1
|
Xiao H, Hu F, Ding J, Ye Z. Cognitive Impairment in Idiopathic Normal Pressure Hydrocephalus. Neurosci Bull 2022; 38:1085-1096. [PMID: 35569106 PMCID: PMC9468191 DOI: 10.1007/s12264-022-00873-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/25/2022] [Indexed: 01/03/2023] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a significant cause of the severe cognitive decline in the elderly population. There is no cure for iNPH, but cognitive symptoms can be partially alleviated through cerebrospinal fluid (CSF) diversion. In the early stages of iNPH, cognitive deficits occur primarily in the executive functions and working memory supported by frontostriatal circuits. As the disease progresses, cognition declines continuously and globally, leading to poor quality of life and daily functioning. In this review, we present recent advances in understanding the neurobiological mechanisms of cognitive impairment in iNPH, focusing on (1) abnormal CSF dynamics, (2) dysfunction of frontostriatal and entorhinal-hippocampal circuits and the default mode network, (3) abnormal neuromodulation, and (4) the presence of amyloid-β and tau pathologies.
Collapse
Affiliation(s)
- Haoyun Xiao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Hu
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zheng Ye
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
2
|
Nardone R, Golaszewski S, Schwenker K, Brigo F, Maccarrone M, Versace V, Sebastianelli L, Saltuari L, Höller Y. Cholinergic transmission is impaired in patients with idiopathic normal-pressure hydrocephalus: a TMS study. J Neural Transm (Vienna) 2019; 126:1073-1080. [PMID: 31227893 PMCID: PMC6647526 DOI: 10.1007/s00702-019-02036-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/17/2019] [Indexed: 11/26/2022]
Abstract
The pathophysiological mechanisms of cognitive and gait disturbances in subjects with normal-pressure hydrocephalus (NPH) are still unclear. Cholinergic and other neurotransmitter abnormalities have been reported in animal models of NPH. The objective of this study was to evaluate the short latency afferent inhibition (SAI), a transcranial magnetic stimulation protocol which gives the possibility to test an inhibitory cholinergic circuit in the human brain, in subjects with idiopathic NPH (iNPH). We applied SAI technique in twenty iNPH patients before ventricular shunt surgery. Besides SAI, also the resting motor threshold and the short intracortical inhibition to paired stimulation were assessed. A significant reduction of the SAI (p = 0.016), associated with a less pronounced decrease of the resting motor threshold and the short latency intracortical inhibition to paired stimulation, were observed in patients with iNPH at baseline evaluation. We also found significant (p < 0.001) correlations between SAI values and the gait function tests, as well as between SAI and the neuropsychological tests. These findings suggest that the impairment of cholinergic neurons markedly contributes to cognitive decline and gait impairment in subjects with iNPH.
Collapse
Affiliation(s)
- Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital, Via Rossini 5, 39012, Merano, BZ, Italy.
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria.
- Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria.
| | - Stefan Golaszewski
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
- Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | - Kerstin Schwenker
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
- Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | - Francesco Brigo
- Department of Neurology, Franz Tappeiner Hospital, Via Rossini 5, 39012, Merano, BZ, Italy
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Miriam Maccarrone
- Department of Neurology, Franz Tappeiner Hospital, Via Rossini 5, 39012, Merano, BZ, Italy
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno, Italy
- Research Department for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno, Italy
- Research Department for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno, Italy
- Research Department for Neurorehabilitation South Tyrol, Bolzano, Italy
- Department of Neurology, Hochzirl Hospital, Zirl, Austria
| | - Yvonne Höller
- Department of Psychology, University of Akureyri, Akureyri, Iceland
| |
Collapse
|
3
|
