A Keith
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL, 35233, United States
| | - Jessica Eagar
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL, 35233, United States
| | - Emma A Harden
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL, 35233, United States
| | | | - Mark N Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL, 35233, United States.
| |
Collapse
|
15
|
Improved safety of a replication-competent poxvirus-based HIV vaccine with the introduction of the HSV-TK/GCV suicide gene system. Vaccine 2016; 34:3447-53. [PMID: 27195760 DOI: 10.1016/j.vaccine.2016.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/29/2016] [Accepted: 05/05/2016] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Replication-competent vaccinia viruses (VACVs) show prolonged antigen expression time and greater stimulation of immune responses than their replication-incompetent counterparts. However, there is the potential risk of serious post-vaccination complications, especially for children and immunocompromised individuals, leading to safety concerns about the reintroduction of VACV as a vaccine vector. In this study, we improved the safety of the vaccinia virus TianTan (VACV-TT) based HIV vaccine by introducing the HSV-TK/GCV suicide gene system, which is composed of the herpes simplex virus type 1 thymidine kinase gene (HSV-tk) and the antiviral drug ganciclovir (GCV). MATERIALS AND METHODS By inserting the HSV-tk gene into the replication-competent VACV-TT genome, a new vector, TT-TK (VACV-TT expressing the HSV-tk gene), and a candidate vaccine, TT-EnvTK (TT-TK expressing the HIV-1 env gene), were constructed. RESULTS The new vector TT-TK exhibited reduced replication capacity both in vitro and in vivo in the presence of GCV. GCV inhibited the replication of TT-TK in the brains of mice and skin of rabbits, and provided 100% protection in mice against lethal challenge with TT-TK at a dose of 80mg/kg/day. Furthermore, the candidate vaccine TT-EnvTK induced cellular and humoral immunity against HIV-1 antigen that was comparable to the immunity induced by VTKgpe (VACV-TT expressing HIV-1 env, gag, and pol genes). DISCUSSION These promising results suggest a new strategy to mitigate the potential risk of post-vaccination complications from replication-competent VACV-based HIV vaccines.
Collapse
|
16
|
Dienstag JL. Antiviral Drugs against Hepatitis Viruses. MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015:563-575.e3. [DOI: 10.1016/b978-1-4557-4801-3.00046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
|
18
|
Prichard MN, Kern ER. Orthopoxvirus targets for the development of new antiviral agents. Antiviral Res 2012; 94:111-25. [PMID: 22406470 PMCID: PMC3773844 DOI: 10.1016/j.antiviral.2012.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/10/2012] [Accepted: 02/21/2012] [Indexed: 12/29/2022]
Abstract
Investments in the development of new drugs for orthopoxvirus infections have fostered new avenues of research, provided an improved understanding of orthopoxvirus biology and yielded new therapies that are currently progressing through clinical trials. These broad-based efforts have also resulted in the identification of new inhibitors of orthopoxvirus replication that target many different stages of viral replication cycle. This review will discuss progress in the development of new anti-poxvirus drugs and the identification of new molecular targets that can be exploited for the development of new inhibitors. The prototype of the orthopoxvirus group is vaccinia virus and its replication cycle will be discussed in detail noting specific viral functions and their associated gene products that have the potential to serve as new targets for drug development. Progress that has been achieved in recent years should yield new drugs for the treatment of these infections and might also reveal new approaches for antiviral drug development with other viruses.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35233-1711, United States.
| | | |
Collapse
|
19
|
McSharry JJ, Drusano GL. Antiviral pharmacodynamics in hollow fibre bioreactors. Antivir Chem Chemother 2011; 21:183-92. [PMID: 21566264 DOI: 10.3851/imp1770] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pharmacodynamic investigation of antiviral compounds studies the relationship between drug exposure and the virological response. These studies are usually performed in animals and, eventually, in humans and are a very expensive proposition. To find a more efficient and less expensive method for determining pharmacodynamics of antiviral and antimicrobial compounds, the hollow fibre infection model (HFIM) system was developed to perform pharmacodynamic studies in vitro. This review covers the authors' studies on the use of in vitro hollow fibre bioreactor technologies for determining the pharmacodynamics of antiviral compounds for viruses grown in cultured cells, including HIV grown in CD4+ lymphoblastoid cells, vaccinia viruses grown in HeLa-S3 cells and influenza viruses grown in Madin-Darby canine kidney cells. Where possible, correlations between the pharmacodynamic index derived from the in vitro HFIM systems and clinical pharmacodynamic studies are made.
Collapse
Affiliation(s)
- James J McSharry
- Virology Therapeutics and Pharmacodynamics Laboratory, Center for Biodefense and Emerging Infections, Ordway Research Institute, Center for Medical Sciences, Albany, NY, USA.
| | | |
Collapse
|
20
|
Cidofovir Activity against Poxvirus Infections. Viruses 2010; 2:2803-30. [PMID: 21994641 PMCID: PMC3185586 DOI: 10.3390/v2122803] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/09/2010] [Accepted: 12/10/2010] [Indexed: 01/26/2023] Open
Abstract
Cidofovir [(S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine, HPMPC] is an acyclic nucleoside analog approved since 1996 for clinical use in the treatment of cytomegalovirus (CMV) retinitis in AIDS patients. Cidofovir (CDV) has broad-spectrum activity against DNA viruses, including herpes-, adeno-, polyoma-, papilloma- and poxviruses. Among poxviruses, cidofovir has shown in vitro activity against orthopox [vaccinia, variola (smallpox), cowpox, monkeypox, camelpox, ectromelia], molluscipox [molluscum contagiosum] and parapox [orf] viruses. The anti-poxvirus activity of cidofovir in vivo has been shown in different models of infection when the compound was administered either intraperitoneal, intranasal (aerosolized) or topically. In humans, cidofovir has been successfully used for the treatment of recalcitrant molluscum contagiosum virus and orf virus in immunocompromised patients. CDV remains a reference compound against poxviruses and holds potential for the therapy and short-term prophylaxis of not only orthopox- but also parapox- and molluscipoxvirus infections.
