1
|
Chen L, Liu L, Ge Z, Yang X, Yang P, Li L. Perceptual spatial position induces the attentional enhancement of prepulse inhibition and its neural mechanism. Hear Res 2022; 420:108511. [DOI: 10.1016/j.heares.2022.108511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 11/04/2022]
|
2
|
Li K, Bentley P, Nair A, Halse O, Barker G, Russell C, Soto D, Malhotra PA. Reward sensitivity predicts dopaminergic response in spatial neglect. Cortex 2020; 122:213-224. [PMID: 30318090 DOI: 10.1016/j.cortex.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/02/2018] [Accepted: 09/04/2018] [Indexed: 11/17/2022]
Abstract
It has recently been revealed that spatial neglect can be modulated by motivational factors including anticipated monetary reward. A number of dopaminergic agents have been evaluated as treatments for neglect, but the results have been mixed, with no clear anatomical or cognitive predictors of dopaminergic responsiveness. Given that the effects of incentive motivation are mediated by dopaminergic pathways that are variably damaged in stroke, we tested the hypothesis that the modulatory influences of reward and dopaminergic drugs on neglect are themselves related. We employed a single-dose, double-blind, crossover design to compare the effects of Co-careldopa and placebo on a modified visual cancellation task in patients with neglect secondary to right hemisphere stroke. Whilst confirming that reward improved visual search in this group, we showed that dopaminergic stimulation only enhances visual search in the absence of reward. When patients were divided into REWARD-RESPONDERs and REWARD-NON-RESPONDERs, we found an interaction, such that only REWARD-NON-RESPONDERs showed a positive response to reward after receiving Co-careldopa, whereas REWARD-RESPONDERs were not influenced by drug. At a neuroanatomical level, responsiveness to incentive motivation was most associated with intact dorsal striatum. These findings suggest that dopaminergic modulation of neglect follows an 'inverted U' function, is dependent on integrity of the reward system, and can be measured as a behavioural response to anticipated reward.
Collapse
Affiliation(s)
- Korina Li
- Division of Brain Sciences, Imperial College London, Charing Cross Hospital, London, UK
| | - Paul Bentley
- Division of Brain Sciences, Imperial College London, Charing Cross Hospital, London, UK; Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, UK
| | - Ajoy Nair
- Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, UK
| | - Omid Halse
- Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, UK
| | - Gareth Barker
- Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, UK
| | - Charlotte Russell
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London, UK
| | - David Soto
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Paresh A Malhotra
- Division of Brain Sciences, Imperial College London, Charing Cross Hospital, London, UK; Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, UK.
| |
Collapse
|
3
|
Adding methylphenidate to prism-adaptation improves outcome in neglect patients. A randomized clinical trial. Cortex 2018; 106:288-298. [DOI: 10.1016/j.cortex.2018.03.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 11/22/2017] [Accepted: 03/28/2018] [Indexed: 11/20/2022]
|
4
|
Hylin MJ, Brenneman MM, Corwin JV. Noradrenergic antagonists mitigate amphetamine-induced recovery. Behav Brain Res 2017; 334:61-71. [PMID: 28756213 DOI: 10.1016/j.bbr.2017.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022]
Abstract
Brain injury, including that due to stroke, leaves individuals with cognitive deficits that can disrupt daily aspect of living. As of now there are few treatments that shown limited amounts of success in improving functional outcome. The use of stimulants such as amphetamine have shown some success in improving outcome following brain injury. While the pharmacological mechanisms for amphetamine are known; the specific processes responsible for improving behavioral outcome following injury remain unknown. Understanding these mechanisms can help to refine the use of amphetamine as a potential treatment or lead to the use of other methods that share the same pharmacological properties. One proposed mechanism is amphetamine's impact upon noradrenaline (NA). In the current, study noradrenergic antagonists were administered prior to amphetamine to pharmacologically block α- and β-adrenergic receptors. The results demonstrated that the blockade of these receptors disrupted amphetamines ability to induce recovery from hemispatial neglect using an established aspiration lesion model. This suggests that amphetamine's ability to ameliorate neglect deficits may be due in part to noradrenaline. These results further support the role of noradrenaline in functional recovery. Finally, the development of polytherapies and combined therapeutics, while promising, may need to consider the possibility that drug interactions can negate the effectiveness of treatment.