Jiménez AJ, Rodríguez-Pérez LM, Domínguez-Pinos MD, Gómez-Roldán MC, García-Bonilla M, Ho-Plagaro A, Roales-Buján R, Jiménez S, Roquero-Mañueco MC, Martínez-León MI, García-Martín ML, Cifuentes M, Ros B, Arráez MÁ, Vitorica J, Gutiérrez A, Pérez-Fígares JM. Increased levels of tumour necrosis factor alpha (TNFα) but not transforming growth factor-beta 1 (TGFβ1) are associated with the severity of congenital hydrocephalus in the hyh mouse. Neuropathol Appl Neurobiol 2015; 40:911-32. [PMID: 24707814 DOI: 10.1111/nan.12115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/20/2013] [Indexed: 12/31/2022]
Abstract
AIMS Here, we tested the hypothesis that glial responses via the production of cytokines such as transforming growth factor-beta 1 (TGFβ1) and tumour necrosis factor alpha (TNFα), which play important roles in neurodegenerative diseases, are correlated with the severity of congenital hydrocephalus in the hyh mouse model. We also searched for evidence of this association in human cases of primary hydrocephalus. METHODS Hyh mice, which exhibit either severe or compensated long-lasting forms of hydrocephalus, were examined and compared with wild-type mice. TGFβ1, TNFα and TNFαR1 mRNA levels were quantified using real-time PCR. TNFα and TNFαR1 were immunolocalized in the brain tissues of hyh mice and four hydrocephalic human foetuses relative to astroglial and microglial reactions. RESULTS The TGFβ1 mRNA levels were not significantly different between hyh mice exhibiting severe or compensated hydrocephalus and normal mice. In contrast, severely hydrocephalic mice exhibited four- and two-fold increases in the mean levels of TNFα and TNFαR1, respectively, compared with normal mice. In the hyh mouse, TNFα and TNFαR1 immunoreactivity was preferentially detected in astrocytes that form a particular periventricular reaction characteristic of hydrocephalus. However, these proteins were rarely detected in microglia, which did not appear to be activated. TNFα immunoreactivity was also detected in the glial reaction in the small group of human foetuses exhibiting hydrocephalus that were examined. CONCLUSIONS In the hyh mouse model of congenital hydrocephalus, TNFα and TNFαR1 appear to be associated with the severity of the disease, probably mediating the astrocyte reaction, neurodegenerative processes and ischaemia.
Collapse
Affiliation(s)
- Antonio-Jesús Jiménez
- Department of Cell Biology, Genetics, and Physiology, Faculty of Sciences, University of Malaga, Malaga, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Manaenko A, Lekic T, Barnhart M, Hartman R, Zhang JH. Inhibition of transforming growth factor-β attenuates brain injury and neurological deficits in a rat model of germinal matrix hemorrhage. Stroke 2014; 45:828-34. [PMID: 24425124 DOI: 10.1161/strokeaha.113.003754] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Transforming growth factor-β (TGF-β) overproduction and activation of the TGF-β pathway are associated with the development of brain injury following germinal matrix hemorrhage (GMH) in premature infants. We examined the effects of GMH on the level of TGF-β1 in a novel rat collagenase-induced GMH model and determined the effect of inhibition of the TGF receptor I. METHODS In total, 92 seven-day old (P7) rats were used. Time-dependent effects of GMH on the level of TGF-β1 and TGF receptor I were evaluated by Western blot. A TGF receptor I inhibitor (SD208) was administered daily for 3 days, starting either 1 hour or 3 days after GMH induction. The effects of GMH and SD208 on the TGF-β pathway were evaluated by Western blot at day 3. The effects of GMH and SD208 on cognitive and motor function were also assessed. The effects of TGF receptor I inhibition by SD208 on GMH-induced brain injury and underlying molecular pathways were investigated by Western blot, immunofluorescence, and morphology studies 24 days after GMH. RESULTS GMH induced significant delay in development, caused impairment in both cognitive and motor functions, and resulted in brain atrophy in rat subjects. GMH also caused deposition of both vitronectin (an extracellular matrix protein) and glial fibrillary acidic protein in perilesion areas, associated with development of hydrocephalus. SD208 ameliorated GMH-induced developmental delay, improved cognitive and motor functions, and attenuated body weight loss. SD208 also decreased vitronectin and glial fibrillary acidic protein deposition and decreased GMH-induced brain injury. CONCLUSIONS Increased level of TGF-β1 and activation of the TGF-β pathway associate with the development of brain injury after GMH. SD208 inhibits GMH-induced activation of the TGF-β pathway and leads to an improved developmental profile, partial recovery of cognitive and motor functions, and attenuation of GMH-induced brain atrophy and hydrocephalus.