Collapse
|
21
|
Quenelle DC, Lampert B, Collins DJ, Rice TL, Painter GR, Kern ER. Efficacy of CMX001 against herpes simplex virus infections in mice and correlations with drug distribution studies. J Infect Dis 2010; 202:1492-9. [PMID: 20923374 DOI: 10.1086/656717] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
CMX001, an orally active lipid conjugate of cidofovir, is 50 times more active in vitro against herpes simplex virus (HSV) replication than acyclovir or cidofovir. These studies compared the efficacy of CMX001 to acyclovir in BALB/c mice inoculated intranasally with HSV types 1 or 2. CMX001 was effective in reducing mortality using doses of 5 to 1.25 mg/kg administered orally once daily, even when treatments were delayed 48-72 h post viral inoculation. Organ samples obtained from mice treated with CMX001 had titers 3-5 log(10) plaque-forming units per gram of tissue lower than samples obtained from mice treated with acyclovir, including 5 different regions of the brain. Detectable concentrations of drug-related radioactivity were documented in the central nervous system of mice after oral administration of (14)C-CMX001. These studies indicate that CMX001 penetrates the blood-brain barrier, is a potent inhibitor of HSV replication in disseminated infections and central nervous system infections, and is superior to acyclovir.
Collapse
Affiliation(s)
- Debra C Quenelle
- The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35233-1711, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Roy CJ, Voss TG. Use of the Aerosol Rabbitpox Virus Model for Evaluation of Anti-Poxvirus Agents. Viruses 2010; 2:2096-2107. [PMID: 20953322 PMCID: PMC2954426 DOI: 10.3390/v2092096] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Smallpox is an acute disease caused by infection with variola virus that has had historic effects on the human population due to its virulence and infectivity. Because variola remains a threat to humans, the discovery and development of novel pox therapeutics and vaccines has been an area of intense focus. As variola is a uniquely human virus lacking a robust animal model, the development of rational therapeutic or vaccine approaches for variola requires the use of model systems that reflect the clinical aspects of human infection. Many laboratory animal models of poxviral disease have been developed over the years to study host response and to evaluate new therapeutics and vaccines for the treatment or prevention of human smallpox. Rabbitpox (rabbitpox virus infection in rabbits) is a severe and often lethal infection that has been identified as an ideal disease model for the study of poxviruses in a non-rodent species. The aerosol infection model (aerosolized rabbitpox infection) embodies many of the desired aspects of the disease syndrome that involves the respiratory system and thus may serve as an appropriate model for evaluation of antivirals under development for the therapeutic treatment of human smallpox. In this review we summarize the aerosol model of rabbitpox, discuss the development efforts that have thus far used this model for antiviral testing, and comment on the prospects for its use in future evaluations requiring a poxviral model with a focus on respiratory infection.
Collapse
Affiliation(s)
- Chad J. Roy
- Infectious Disease Aerobiology, Microbiology Division, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, Louisiana, USA
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-985-871-6417; Fax: +1-985-871-6260
| | - Thomas G. Voss
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA; E-Mail:
| |
Collapse
|
23
|
Antiviral Activity of 4'-thioIDU and Thymidine Analogs against Orthopoxviruses. Viruses 2010; 2:1968-1983. [PMID: 21994716 PMCID: PMC3185742 DOI: 10.3390/v2091968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 08/20/2010] [Accepted: 09/07/2010] [Indexed: 11/17/2022] Open
Abstract
The search for effective therapies for orthopoxvirus infections has identified diverse classes of molecules with antiviral activity. Pyrimidine analogs, such as 5-iodo-2'-deoxyuridine (idoxuridine, IDU) were among the first compounds identified with antiviral activity against a number of orthopoxviruses and have been reported to be active both in vitro and in animal models of infection. More recently, additional analogs have been reported to have improved antiviral activity against orthopoxviruses including several derivatives of deoxyuridine with large substituents in the 5 position, as well as analogs with modifications in the deoxyribose moiety including (north)-methanocarbathymidine, and 5-iodo-4'-thio-2'-deoxyuridine (4'-thioIDU). The latter molecule has proven to have good antiviral activity against the orthopoxviruses both in vitro and in vivo and has the potential to be an effective therapy in humans.
Collapse
|
24
|
Kramski M, Mätz-Rensing K, Stahl-Hennig C, Kaup FJ, Nitsche A, Pauli G, Ellerbrok H. A novel highly reproducible and lethal nonhuman primate model for orthopox virus infection. PLoS One 2010; 5:e10412. [PMID: 20454688 PMCID: PMC2861679 DOI: 10.1371/journal.pone.0010412] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 03/28/2010] [Indexed: 11/20/2022] Open
Abstract
The intentional re-introduction of Variola virus (VARV), the agent of smallpox, into the human population is of great concern due its bio-terroristic potential. Moreover, zoonotic infections with Cowpox (CPXV) and Monkeypox virus (MPXV) cause severe diseases in humans. Smallpox vaccines presently available can have severe adverse effects that are no longer acceptable. The efficacy and safety of new vaccines and antiviral drugs for use in humans can only be demonstrated in animal models. The existing nonhuman primate models, using VARV and MPXV, need very high viral doses that have to be applied intravenously or intratracheally to induce a lethal infection in macaques. To overcome these drawbacks, the infectivity and pathogenicity of a particular CPXV was evaluated in the common marmoset (Callithrix jacchus).A CPXV named calpox virus was isolated from a lethal orthopox virus (OPV) outbreak in New World monkeys. We demonstrated that marmosets infected with calpox virus, not only via the intravenous but also the intranasal route, reproducibly develop symptoms resembling smallpox in humans. Infected animals died within 1-3 days after onset of symptoms, even when very low infectious viral doses of 5x10(2) pfu were applied intranasally. Infectious virus was demonstrated in blood, saliva and all organs analyzed.We present the first characterization of a new OPV infection model inducing a disease in common marmosets comparable to smallpox in humans. Intranasal virus inoculation mimicking the natural route of smallpox infection led to reproducible infection. In vivo titration resulted in an MID(50) (minimal monkey infectious dose 50%) of 8.3x10(2) pfu of calpox virus which is approximately 10,000-fold lower than MPXV and VARV doses applied in the macaque models. Therefore, the calpox virus/marmoset model is a suitable nonhuman primate model for the validation of vaccines and antiviral drugs. Furthermore, this model can help study mechanisms of OPV pathogenesis.