Collapse
Affiliation(s)
- M J Hylin
- Neurotrauma and Rehabilitation Laboratory, Department of Psychology, Southern Illinois University, Carbondale, IL, United States.
| | - M M Brenneman
- Department of Psychology, Coastal Carolina University, P.O. Box 261954, Conway, SC, United States
| | - J V Corwin
- Department of Psychology, Northern Illinois University, DeKalb, IL, United States
| |
Collapse
|
5
|
Unilateral lesions of the dorsocentral striatum (DCS) disrupt spatial and temporal characteristics of food protection behavior. Brain Struct Funct 2017; 222:2697-2710. [PMID: 28154968 DOI: 10.1007/s00429-017-1366-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 01/06/2017] [Indexed: 10/20/2022]
Abstract
Spatial and temporal information processing provide a foundation for higher cognitive functions. The survival of animals depends on integrating spatial and temporal information to organize behavior. In general, previous research has focused on only one source of information processing; however, there is evidence to support a convergence in the processing of egocentric-spatial and temporal information within a cortico-striatal system of structures. The current study evaluated the contributions of the dorsocentral striatum (DCS) to egocentric-spatial and temporal (within the seconds-to-minutes range) processing of information using a food protection task. Long-Evans rats received unilateral NMDA lesions of the DCS followed by testing in a food protection task. Performance in this task is mediated by the motivation of the animal to consume a food item, their perception of the time required to consume a food item, their sensory ability to process egocentric cues, and their motor ability to evade an incoming conspecific. Unilateral DCS lesions were shown to impact both spatial and temporal characteristics of food protection. These results suggest that the DCS may be a critical structure for the integration of egocentric-spatial and temporal information within the interval timing range.
Collapse
|
6
|
The time-dependent and persistent effects of amphetamine treatment upon recovery from hemispatial neglect in rats. Behav Brain Res 2015. [DOI: 10.1016/j.bbr.2015.07.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Van Vleet TM, DeGutis JM. The nonspatial side of spatial neglect and related approaches to treatment. PROGRESS IN BRAIN RESEARCH 2013; 207:327-49. [PMID: 24309261 DOI: 10.1016/b978-0-444-63327-9.00012-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In addition to deficits in spatial attention, individuals with persistent spatial neglect almost universally exhibit nonspatially lateralized deficits in sustained and selective attention, and working memory. However, nonspatially lateralized deficits in neglect have received considerably less attention in the literature than deficits in spatial attention. This is in spite of the fact that nonspatially lateralized deficits better predict the chronicity and functional disability associated with neglect than spatially lateralized deficits. Furthermore, only a few treatment studies have specifically targeted nonspatially lateralized deficits as a means to improve spatial neglect. In this chapter, we will briefly review several models of spatial attention bias in neglect before focusing on nonspatial deficits and the mechanisms of nonspatial-spatial interactions and implications for treatment. Treatment approaches that more completely address nonspatial deficits and better account for their interactions with spatial attention will likely produce better outcomes.
Collapse
Affiliation(s)
- Thomas M Van Vleet
- Department of Veteran Affairs, Martinez, CA, USA; Brain Plasticity Institute at Posit Science Corporation, San Francisco, CA, USA.
| | | |
Collapse
|
8
|
Kamishina H, Conte WL, Patel SS, Tai RJ, Corwin JV, Reep RL. Cortical connections of the rat lateral posterior thalamic nucleus. Brain Res 2009; 1264:39-56. [PMID: 19368845 DOI: 10.1016/j.brainres.2009.01.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 01/13/2009] [Accepted: 01/13/2009] [Indexed: 11/29/2022]
Abstract
Spatial processing related to directed attention is thought to be mediated by a specific cortical-basal ganglia-thalamic-cortical network in the rat. Key components of this network are associative cortical areas medial agranular cortex (AGm) and posterior parietal cortex (PPC), dorsocentral striatum (DCS), and lateral posterior (LP) thalamic nucleus, all of which are interconnected. Previously, we found that thalamostriatal projections reaching DCS arise from separate populations of neurons of the mediorostral part of LP (LPMR). The far medial LPMR (fmLPMR) terminates in central DCS, a projection area of AGm, whereas central LPMR terminates in dorsal DCS, a projection area of PPC. This represents segregated regional convergence in DCS from different sources of thalamic and cortical inputs. In the present study, thalamocortical and corticothalamic projections arising from and terminating in LPMR and neighboring thalamic nuclei were studied by anterograde and retrograde tracing techniques in order to further understand the anatomical basis of this neural circuitry. A significant finding was that within LPMR, separate neuronal populations provide thalamic inputs to AGm or PPC and that these cortical areas project to separate regions in LPMR, from which they receive thalamic inputs. Other cortical areas adjacent to AGm or PPC also demonstrated reciprocal connections with LP or surrounding nuclei in a topographic manner. Our findings suggest that the cortical-basal ganglia-thalamic network mediating directed attention in the rat is formed by multiple loops, each having reciprocal connections that are organized in a precise and segregated topographical manner.