Collapse
Affiliation(s)
- Anatol Manaenko
- From the Departments of Basic Science (A.M., T.L., J.H.Z.), Neurosurgery (J.H.Z.), Anesthesiology (M.B., J.H.Z.), and Psychology (R.H.), Loma Linda University, CA
| | | | | | | | | |
Collapse
|
5
|
Aquilina K, Chakkarapani E, Love S, Thoresen M. Neonatal rat model of intraventricular haemorrhage and post-haemorrhagic ventricular dilatation with long-term survival into adulthood. Neuropathol Appl Neurobiol 2011; 37:156-65. [PMID: 20819170 DOI: 10.1111/j.1365-2990.2010.01118.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AIMS post-haemorrhagic ventricular dilatation (PHVD) is a significant problem in neonatal care, with sequelae extending beyond childhood. Its management is important in determining outcome. Although rodent hydrocephalus models have been developed, PHVD, as a specific entity with a distinct pathophysiology, has not been studied in a small animal model surviving to adulthood. Our objective is to evaluate survival, to adulthood, in our immature (7-day-old, P7) neonatal rat model, and to analyse early motor reflexes and fine motor and cognitive function, and neuropathology, at 8-12 weeks. METHODS sixty-six rats underwent sequential bilateral stereotactic intraventricular haemorrhage (IVH); 36 more acted as controls. Staircase and radial maze evaluations were carried out at 7-11 weeks; animals were sacrificed at 12 weeks. Post mortem ventricular size and corpus callosum thickness were determined. RESULTS seventy-six per cent of IVH animals developed PHVD; median (interquartile range) composite ventricular area was 3.46 mm(2) (2.32-5.24). Sixteen (24%) animals demonstrated severe ventricular dilatation (area > 5 mm(2) ). IVH animals failed to improve on the negative geotaxis test at 2 weeks. The staircase test did not identify any significant difference. On the radial maze, animals with severe PHVD made more reference errors. Histopathology confirmed PHVD, ependymal disruption and periventricular white matter injury. Median anterior corpus callosum thickness was significantly lower in IVH animals (0.35 mm) than in those not undergoing IVH (0.43 mm). CONCLUSION our P7 neonatal rat IVH model is suitable for long-term survival and replicates many of the morphological and some of the behavioural features seen in human PHVD.
Collapse
Affiliation(s)
- K Aquilina
- School of Clinical Sciences, University of Bristol Department of Neurosurgery, Frenchay Hospital, Bristol, UK
| | | | | | | |
Collapse
|
6
|
Fleury A, Carrillo-Mezo R, Flisser A, Sciutto E, Corona T. Subarachnoid basal neurocysticercosis: a focus on the most severe form of the disease. Expert Rev Anti Infect Ther 2011; 9:123-33. [PMID: 21171883 DOI: 10.1586/eri.10.150] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neurocysticercosis is an endemic disease in Latin America, Asia and Africa with growing occurrence in industrialized countries due to the increase in migration from low- and middle-income to high-income countries. The most severe clinical presentation is when the parasite is located in the subarachnoid space at the base of the brain (NCSAB). Aside from its clinical presentation, the severity of this form of the disease is due to the difficulties in diagnosis and treatment. Although NCSAB frequency is lower than that reported for the parenchymal location of the parasite, its clinical relevance must be emphasized. We provide a critical review of the central epidemiological, clinical, diagnostic and therapeutic features of this particular form of the disease, which is still associated with unacceptably high rates of morbidity and mortality.
Collapse
Affiliation(s)
- Agnès Fleury
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| | | | | | | | | |
Collapse
|
7
|
Abstract
INTRODUCTION Individuals with neurodevelopmental disorders have been observed to show accelerated cognitive aging or even dementia as early as 30 and 40 years of age. Memory deficits are an important component of age-related cognitive loss. METHODS In this study, we investigated prospective memory, which is often impaired in aging, in a group of 32 adults with spina bifida meningomyelocele (SBM), including members of the oldest living cohort successfully treated with shunts to divert excess cerebrospinal fluid, ventriculomegaly, and hydrocephalus, who are now around 50 years of age. Seventeen typically developing adults provided a comparison group. RESULTS The SBM and comparison groups differed in the prospective memory total score as well as in both time-based and event-based subscores. Prospective memory was impaired in both older and younger individuals with SBM. However, the percentage of individuals with impaired or poor prospective memory was three times higher in the older SBM group than in the younger SBM group. The results are considered in relation to specific features of the complex brain reorganization in SBM.