Collapse
|
25
|
Jordão AK, Afonso PP, Ferreira VF, de Souza MC, Almeida MC, Beltrame CO, Paiva DP, Wardell SM, Wardell JL, Tiekink ER, Damaso CR, Cunha AC. Antiviral evaluation of N-amino-1,2,3-triazoles against Cantagalo virus replication in cell culture. Eur J Med Chem 2009; 44:3777-83. [PMID: 19481841 DOI: 10.1016/j.ejmech.2009.04.046] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 04/14/2009] [Accepted: 04/23/2009] [Indexed: 11/25/2022]
|
26
|
Altmann SE, Jones JC, Schultz-Cherry S, Brandt CR. Inhibition of Vaccinia virus entry by a broad spectrum antiviral peptide. Virology 2009; 388:248-59. [PMID: 19395056 DOI: 10.1016/j.virol.2009.03.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 12/20/2008] [Accepted: 03/16/2009] [Indexed: 11/18/2022]
Abstract
Concerns about the possible use of Variola virus, the causative agent of smallpox, as a weapon for bioterrorism have led to renewed efforts to identify new antivirals against orthopoxviruses. We identified a peptide, EB, which inhibited infection by Vaccinia virus with an EC(50) of 15 microM. A control peptide, EBX, identical in composition to EB but differing in sequence, was inactive (EC50>200 microM), indicating sequence specificity. The inhibition was reversed upon removal of the peptide, and EB treatment had no effect on the physical integrity of virus particles as determined by electron microscopy. Viral adsorption was unaffected by the presence of EB, and the addition of EB post-entry had no effect on viral titers or on early gene expression. The addition of EB post-adsorption resulted in the inhibition of beta-galactosidase expression from an early viral promoter with an EC(50) of 45 microM. A significant reduction in virus entry was detected in the presence of the peptide when the number of viral cores released into the cytoplasm was quantified. Electron microscopy indicated that 88% of the virions remained on the surface of cells in the presence of EB, compared to 37% in the control (p<0.001). EB also blocked fusion-from-within, suggesting that virus infection is inhibited at the fusion step. Analysis of EB derivatives suggested that peptide length may be important for the activity of EB. The EB peptide is, to our knowledge, the first known small molecule inhibitor of Vaccinia virus entry.
Collapse
Affiliation(s)
- S E Altmann
- Microbiology Doctoral Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
27
|
Activities of certain 5-substituted 4'-thiopyrimidine nucleosides against orthopoxvirus infections. Antimicrob Agents Chemother 2008; 53:572-9. [PMID: 19029322 DOI: 10.1128/aac.01257-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As part of a program to identify new compounds that have activity against orthopoxviruses, a number of 4'-thionucleosides were synthesized and evaluated for their efficacies against vaccinia and cowpox viruses. Seven compounds that were active at about 1 microM against both viruses in human cells but that did not have significant toxicity were identified. The 5-iodo analog, 1-(2-deoxy-4-thio-beta-d-ribofuranosyl)-5-iodouracil (4'-thioIDU), was selected as a representative molecule; and this compound also inhibited viral DNA synthesis at less than 1 microM but only partially inhibited the replication of a recombinant vaccinia virus that lacked a thymidine kinase. This compound retained complete activity against cidofovir- and ST-246-resistant mutants. To determine if this analog had activity in an animal model, mice were infected intranasally with vaccinia or cowpox virus and treatment with 4'-thioIDU was given intraperitoneally or orally twice daily at 50, 15, 5, or 1.5 mg/kg of body weight beginning at 24 to 120 h postinfection and was continued for 5 days. Almost complete protection (87%) was observed when treatment with 1.5 mg/kg was begun at 72 h postinfection, and significant protection (73%) was still obtained when treatment with 5 mg/kg was initiated at 96 h. Virus titers in the liver, spleen, and kidney were reduced by about 4 log(10) units and about 2 log(10) units in mice infected with vaccinia virus and cowpox virus, respectively. These results indicate that 4'-thioIDU is a potent, nontoxic inhibitor of orthopoxvirus replication in cell culture and experimental animal infections and suggest that it may have potential for use in the treatment of orthopoxvirus infections in animals and humans.
Collapse
|
28
|
Pharmacodynamics of cidofovir for vaccinia virus infection in an in vitro hollow-fiber infection model system. Antimicrob Agents Chemother 2008; 53:129-35. [PMID: 18852271 DOI: 10.1128/aac.00708-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Variola major virus remains a potent weapon of bioterror. There is currently an investigational-new-drug application for cidofovir for the therapy of variola major virus infections. Stittelaar and colleagues compared the levels of effectiveness of postexposure smallpox vaccination (Elstree-RIVM) and antiviral treatment with cidofovir or an acyclic nucleoside phosphonate analogue 6-[2-(phosphonomethoxy)alkoxy]-2,4-diaminopyrimidine (HPMPO-DAPy) after lethal intratracheal infection of cynomolgus monkeys with monkeypox virus, a variola virus surrogate. Their results demonstrated that either compound was more effective than vaccination with the Ellstree vaccine (K. J. Stittelaar et al., Nature 439:745-748, 2006). An unanswered question is how to translate this information into therapy for poxvirus infections in people. In a proof-of-principle study, we used a novel in vitro hollow-fiber infection model system to determine the pharmacodynamics of vaccinia virus infection of HeLa-S3 cells treated with cidofovir. Our results demonstrate that the currently licensed dose of cidofovir of 5 mg/kg of body weight weekly with probenecid (which ameliorates nephrotoxicity) is unlikely to provide protection for patients intentionally exposed to Variola major virus. We further demonstrate that the antiviral effect is independent of the schedule of drug administration. Exposures (area under the concentration-time curve) to cidofovir that will have a robust protective effect will require doses that are 5 to 10 times that currently administered to humans. Such doses may cause nephrotoxicity, and therefore, approaches that include probenecid administration as well as schedules of administration that will help ameliorate the uptake of cidofovir into renal tubular epithelial cells need to be considered when addressing such treatment for people.
Collapse
|
29
|
Ciustea M, Silverman JEY, Druck Shudofsky AM, Ricciardi RP. Identification of non-nucleoside DNA synthesis inhibitors of vaccinia virus by high-throughput screening. J Med Chem 2008; 51:6563-70. [PMID: 18808105 DOI: 10.1021/jm800366g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Variola virus, the causative agent of smallpox, is a potential bioweapon. The development of new antiviral compounds for smallpox prophylaxis and treatment is critical, especially because the virus can acquire resistance to the drugs that are currently available. We have identified novel small chemical inhibitors that target DNA synthesis of vaccinia, the prototypical poxvirus. Robotic high-throughput screening of 49663 compounds and follow-up studies identified very potent inhibitors of vaccinia DNA synthesis, with IC 50 values as low as 0.5 microM. Cell-based assays showed that 16 inhibitors effectively blocked vaccinia infection with minimal cytotoxicity. Three inhibitors had selectivity indexes that approximate that of cidofovir. These new non-nucleoside inhibitors are expected to interfere with components of the vaccinia DNA synthesis apparatus that are distinct from cidofovir. On the basis of the high sequence similarity between the proteins of vaccinia and variola viruses, these new inhibitors are anticipated to be equally effective against smallpox.
Collapse
Affiliation(s)
- Mihai Ciustea
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
30
|
Eriksson U, Peterson LW, Kashemirov BA, Hilfinger JM, Drach JC, Borysko KZ, Breitenbach JM, Kim JS, Mitchell S, Kijek P, McKenna CE. Serine peptide phosphoester prodrugs of cyclic cidofovir: synthesis, transport, and antiviral activity. Mol Pharm 2008; 5:598-609. [PMID: 18481868 DOI: 10.1021/mp8000099] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cidofovir (HPMPC, 1), a broad-spectrum antiviral agent, is currently used to treat AIDS-related human cytomegalovirus (HCMV) retinitis and has recognized therapeutic potential for orthopox virus infections, but is limited by its low oral bioavailability. Cyclic cidofovir (2) displays decreased nephrotoxicity compared to 1, while also exhibiting potent antiviral activity. Here we describe in detail the synthesis and evaluation as prodrugs of four cHPMPC dipeptide conjugates in which the free POH of 2 is esterified by the Ser side chain alcohol group of an X-L-Ser(OMe) dipeptide: 3 (X=L-Ala), 4 (X=L-Val), 5 (X=L-Leu), and 6 (X=L-Phe). Perfusion studies in the rat establish that the mesenteric permeability to 4 is more than 20-fold greater than to 1, and the bioavailability of 4 is increased 6-fold relative to 1 in an in vivo murine model. In gastrointestinal and liver homogenates, the cHPMPC prodrugs are rapidly hydrolyzed to 2. Prodrugs 3, 4, and 5 are nontoxic at 100 microM in HFF and KB cells and in cell-based plaque reduction assays had IC 50 values of 0.1-0.5 microM for HCMV and 10 microM for two orthopox viruses (vaccinia and cowpox). The enhanced transport properties of 3-6, conferred by incorporation of a biologically benign dipeptide moiety, and the facile cleavage of the Ser-O-P linkage suggest that these prodrugs represent a promising new approach to enhancing the bioavailability of 2.
Collapse
Affiliation(s)
- Ulrika Eriksson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Quenelle DC, Collins DJ, Herrod BP, Keith KA, Trahan J, Beadle JR, Hostetler KY, Kern ER. Effect of oral treatment with hexadecyloxypropyl-[(S)-9-(3-hydroxy-2- phosphonylmethoxypropyl)adenine] [(S)-HPMPA] or octadecyloxyethyl-(S)-HPMPA on cowpox or vaccinia virus infections in mice. Antimicrob Agents Chemother 2007; 51:3940-7. [PMID: 17846137 PMCID: PMC2151427 DOI: 10.1128/aac.00184-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported that (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine, or (S)-HPMPA, is active in vitro against cowpox virus (CV) and vaccinia virus (VV) but is not active orally in animals. However, the ether lipid esters of (S)-HPMPA, hexadecyloxypropyl-[(S)-HPMPA] [HDP-(S)-HPMPA] and octadecyloxyethyl-[(S)-HPMPA] [ODE-(S)-HPMPA], had significantly enhanced activity in vitro and are orally bioavailable in mice. In the current study, HDP-(S)-HPMPA and ODE-(S)-HPMPA were prepared in water and administered once daily by oral gavage to mice at doses of 30, 10, and 3 mg/kg of body weight for 5 days beginning 24, 48, or 72 h after inoculation with CV or VV. Oral HDP-(S)-HPMPA and ODE-(S)-HPMPA were both highly effective (P < 0.001) at preventing mortality due to CV at 30 mg/kg, even when treatments were delayed until up to 72 h postinfection. ODE-(S)-HPMPA or HDP-(S)-HPMPA were also highly effective (P < 0.001) at preventing mortality in mice infected with VV at 30 mg/kg when treatments were delayed until to 48 or 72 h postinfection, respectively. Protection against both viruses was associated with a significant reduction of virus replication in the liver, spleen, and kidney but not in the lung. These data indicate that HDP-(S)-HPMPA and ODE-(S)-HPMPA are active when given orally against lethal CV and VV infections in mice, and further evaluation is warranted to provide additional information on the potential of these orally active compounds for treatment of human orthopoxvirus infection.
Collapse
Affiliation(s)
- Debra C Quenelle
- Department of Pediatrics, The University of Alabama at Birmingham, School of Medicine, CHB 128, 1600 6th Avenue South, Birmingham, AL 35233, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Quenelle DC, Prichard MN, Keith KA, Hruby DE, Jordan R, Painter GR, Robertson A, Kern ER. Synergistic efficacy of the combination of ST-246 with CMX001 against orthopoxviruses. Antimicrob Agents Chemother 2007; 51:4118-24. [PMID: 17724153 PMCID: PMC2151443 DOI: 10.1128/aac.00762-07] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The combination of ST-246 and hexadecyloxypropyl-cidofovir or CMX001 was evaluated for synergistic activity in vitro against vaccinia virus and cowpox virus (CV) and in vivo against CV. In cell culture the combination was highly synergistic against both viruses, and the results suggested that combined treatment with these agents might offer superior efficacy in vivo. For animal models, ST-246 was administered orally with or without CMX001 to mice lethally infected with CV. Treatments began 1, 3, or 6 days postinfection using lower dosages than previously used for single-drug treatment. ST-246 was given at 10, 3, or 1 mg/kg of body weight with or without CMX001 at 3, 1, or 0.3 mg/kg to evaluate potential synergistic interactions. Treatment beginning 6 days post-viral inoculation with ST-246 alone only increased the mean day to death at 10 or 3 mg/kg but had no effect on survival. CMX001 alone also had no effect on survival. When the combination of the two drugs was begun 6 days after viral infection using various dosages of the two, a synergistic reduction in mortality was observed. No evidence of increased toxicity was noted with the combination either in vitro or in vivo. These results indicate that combinations of ST-246 and CMX001 are synergistic both in vitro and in vivo and suggest that combination therapy using ST-246 and CMX001 for treatment of orthopoxvirus disease in humans or animals may provide an additional benefit over the use of the two drugs by themselves.