Collapse
|
8
|
Khakpour-Taleghani B, Lashgari R, Motamedi F, Naghdi N. Effect of reversible inactivation of locus ceruleus on spatial reference and working memory. Neuroscience 2009; 158:1284-91. [DOI: 10.1016/j.neuroscience.2008.11.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 10/06/2008] [Accepted: 11/03/2008] [Indexed: 11/17/2022]
|
9
|
Kondziella D, Eyjolfsson EM, Saether O, Sonnewald U, Risa O. Gray matter metabolism in acute and chronic hydrocephalus. Neuroscience 2009; 159:570-7. [PMID: 19171182 DOI: 10.1016/j.neuroscience.2009.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 01/05/2009] [Accepted: 01/07/2009] [Indexed: 10/21/2022]
Abstract
Although hydrocephalus is usually considered a disorder of periventricular white matter, disturbance of gray matter is probably also involved. However, so far gray matter metabolism has not been studied in experimental hydrocephalus using high resolution in vivo magnetic resonance spectroscopy (MRS). Therefore 15 rats were made hydrocephalic by injection of 0.1 ml kaolin into the cisterna magna, whereas 10 sham-operated rats served as controls. (1)H MRS and magnetic resonance imaging were performed longitudinally in acute hydrocephalus 2 and 4 weeks after kaolin treatment and in chronic hydrocephalus after 6 weeks. Volumes of interest included the gray matter regions cortex, thalamus and hippocampus. In hydrocephalic animals, (1)H MRS revealed decreased glutamate levels in all examined areas at all time points. Moreover, in acute hydrocephalus disturbances were noted in the hippocampus with decreased concentrations of N-acetyl aspartate, creatine, inositol and taurine, and in the cortex with decreased taurine levels. A clear lactate peak was detected in CSF spectra from hydrocephalic rats. In addition, T2-weighted images showed increase of free water in the hippocampus. It can be concluded that glutamate metabolism is deranged in gray matter in acute and chronic hydrocephalus in rats. If confirmed in humans, early detection of glutamatergic disturbances and lactate accumulation using in vivo(1)H MRS might serve as an indication for surgical treatment of hydrocephalus before irreversible neuronal damage develops.
Collapse
Affiliation(s)
- D Kondziella
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | |
Collapse
|
10
|
Song C, Manku MS, Horrobin DF. Long-chain polyunsaturated fatty acids modulate interleukin-1beta-induced changes in behavior, monoaminergic neurotransmitters, and brain inflammation in rats. J Nutr 2008; 138:954-63. [PMID: 18424607 DOI: 10.1093/jn/138.5.954] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent evidence has suggested that an imbalance between membrane (n-3) and (n-6) fatty acids may contribute to the etiology of autoimmune and neurodegenerative diseases. In this study, the mechanisms by which eicosapentaenoic acid (EPA), gamma-linolenic acid (GLA), and arachidonic acid (AA) modulate neurotransmitters, behavior, and brain inflammation were evaluated in rats that received central saline or interleukin-1beta (IL-1) administrations. In rats treated with saline, only the AA-enriched diet significantly increased anxiety-like behavior in the elevated plus maze, which was associated with increased corticosterone secretion. AA also increased the turnover of dopamine (DA), noradrenaline (NA), and serotonin (5-HT) in the amygdala and increased the prostaglandin (PG)E(2) level in the hippocampus. IL-1 administration slowed rat learning in the water maze and increased anxiety-like behavior, changes which were associated with increased homovanillic acid and 5-HT turnover, decreased NA in the hippocampus and amygdala, decreased DA in the frontal cortex, and decreased IL-10 in limbic brain regions. Increased corticosterone secretion following IL-1 administration was accompanied by increased NA turnover in the hippocampus (P < 0.05) and increased PGE(2) concentration (P < 0.01) in the limbic brain regions. Of the 3 diets tested, only EPA attenuated IL-1-induced behavioral changes (P < 0.05 or 0.01), which was associated with the modulation of EPA on the neuroendocrine and immune changes induced by IL-1. GLA reduced hippocampal PGE(2) concentration in rats given IL-1 (P < 0.01). AA did not counteract any of the changes induced by IL-1. These results suggest that EPA, GLA, and AA play different roles in the neuroendocrine-immune network.