Collapse
Affiliation(s)
- Debra C Quenelle
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35233-1711, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The evolution of antiviral therapy began with developments in the management of influenza and herpes simplex keratitis in the 1960s and early 1970s. However, the field exploded with the successful treatment of herpes simplex encephalitis, herpes zoster and genital herpes simplex virus infections, all occurring in the late 1970s and early 1980s. These advances have contributed to the development of therapies for HIV that have transformed the lives of infected patients in recent years. The clinical fruit of all of these research advances has been an armamentarium of drugs that can be used to successfully treat a variety of viral illnesses. In addition to HIV/AIDS, current antiviral therapy focuses primarily on herpesviruses, hepatitis viruses and influenza. Notably, considerable progress remains to be made in these areas. Moreover, a variety of additional viral diseases currently require the development of specific therapies.
Collapse
Affiliation(s)
- Scott T Rottinghaus
- Infectious Diseases, The University of Alabama at Birmingham, Department of Medicine, 1530 Third Avenue South, Birmingham, AL 35294-0006, USA.
| | | |
Collapse
|
34
|
Bailey TR, Rippin SR, Opsitnick E, Burns CJ, Pevear DC, Collett MS, Rhodes G, Tohan S, Huggins JW, Baker RO, Kern ER, Keith KA, Dai D, Yang G, Hruby D, Jordan R. N-(3,3a,4,4a,5,5a,6,6a-Octahydro-1,3-dioxo-4,6- ethenocycloprop[f]isoindol-2-(1H)-yl)carboxamides: Identification of novel orthopoxvirus egress inhibitors. J Med Chem 2007; 50:1442-4. [PMID: 17335190 PMCID: PMC4067006 DOI: 10.1021/jm061484y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of novel, potent orthopoxvirus egress inhibitors was identified during high-throughput screening of the ViroPharma small molecule collection. Using structure--activity relationship information inferred from early hits, several compounds were synthesized, and compound 14 was identified as a potent, orally bioavailable first-in-class inhibitor of orthopoxvirus egress from infected cells. Compound 14 has shown comparable efficaciousness in three murine orthopoxvirus models and has entered Phase I clinical trials.
Collapse
Affiliation(s)
- Thomas R Bailey
- ViroPharma Incorporated, 397 Eagleview Boulevard, Exton, Pennsylvania 19341, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Prichard MN, Keith KA, Johnson MP, Harden EA, McBrayer A, Luo M, Qiu S, Chattopadhyay D, Fan X, Torrence PF, Kern ER. Selective phosphorylation of antiviral drugs by vaccinia virus thymidine kinase. Antimicrob Agents Chemother 2007; 51:1795-803. [PMID: 17325220 PMCID: PMC1855528 DOI: 10.1128/aac.01447-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antiviral activity of a new series of thymidine analogs was determined against vaccinia virus (VV), cowpox virus (CV), herpes simplex virus, and varicella-zoster virus. Several compounds were identified that had good activity against each of the viruses, including a set of novel 5-substituted deoxyuridine analogs. To investigate the possibility that these drugs might be phosphorylated preferentially by the viral thymidine kinase (TK) homologs, the antiviral activities of these compounds were also assessed using TK-deficient strains of some of these viruses. Some of these compounds were shown to be much less effective in the absence of a functional TK gene in CV, which was unexpected given the high degree of amino acid identity between this enzyme and its cellular homolog. This unanticipated result suggested that the CV TK was important in the mechanism of action of these compounds and also that it might phosphorylate a wider variety of substrates than other type II enzymes. To confirm these data, we expressed the VV TK and human TK1 in bacteria and isolated the purified enzymes. Enzymatic assays demonstrated that the viral TK could efficiently phosphorylate many of these compounds, whereas most of the compounds were very poor substrates for the cellular kinase, TK1. Thus, the specific phosphorylation of these compounds by the viral kinase may be sufficient to explain the TK dependence. This unexpected result suggests that selective phosphorylation by the viral kinase may be a promising new approach in the discovery of highly selective inhibitors of orthopoxvirus replication.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL 35233, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sliva K, Schnierle B. From actually toxic to highly specific--novel drugs against poxviruses. Virol J 2007; 4:8. [PMID: 17224068 PMCID: PMC1781423 DOI: 10.1186/1743-422x-4-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 01/15/2007] [Indexed: 01/13/2023] Open
Abstract
The potential use of variola virus, the causative agent of smallpox, as a bioweapon and the endemic presence of monkeypox virus in Africa demonstrate the need for better therapies for orthopoxvirus infections. Chemotherapeutic approaches to control viral infections have been less successful than those targeting bacterial infections. While bacteria commonly reproduce themselves outside of cells and have metabolic functions against which antibiotics can be directed, viruses replicate in the host cells using the cells' metabolic pathways. This makes it very difficult to selectively target the virus without damaging the host. Therefore, the development of antiviral drugs against poxviruses has initially focused on unique properties of the viral replication cycle or of viral proteins that can be selectively targeted. However, recent advances in molecular biology have provided insights into host factors that represent novel drug targets. The latest anti-poxvirus drugs are kinase inhibitors, which were originally developed to treat cancer progression but in addition block egress of poxviruses from infected cells. This review will summarize the current understanding of anti-poxvirus drugs and will give an overview of the development of the latest second generation poxvirus drugs.
Collapse
Affiliation(s)
- Katja Sliva
- Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51–59, 63225 Langen, Germany
| | - Barbara Schnierle
- Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51–59, 63225 Langen, Germany
| |
Collapse
|
37
|
Kornbluth RS, Smee DF, Sidwell RW, Snarsky V, Evans DH, Hostetler KY. Mutations in the E9L polymerase gene of cidofovir-resistant vaccinia virus strain WR are associated with the drug resistance phenotype. Antimicrob Agents Chemother 2006; 50:4038-43. [PMID: 16982794 PMCID: PMC1694007 DOI: 10.1128/aac.00380-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 05/08/2006] [Accepted: 09/07/2006] [Indexed: 11/20/2022] Open
Abstract
Cidofovir (CDV) is an effective drug against viruses of the Orthopoxviridae family and is active in vitro against variola virus, the cause of smallpox. However, CDV-resistant poxviruses can be generated by repeated in vitro passage in the presence of suboptimal concentrations of CDV. To determine if mutations in the E9L polymerase gene could confer resistance to this nucleoside analog, this gene was sequenced from CDV-resistant vaccinia virus and found to encode five amino acid changes, centered on an N-terminal region associated with 3'-->5' exonuclease activity. Transfer of this mutant E9L gene into wild-type vaccinia virus by marker rescue sufficed to confer the resistance phenotype. E9L polymerase mutations occurred sequentially during passage in CDV, and an H296Y/S338F double mutant that conferred an intermediate CDV resistance phenotype was identified. In vitro, the marker-rescued CDV-resistant vaccinia virus containing all five mutations grew nearly as well as wild-type vaccinia virus. However, the virulence of this virus for mice was reduced, as 10- to 30-fold more CDV-resistant virus than wild-type virus was required for lethality following intranasal challenge. Cidofovir and hexadecyloxypropyl-cidofovir gave partial protection to mice infected with the virus when used at 50 and 100 mg/kg of body weight given as single treatments 24 h after virus exposure, whereas 2-amino-7-[(1,3-dihydroxy-2-propoxy)methyl]purine (compound S2242) was completely protective at 25, 50, and 100 mg/kg/day when given daily for 5 days. These findings suggest that drug therapy for poxviruses may be complicated by drug resistance but that treatment of the infection with currently known compounds is possible.
Collapse
Affiliation(s)
- Richard S Kornbluth
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0676, USA
| | | | | | | | | | | |
Collapse
|
38
|
Quenelle DC, Buller RML, Parker S, Keith KA, Hruby DE, Jordan R, Kern ER. Efficacy of delayed treatment with ST-246 given orally against systemic orthopoxvirus infections in mice. Antimicrob Agents Chemother 2006; 51:689-95. [PMID: 17116683 PMCID: PMC1797744 DOI: 10.1128/aac.00879-06] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ST-246 was evaluated for activity against cowpox virus (CV), vaccinia virus (VV), and ectromelia virus (ECTV) and had an in vitro 50% effective concentration (EC50) of 0.48 microM against CV, 0.05 microM against VV, and 0.07 microM against ECTV. The selectivity indices were >208 and >2,000 for CV and VV, respectively. The in vitro antiviral activity of ST-246 was significantly greater than that of cidofovir, which had an EC50 of 41.1 microM against CV and 29.2 microM against VV, with selectivity indices of >7 and >10, respectively. ST-246 administered once daily by oral gavage to mice infected intranasally with CV beginning 4 h or delayed until 72 h postinoculation was highly effective when given for a 14-day duration using 100, 30, or 10 mg/kg of body weight. When 100 mg/kg of ST-246 was administered to VV-infected mice, a duration of 5 days was sufficient to significantly reduce mortality even when treatment was delayed 24 h postinoculation. Viral replication in liver, spleen, and kidney, but not lung, of CV- or VV-infected mice was reduced by ST-246 compared to levels for vehicle-treated mice. When 100 mg/kg of ST-246 was given once daily to mice infected by the intranasal route with ECTV, treatment for 10 days prevented mortality even when treatment was delayed up to 72 h after viral inoculation. Viral replication in target organs of ECTV-infected mice was also reduced.
Collapse
Affiliation(s)
- Debra C Quenelle
- University of Alabama at Birmingham, School of Medicine, Department of Pediatrics, 128 Children's Harbor Building, 1600 6th Avenue South, Birmingham, AL 35233-1711, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Fan X, Zhang X, Zhou L, Keith KA, Prichard MN, Kern ER, Torrence PF. Toward orthopoxvirus countermeasures: a novel heteromorphic nucleoside of unusual structure. J Med Chem 2006; 49:4052-4. [PMID: 16821766 PMCID: PMC4298854 DOI: 10.1021/jm060404n] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two privileged drug scaffolds have been hybridized to create the novel heteromorphic nucleoside 5-(2-amino-3-cyano-5-oxo-5,6,7,8-tetrahydro-4H-chromen-4-yl)-1-(2-deoxypentofuranosyl)pyrimidine-2,4(1H,3H)-dione (2). Compound 2 inhibited the replication of two orthopoxviruses, vaccinia virus (VV) (EC(50) = 4.6 +/- 2.0 microM), and cowpox virus (CV) (EC(50) = 2.0 +/- 0.3 microM). Compound 2 exhibited reduced activity against a thymidine kinase (TK) negative strain of CV, implying a requirement for 5'-monophosphorylation for antiorthopoxvirus activity. Compound 2 was efficiently phosphorylated by VV TK, establishing that VV TK is more promiscuous than previously believed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Paul F. Torrence
- To whom correspondence should be addressed. Phone: 928-523-0298. Fax: 928-523-8111.
| |
Collapse
|
40
|
Lebeau I, Andrei G, Dal Pozzo F, Beadle JR, Hostetler KY, De Clercq E, van den Oord J, Snoeck R. Activities of alkoxyalkyl esters of cidofovir (CDV), cyclic CDV, and (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine against orthopoxviruses in cell monolayers and in organotypic cultures. Antimicrob Agents Chemother 2006; 50:2525-9. [PMID: 16801436 PMCID: PMC1489770 DOI: 10.1128/aac.01489-05] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The potencies of several alkoxyalkyl esters of acyclic nucleoside phosphonates against vaccinia virus and cowpox virus were evaluated in cell monolayers and three-dimensional epithelial raft cultures. Prodrugs were at least 20-fold more active than their parent compounds. Octadecycloxyethyl-(S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine emerged as the most potent derivative.
Collapse
Affiliation(s)
- Ilya Lebeau
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sauerbrei A, Meier C, Meerbach A, Wutzler P. Inhibitory efficacy of cyclosal-nucleoside monophosphates of aciclovir and brivudin on DNA synthesis of orthopoxvi ruses. Antivir Chem Chemother 2006; 17:25-31. [PMID: 16542003 DOI: 10.1177/095632020601700104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Previous studies have shown that cycloSaligenyl-monophosphate (cycloSal-MP) derivatives of aciclovir (ACV), penciclovir (PCV) and brivudin (BVDU) can act as inhibitors of vaccinia virus and cowpox virus replication in vitro. The aim of the present study was to evaluate the inhibatory efficacy on DNA synthesis in vaccinia and cowpox viruses of several cycloSal-pro-nucleotides of ACV and BVDU, which have proven activity against pox viruses. Viral DNA was quantified in treated and non-treated virus-infected cells by semi-quantitative PCR on the basis of the haemagglutinin protein gene of orthopoxviruses. As result, an inhibitory efficacy on vaccinia and cowpox virus DNA replication could be demonstrated for 3-methyl-cycloSal-ACVMP, 5-H-cycloSal-ACVMP, 6-chloro-7-ECM-cycloSal-3'-OH-BVDUMP, and 6-chloro-7-methyl-cycloSal-3'-OH-BVDUMP. At concentrations of 32-128 mg/ml, 3-methyl-cyc/oSal-ACVMP and 6-chloro-7-ECM-cycloSal-3'OH-BVDUMP inhibited synthesis of viral DNA to a similar extent as the well-known inhibitors of pox viruses, cidofovir and 5-iodo-dUrd (deoxyuridine). When concentrations of 128 mg/ml were administered, both test substances diminished the amount of viral genome copies by > or =4 log10 corresponding to > or =99.99% reduction. In conclusion, selected cycloSal-pro-nucleotide derivatives of ACV and BVDU can inhibit orthopoxviral DNA synthesis. The high inhibitory efficacy on both replication of viral DNA and infectious viral particles in cell cultures makes these compounds promising candidates for in vivo experiments.