Collapse
Affiliation(s)
- Cai Song
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, Canada C1A 4P3.
| | | | | |
Collapse
|
11
|
Kondziella D, Sonnewald U, Tullberg M, Wikkelso C. Brain metabolism in adult chronic hydrocephalus. J Neurochem 2008; 106:1515-24. [PMID: 18419769 DOI: 10.1111/j.1471-4159.2008.05422.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Normal pressure hydrocephalus (NPH) is the most frequent form of chronic hydrocephalus in adults. NPH remains underdiagnosed although between 5% and 10% of all demented patients may suffer from this disorder. As dementia is an increasing demographic problem, treatable forms such as in NPH have become a central issue in neurology. Despite the traditional perception of hydrocephalus being a disorder of disturbed CSF dynamics, in NPH metabolic impairment seems at least as important. So far, the only valid animal model of NPH is chronic adult kaolin hydrocephalus. In this model, opening of alternative CSF outflow pathways leads to normal or near-normal intracranial pressure and CSF outflow resistance. Yet, various metabolic disturbances cause ongoing ventricular enlargement and characteristic symptoms including cognitive decline and gait ataxia. Delayed hippocampal neuronal death, accumulation of beta-amyloid and disturbed cholinergic neurotransmission may contribute to memory dysfunction. Compromised periventricular blood flow, decreased dopamine levels in the substantia nigra and damaged striatal GABAergic interneurons may reflect basal ganglia symptoms. At least in human hydrocephalus cerebrovascular co-morbidity of the white matter plays an important role as well. It seems that in hydrocephalus from a certain 'point of no return' metabolic impairment becomes decoupled from CSF dynamics and, at least partly, self-sustained. This is probably the reason why despite restored CSF circulation by shunting many patients with chronic hydrocephalus still suffer from severe neurological deficits. The present paper offers a comprehensive review of the experimental and clinical data suggesting metabolic disturbances in chronic hydrocephalus.
Collapse
Affiliation(s)
- Daniel Kondziella
- Department of Neurology, Sahlgrenska University Hospital, Göteborg, Sweden.
| | | | | | | |
Collapse
|
12
|
Dennis M, Jewell D, Drake J, Misakyan T, Spiegler B, Hetherington R, Gentili F, Barnes M. Prospective, declarative, and nondeclarative memory in young adults with spina bifida. J Int Neuropsychol Soc 2007; 13:312-23. [PMID: 17286888 DOI: 10.1017/s1355617707070336] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 09/29/2006] [Accepted: 10/18/2006] [Indexed: 11/07/2022]
Abstract
The consequences of congenital brain disorders for adult cognitive function are poorly understood. We studied different forms of memory in 29 young adults with spina bifida meningomyelocele (SBM), a common and severely disabling neural tube defect. Nondeclarative and semantic memory functions were intact. Working memory was intact with low maintenance and manipulation requirements, but impaired on tasks demanding high information maintenance or manipulation load. Prospective memory for intentions to be executed in the future was impaired. Immediate and delayed episodic memory were poor. Memory deficits were exacerbated by an increased number of lifetime shunt revisions, a marker for unstable hydrocephalus. Memory status was positively correlated with functional independence, an important component of quality of life.
Collapse
Affiliation(s)
- Maureen Dennis
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Tada T, Zhan H, Tanaka Y, Hongo K, Matsumoto K, Nakamura T. Intraventricular administration of hepatocyte growth factor treats mouse communicating hydrocephalus induced by transforming growth factor beta1. Neurobiol Dis 2005; 21:576-86. [PMID: 16352434 DOI: 10.1016/j.nbd.2005.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 08/29/2005] [Accepted: 09/05/2005] [Indexed: 11/20/2022] Open
Abstract
Communicating hydrocephalus may occur spontaneously in elderly patients or occur as a complication of meningitis or intracranial hemorrhage, typically as a result of fibrosis along the route of cerebrospinal fluid (CSF) flow. Hepatocyte growth factor (HGF) has anti-fibrotic properties and is a promising candidate for the treatment of various fibrotic diseases. Thus, the goal of this study was to examine the effect of exogenous HGF (30 microg of human recombinant (hr) HGF intraventricularly for 7 or 14 days) in a model of hr transforming growth factor beta1-induced communicating hydrocephalus in C57BL/6 mice. HGF treatment resulted in a reduction of ventriculomegaly, as demonstrated by magnetic resonance imaging, and improved spatial memory. Further, ink passage test demonstrated improvement of normalized CSF in flow in mice receiving HGF treatment as opposed to delayed CSF flow in the hydrocephalic mice at baseline. Finally, histological examination in hydrocephalic mice undergoing HGF treatment revealed reduction of collagen fibers in the meninges and normalization of their structures. These results indicate that exogenous HGF may be of utility in the treatment of hydrocephalus in humans.