Collapse
Affiliation(s)
- Andreas Sauerbrei
- Institute of Virology and Antiviral Therapy, University of Jena, Jena, Germany.
| | | | | | | |
Collapse
|
42
|
Painter G, Buller M, Kern E, Huggins J, Moyer R, Painter W, Doucette M, Robertson A. The challenges of developing an antiviral agent for the treatment of smallpox using the animal efficacy rule. Future Virol 2006. [DOI: 10.2217/17460794.1.2.173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Smallpox, eradicated in the late 1970s, is considered a serious worldwide threat because of its potential use as a biological weapon. Attempts to develop an antiviral drug for the prophylaxis and treatment of the disease are complicated by the need to demonstrate effective antiviral activity and propose human dosing paradigms based on data generated in animals infected with related orthopoxviruses. This perspective article reviews the difficulties associated with developing an antiviral agent using animal models and the ‘animal efficacy rule’: a FDA regulation designed for situations where human clinical trials are not an option.
Collapse
|
43
|
Abstract
Smallpox (variola major), and the haemorrhagic fever viruses (filoviruses and arenaviruses) are classified as Category A biowarfare agents by the Centers for Disease Control. Category A agents pose a significant risk to public health and national security because they can be easily disseminated by aerosol, although with the exception of variola, they are not easily transmitted from person to person. An attack with these viruses would result in high morbidity and mortality and cause widespread panic. With the exception of smallpox and Argentine haemorrhagic fever virus, there are no vaccines or approved treatments to protect against these diseases. In this review we focus on promising prophylactic, therapeutic and disease modulating drugs (see Figure 1 for select chemical structures).
Collapse
Affiliation(s)
- Arthur J Goff
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | | |
Collapse
|
44
|
Prichard MN, Williams AD, Keith KA, Harden EA, Kern ER. Distinct thymidine kinases encoded by cowpox virus and herpes simplex virus contribute significantly to the differential antiviral activity of nucleoside analogs. Antiviral Res 2006; 71:1-6. [PMID: 16530858 DOI: 10.1016/j.antiviral.2006.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 01/19/2006] [Accepted: 01/19/2006] [Indexed: 11/21/2022]
Abstract
Orthopoxviruses and herpesviruses are both large enveloped DNA viruses, yet these virus families exhibit very different susceptibilities to antiviral drugs. We investigated the activation of nucleoside analogs by the types I and II thymidine kinase (TK) homologs expressed by herpes simplex virus type 1 (HSV-1) and cowpox virus (CV). Antiviral activity against TK(-) and TK(+) strains of HSV-1 and CV was determined, and the ratio of the EC(50) values was used as a measurement of TK dependence. As to HSV-1, most of the selected compounds were markedly less effective against the TK(-) strains, suggesting that this enzyme was required for the activation of these nucleoside analogs. This differs from the results for CV where only idoxuridine and bromodeoxyuridine appeared to be activated, putatively by the type II TK expressed by this virus. These data confirm that the type II TK encoded by CV exhibits a more limited substrate specificity than the type I TK encoded by HSV-1. These data suggest that the inefficient activation of nucleoside analogs by the orthopoxvirus TK significantly limits their activity. Additional screening against orthopoxviruses will be required to identify nucleoside analogs that are efficiently activated by their type II TK.
Collapse
Affiliation(s)
- Mark N Prichard
- University of Alabama School of Medicine, Department of Pediatrics, Birmingham, 35233, USA.
| | | | | | | | | |
Collapse
|
45
|
Abstract
The WHO declared smallpox eradicated in 1980. However, concern over its potential use by terrorists or in biowarfare has led to striking growth in research related to this much-feared disease. Modern molecular techniques and new animal models are advancing our understanding of smallpox and its interaction with the host immune system. Rapid progress is likewise being made in smallpox laboratory diagnostics, smallpox vaccines, and antiviral medications. WHO and several nations are developing stockpiles of smallpox vaccine for use in the event the disease is reintroduced. National and international public-health agencies have also drawn up plans to help with early detection of and response to a smallpox outbreak. These plans hinge on physicians' ability to recognise the clinical features of smallpox and to distinguish it from other illnesses characterised by rashes.
Collapse
Affiliation(s)
- Zack S Moore
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, 2015 Uppergate Drive NE, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
46
|
Khandazhinskaya AL, Shirokova EA, Shipitsin AV, Karpenko IL, Belanov EF, Kukhanova MK, Yasko MV. Adenosine N1-Oxide Analogues as Inhibitors of Orthopox Virus Replication. ACTA ACUST UNITED AC 2006. [DOI: 10.1135/cccc20061107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Several new types of adenosineN1-oxide (ANO) derivatives includingN1-alkoxy andN6-alkyl as well as the analogues with a trihydroxycyclopentane ring in place of the ribose residue were synthesized and their antiviral properties were evaluated in Vero and LLC-MK2 cell cultures infected with vaccinia, mousepox, monkeypox, cowpox, and different isolates of smallpox viruses. The antiviral activity of ANO and its derivatives significantly depended on the virus type and cell cultures. Mousepox and monkeypox viruses were the most sensitive to these compounds, while vaccinia and cowpox viruses were inhibited at the concentrations 1-1.5 orders of magnitude higher. The toxicity of the synthesized compounds was much lower than that of ANO. Modifications of the ANON6-position did not offer any advantages over the parent compound. The synthesizedN1-oxide derivatives of noraristeromycin retained the activity comparable with noraristeromycin and displayed a decreased toxicity. No direct correlation between antiviral activity and stability of the compounds was found.