Collapse
Affiliation(s)
- Tsuyoshi Tada
- Department of Neurosurgery, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto 390-8621, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
del Mar Matarín M, Poca MA, Bartrés-Faz D, Mataró M, Clemente IC, Solé-Padullés C, González-Pérez E, Moral P, Barrios M, Junqué C, Sahuquillo J. Angiotensin I converting enzyme polymorphism effects in patients with normal pressure hydrocephalus syndrome before and after surgery. J Neurol 2005; 252:191-6. [PMID: 15729525 DOI: 10.1007/s00415-005-0630-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 06/22/2004] [Accepted: 07/23/2004] [Indexed: 01/18/2023]
Abstract
Previous reports have suggested an association between the insertion/deletion (I/D) polymorphism of the angiotensin-converting enzyme (ACE), cardiovascular disease, and cognitive performance. Normal pressure hydrocephalus (NPH) is considered to be an example of reversible dementia although the clinical improvement after shunting varies from subject to subject. An association has been suggested between vascular risk factors and the development of NPH. The ACE plays a major role in vascular pathology and physiology. In the present study we investigated the distribution of an ACE gene insertion/deletion polymorphism in 112 patients diagnosed with NPH and in 124 controls. We also evaluated the role of this genetic polymorphism in cognitive functioning before and following surgery in a subgroup of 72 patients. No differences in genetic or allele distributions were found between patients and healthy subjects, but among patients, carriers of D/D or D/I genotypes obtained less cognitive benefit following shunt surgery, especially on measures of memory and frontal function. Our data support previous findings in other conditions indicating that possession of at least one D allele is associated with poorer cognitive performance.
Collapse
Affiliation(s)
- Maria del Mar Matarín
- Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Anxiety disorders may result from an overexpression of aversive memories. Evidence suggests that the hippocampal cholinergic system could be the point of convergence of anxiety and memory. We propose that clinically effective anxiolytics may exert their effect by interfering with this integration mechanism. To assess anxiety and aversive memory, we used the shock-probe burying test. A reduction in anxiety in this test is indicated by decreased burying, whereas impaired cognition is reflected by an increased number of probe-contacts and/or reduced retention latency. Both an aversive stimulus and the memory of that stimulus significantly increased hippocampal acetylcholine (ACh) levels (Experiment 1). In fact, the memory of the event seemed to be more important than the event itself since the aversive memory induced a greater increase in hippocampal ACh. Injections (i.p.) of fluoxetine (Prozac) reduced burying behavior, while not affecting probe contacts or retention latency (Experiment 2). Although injections of fluoxetine did not affect basal hippocampal ACh efflux (Experiment 3), fluoxetine abolished the increase in ACh induced by the aversive stimulus and the memory of that stimulus (Experiment 4), emphasizing the significance of aversive memories in anxiety disorders. These actions may be mediated by a decrease in the event-related enhancement in cholinergic neurotransmission through M1 cholinergic receptors (Experiment 5). Therefore, anxiety disorders may stem from an unopposed formation of aversive memories and clinically effective anxiolytics hinder the association between emotional and cognitive processing. This reduces the emotional impact of aversive memories, thereby opposing consequent anxiety.
Collapse
Affiliation(s)
- Aldemar Degroot
- Eli Lilly and Company, Lilly Corporate Center, Neuroscience Discovery Research, Indianapolis, IN 46285-0510, USA
| | | |
Collapse
|
16
|
Abstract
The literature concerning brain damage due to hydrocephalus, especially in children and animal models, is reviewed. The following conclusions are reached: 1. Hydrocephalus has a deleterious effect on brain that is dependent on magnitude and duration of ventriculomegaly and modified by the age of onset. 2. Animal models have many histopathological similarities to humans and can be used to understand the pathogenesis of brain damage. 3. Periventricular axons and myelin are the primary targets of injury. The pathogenesis has similarities to traumatic and ischemic white matter injury. Secondary changes in neurons reflect compensation to the stress or ultimately the disconnection. 4. Altered efflux of extracellular fluid could result in accumulation of waste products that might interfere with neuron function. Further research is needed in this as well as the blood-brain barrier in hydrocephalus. 5. Some, but not all, of the changes are preventable by shunting CSF. However, axon loss cannot be reversed, therefore shunting in a given case must be considered carefully. 6. Experimental work has so far failed to show any benefit in reducing CSF production. Pharmacologic protection of the brain, at least as a temporary measure, holds some promise but more pre-clinical research is required.
Collapse
Affiliation(s)
- Marc R Del Bigio
- Department of Pathology, University of Manitoba, and Manitoba Institute for Child Health, Winnipeg, Canada.
| |
Collapse
|
17
|
Song C, Horrobin D. Omega-3 fatty acid ethyl-eicosapentaenoate, but not soybean oil, attenuates memory impairment induced by central IL-1β administration. J Lipid Res 2004; 45:1112-21. [PMID: 15060086 DOI: 10.1194/jlr.m300526-jlr200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proinflammatory cytokine interleukin (IL)-1beta can cause cognitive impairment, activate the hypothalamic-pituitary-adrenal axis and impair monoaminergic neurotransmission in the rat. IL-1beta has also been shown to increase the concentration of the inflammatory mediator prostaglandin E2 (PGE2) in the blood. Omega (n)-3 fatty acids, such as eicosapentaenoic acid (EPA), which are components of fish oil, have been shown to reduce both the proinflammatory cytokines and the synthesis of PGE2. The purpose of this study was to determine whether dietary supplements of EPA would attenuate the inflammation-induced impairment of spatial memory by centrally administered IL-1beta. Rats were fed with a diet of coconut oil (contained a negligible quantity of fatty acids), soybean oil (contained mainly n-6 fatty acids), or a diet of coconut oil enriched with ethyl-EPA (E-EPA). The rats were then injected intracerebroventricularly with IL-1beta or saline. The results of this study demonstrated that the IL-1-induced deficit in spatial memory was correlated with an impairment of central noradrenergic and serotonergic (but not dopaminergic) function and an increase in the serum corticosterone concentration. IL-1beta also caused an increase in the hippocampal PGE2 concentration. These effects of IL-1 were attenuated by the chronic administration of E-EPA. By contrast, rats fed with the soybean oil diet showed no effect on the changes induced by the IL-1 administration.
Collapse
Affiliation(s)
- Cai Song
- Neuroscience Division, Department of Psychiatry, University of British Columbia, 2255 Westbrook Mall, Vancouver, BC Canada V6T 2A1.
| | | |
Collapse
|
18
|
Shim I, Ha Y, Chung JY, Lee HJ, Yang KH, Chang JW. Association of learning and memory impairments with changes in the septohippocampal cholinergic system in rats with kaolin-induced hydrocephalus. Neurosurgery 2003; 53:416-25; discussion 425. [PMID: 12925261 DOI: 10.1227/01.neu.0000073989.07810.d8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2002] [Accepted: 04/09/2003] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The septohippocampal cholinergic (SHC) system plays an important role in the maintenance of normal memory and learning. However, the fact that memory and learning impairments under hydrocephalic conditions are directly related to the SHC system is less well known. We investigated the relationships between pathological changes in SHC neurons and impairments in memory and learning among hydrocephalic rats. METHODS Rats with kaolin-induced hydrocephalus were prepared with injections of kaolin suspension into the cisterna magna. Learning and memory performance was assessed with the passive avoidance and Morris water maze tests. Ventricular sizes were measured for the lateral and third ventricles. Acetylcholinesterase and choline acetyltransferase immunostaining was performed to investigate degenerative changes in cholinergic neurons in the medial septum and hippocampus. RESULTS Hydrocephalic rats demonstrated significant learning and memory impairments in the passive avoidance and Morris water maze tests. Decreased hesitation times in the passive avoidance test and markedly increased acquisition times and decreased retention times in the Morris water maze test indicated learning and memory dysfunction among the hydrocephalic rats. The numbers of cholinergic neurons in the medial septum and hippocampus were decreased in the hydrocephalic rats. The decreases in choline acetyltransferase and acetylcholinesterase immunoreactivity were significantly correlated with enlargement of the ventricles. CONCLUSION Impairment of spatial memory and learning may be attributable to degeneration of SHC neurons. These results suggest that learning and memory impairments in rats with kaolin-induced hydrocephalus are associated with the dysfunction of the SHC system induced by ventricular dilation.