Collapse
|
47
|
Williams-Aziz SL, Hartline CB, Harden EA, Daily SL, Prichard MN, Kushner NL, Beadle JR, Wan WB, Hostetler KY, Kern ER. Comparative activities of lipid esters of cidofovir and cyclic cidofovir against replication of herpesviruses in vitro. Antimicrob Agents Chemother 2005; 49:3724-33. [PMID: 16127046 PMCID: PMC1195409 DOI: 10.1128/aac.49.9.3724-3733.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cidofovir (CDV) is an effective therapy for certain human cytomegalovirus (HCMV) infections in immunocompromised patients that are resistant to other antiviral drugs, but the compound is not active orally. To improve oral bioavailability, a series of lipid analogs of CDV and cyclic CDV (cCDV), including hexadecyloxypropyl-CDV and -cCDV and octadecyloxyethyl-CDV and -cCDV, were synthesized and found to have multiple-log-unit enhanced activity against HCMV in vitro. On the basis of the activity observed with these analogs, additional lipid esters were synthesized and evaluated for their activity against herpes simplex virus (HSV) types 1 and 2, human cytomegalovirus, murine cytomegalovirus, varicella-zoster virus (VZV), Epstein-Barr virus (EBV), human herpesvirus 6 (HHV-6), and HHV-8. Using several different in vitro assays, concentrations of drug as low as 0.001 microM reduced herpesvirus replication by 50% (EC50) with the CDV analogs, whereas the cCDV compounds were generally less active. In most of the assays performed, the EC50 values of the lipid esters were at least 100-fold lower than the EC50 values for unmodified CDV or cCDV. The lipid analogs were also active against isolates that were resistant to CDV, ganciclovir, or foscarnet. These results indicate that the lipid ester analogs are considerably more active than CDV itself against HSV, VZV, CMV, EBV, HHV-6, and HHV-8 in vitro, suggesting that they may have potential for the treatment of infections caused by a variety of herpesviruses.
Collapse
Affiliation(s)
- Stephanie L Williams-Aziz
- University of Alabama School of Medicine, 1600 6th Ave. South, 128 Children's Harbor Bldg., Birmingham, AL 35233, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yang G, Pevear DC, Davies MH, Collett MS, Bailey T, Rippen S, Barone L, Burns C, Rhodes G, Tohan S, Huggins JW, Baker RO, Buller RLM, Touchette E, Waller K, Schriewer J, Neyts J, DeClercq E, Jones K, Hruby D, Jordan R. An orally bioavailable antipoxvirus compound (ST-246) inhibits extracellular virus formation and protects mice from lethal orthopoxvirus Challenge. J Virol 2005; 79:13139-49. [PMID: 16189015 PMCID: PMC1235851 DOI: 10.1128/jvi.79.20.13139-13149.2005] [Citation(s) in RCA: 295] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ST-246 is a low-molecular-weight compound (molecular weight = 376), that is potent (concentration that inhibited virus replication by 50% = 0.010 microM), selective (concentration of compound that inhibited cell viability by 50% = >40 microM), and active against multiple orthopoxviruses, including vaccinia, monkeypox, camelpox, cowpox, ectromelia (mousepox), and variola viruses. Cowpox virus variants selected in cell culture for resistance to ST-246 were found to have a single amino acid change in the V061 gene. Reengineering this change back into the wild-type cowpox virus genome conferred resistance to ST-246, suggesting that V061 is the target of ST-246 antiviral activity. The cowpox virus V061 gene is homologous to vaccinia virus F13L, which encodes a major envelope protein (p37) required for production of extracellular virus. In cell culture, ST-246 inhibited plaque formation and virus-induced cytopathic effects. In single-cycle growth assays, ST-246 reduced extracellular virus formation by 10 fold relative to untreated controls, while having little effect on the production of intracellular virus. In vivo oral administration of ST-246 protected BALB/c mice from lethal infection, following intranasal inoculation with 10x 50% lethal dose (LD(50)) of vaccinia virus strain IHD-J. ST-246-treated mice that survived infection acquired protective immunity and were resistant to subsequent challenge with a lethal dose (10x LD(50)) of vaccinia virus. Orally administered ST-246 also protected A/NCr mice from lethal infection, following intranasal inoculation with 40,000x LD(50) of ectromelia virus. Infectious virus titers at day 8 postinfection in liver, spleen, and lung from ST-246-treated animals were below the limits of detection (<10 PFU/ml). In contrast, mean virus titers in liver, spleen, and lung tissues from placebo-treated mice were 6.2 x 10(7), 5.2 x 10(7), and 1.8 x 10(5) PFU/ml, respectively. Finally, oral administration of ST-246 inhibited vaccinia virus-induced tail lesions in Naval Medical Research Institute mice inoculated via the tail vein. Taken together, these results validate F13L as an antiviral target and demonstrate that an inhibitor of extracellular virus formation can protect mice from orthopoxvirus-induced disease.
Collapse
Affiliation(s)
- Guang Yang
- ViroPharma, Inc., Exton, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
McKenna CE, Kashemirov BA, Eriksson U, Amidon GL, Kish PE, Mitchell S, Kim JS, Hilfinger JM. Cidofovir peptide conjugates as prodrugs. J Organomet Chem 2005. [DOI: 10.1016/j.jorganchem.2005.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Weiss MM, Weiss PD, Mathisen G, Guze P. Rethinking smallpox. Clin Infect Dis 2004; 39:1668-73. [PMID: 15578369 PMCID: PMC7107961 DOI: 10.1086/425745] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Accepted: 07/23/2004] [Indexed: 11/18/2022] Open
Abstract
The potential consequences of a competently executed smallpox attack have not been adequately considered by policy makers. The possibility of release of an aerosolized and/or bioengineered virus must be anticipated and planned for. The transmission and infectivity of variola virus are examined. Arguments for and against pre-event vaccination are offered. The likely morbidity and mortality that would ensue from implementation of a mass pre-event vaccination program, within reasonable boundaries, are known. The extent of contagion that could result from an aerosolized release of virus is unknown and may have been underestimated. Pre-event vaccination of first responders is urged, and voluntary vaccination programs should be offered to the public. Two defenses against a vaccine-resistant, engineered variola virus are proposed for consideration. Methisazone, an overlooked drug, is reported to be effective for prophylaxis only. The extent of reduction in the incidence of smallpox with use of this agent is uncertain. It is useless for treatment of clinical smallpox. N-100 respirators (face masks) worn by uninfected members of the public may prevent transmission of the virus.
Collapse
Affiliation(s)
- Martin M Weiss
- Department of Medicine, Veterans Administration, Sepulveda, CA 91343, USA.
| | | | | | | |
Collapse
|