Collapse
Affiliation(s)
- Insop Shim
- Department of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
19
|
Del Bigio MR, Wilson MJ, Enno T. Chronic hydrocephalus in rats and humans: white matter loss and behavior changes. Ann Neurol 2003; 53:337-46. [PMID: 12601701 DOI: 10.1002/ana.10453] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chronic hydrocephalus that begins in childhood and progresses only very gradually is sometimes called "arrested" hydrocephalus. Data suggest that this state eventually can become symptomatic and may be treatable by shunting. However, the pathological substrate of the disorder is not entirely understood. We studied chronic hydrocephalus in rats, 9 months after induction by kaolin injection into the cisterna magna, and in humans. In both circumstances, destruction of periventricular white matter structures was worst in those with the largest ventricles. Structures damaged include the corpus callosum, corticospinal tract, and fimbria/fornix projections from the hippocampus. Myelin turnover was increased. These changes were associated with deficits of motor and cognitive function. The cerebral cortex was largely spared. There appears to be a threshold of ventricle size beyond which functional changes manifest, but this undoubtedly is modified by factors such as age of onset and rate of enlargement. These data support the need for persistent follow-up of patients with chronic, apparently stable hydrocephalus. A slight increase in size of already enlarged ventricles might cause significant axonal damage.
Collapse
Affiliation(s)
- Marc R Del Bigio
- Department of Pathology, University of Manitoba Manitoba Institute for Child Health, Winnipeg, Manitoba, Canada.
| | | | | |
Collapse
|
20
|
Klinge PM, Samii A, Mühlendyck A, Visnyei K, Meyer GJ, Walter GF, Silverberg GD, Brinker T. Cerebral hypoperfusion and delayed hippocampal response after induction of adult kaolin hydrocephalus. Stroke 2003; 34:193-9. [PMID: 12511773 DOI: 10.1161/01.str.0000048820.17198.15] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE In chronic hydrocephalus, a role for tissue hypoxia resulting from cerebrovascular compression is suggested. The purpose of this study was to evaluate whether changes in cerebral blood flow (CBF) in the time course of adult kaolin-induced hydrocephalus correlated with immunohistochemical neuronal responses. METHODS In 46 adult Sprague-Dawley rats, kaolin hydrocephalus was induced and immunostaining of neurofilament protein (NF68), synaptophysin (SYN38), and neuronal nitric oxide synthase (NOS) was performed at 2 (short term), 4 (intermediate term), and 6 and 8 (long term) weeks. Local CBF was measured quantitatively by [14C]iodoantipyrine ([14C]IAP) autoradiography in the short-term stage and in both long-term stages. RESULTS At 2 weeks, neuronal NOS immunoreactivity was globally increased in cortical areas and within the hippocampus. Four weeks after hydrocephalus induction, a reactive increase of SYN38 and NF68 immunoreactivity in the periventricular cortex was seen. At 6 and 8 weeks, when the ventricular size was decreasing, immunohistochemical changes in the hippocampus became most evident. A maintained toxic NOS reactivity in the CA1 subfield was accompanied by a loss of NF68 staining. In the CA3 subfield, however, focal increases in NF68 and SYN38 immunoreactivity were found. Cortical and hippocampal blood flow showed prolonged decreases of 25% to 55% compared with control animals. At 8 weeks, control levels were reached. CONCLUSIONS The observed temporary CBF decrease appears to correlate with an early global neuronal ischemic response. In addition, it may also account for the delayed selective response of ischemia-vulnerable structures, eg, hippocampus, in chronic adult kaolin-induced hydrocephalus.
Collapse
|