Collapse
Affiliation(s)
- Hiroaki Kamishina
- Department of Veterinary Clinical Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Conte WL, Kamishina H, Corwin JV, Reep RL. Topography in the projections of lateral posterior thalamus with cingulate and medial agranular cortex in relation to circuitry for directed attention and neglect. Brain Res 2008; 1240:87-95. [PMID: 18817759 DOI: 10.1016/j.brainres.2008.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 11/30/2022]
Abstract
In the rat, the lateral posterior thalamic nucleus (LP) has reciprocal connections with areas of the cortex and the striatum involved in directed attention and its dysfunctional counterpart, contralateral neglect. It has also been shown that the medial portion of the mediorostral part of LP (mLPMR) is of special interest because it has connections with the dorsocentral striatum, a key node in this circuitry. In the present study we used neuroanatomical tracers to map the specific connections and topography of LP with the anterior cingulate cortex (ACC) and medial agranular cortex (AGm). We primarily used Alexa Fluor conjugates of the retrograde tracer cholera toxin subunit B, and injected two different colored conjugates into ACC and AGm in the same animal in order to directly compare the differential topography of the thalamocortical connections of mLPMR. The bidirectional tracer, dextran amine, was also used to examine anterograde corticothalamic projections of AGm and ACC. We found that mLPMR consists of two distinct groups of neurons, with the more dorsal group projecting to ACC and the more ventral group projecting to AGm. This is mirrored by a similar corticothalamic topography. These findings suggest that the ventral mLPMR is specifically associated with AGm and dorsocentral striatum, while dorsal mLPMR is associated with ACC. They also suggest that ACC may play a role in the circuitry for directed attention and contralateral neglect, as it is known to do in humans.
Collapse
Affiliation(s)
- William L Conte
- Department of Physiological Sciences and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | |
Collapse
|
10
|
Reep RL, Wu JH, Cheatwood JL, Corwin JV, Kartje GL, Mir A. Quantification of synaptic density in corticostriatal projections from rat medial agranular cortex. Brain Res 2008; 1233:27-34. [PMID: 18691563 DOI: 10.1016/j.brainres.2008.07.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 07/08/2008] [Accepted: 07/08/2008] [Indexed: 11/19/2022]
Abstract
Medial agranular cortex (AGm) has a prominent bilateral projection to the dorsocentral striatum (DCS). We wished to develop a normal baseline by which to assess neuronal plasticity in this corticostriatal system in rats with neglect resulting from a unilateral lesion in AGm, followed by treatment with agents that promote sprouting and functional recovery in other systems. Injections of biotinylated dextran amine were made into AGm in normal rats, and unbiased sampling was used to quantify the density of axons and axonal varicosities present in DCS (the latter represent presynaptic profiles). Labeling density in contralateral DCS is approximately half of that seen in ipsilateral DCS (this ratio is 0.50 for axons, 0.55 for varicosities). The ratio of varicosities is stable over a greater than seven-fold range of absolute densities. There is no consistent relationship between the absolute density of axons and axon varicosities; however, the ratio measures are strongly correlated. We conclude that changes in the contralateral/ipsilateral ratio of axon density after experimental treatments do reflect changes in synaptic density, but axon varicosities are likely to be the most sensitive anatomical parameter by which to assess plasticity at the light microscopic level.
Collapse
Affiliation(s)
- Roger L Reep
- Department of Physiological Sciences and McKnight Brain Institute, University of Florida, Box 100144, Gainesville, FL 32610, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Striatal projections from the rat lateral posterior thalamic nucleus. Brain Res 2008; 1204:24-39. [PMID: 18342841 DOI: 10.1016/j.brainres.2008.01.094] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 01/18/2008] [Accepted: 01/19/2008] [Indexed: 11/21/2022]
Abstract
The dorsocentral striatum (DCS) has been implicated as an associative striatal area receiving inputs from several cortical areas including medial agranular cortex (AGm), posterior parietal cortex (PPC), and visual association cortex to form a cortical-subcortical circuit involved in directed attention and neglect. The lateral posterior thalamic nucleus (LP) may also play a role in directed attention and neglect because LP has robust reciprocal connections with these cortical areas and projects to DCS. We used anterograde axonal tracing to map thalamostriatal projections from LP and surrounding thalamic nuclei, with a focus on projections to DCS. The thalamic nuclei investigated included LP, laterodorsal thalamic nucleus (LD), central lateral nucleus (CL), and posterior thalamic nucleus (Po). We found that the mediorostral part of LP (LPMR) projects strongly to DCS as well as to the dorsal peripheral region of the striatum. Further, there is topography within LPMR and DCS such that the far medial LPMR projects to the central region of DCS (projection area of AGm) and the central LPMR projects to the dorsal region of DCS (projection area of PPC and Oc2M). In contrast, the laterorostral part of LP (LPLR) and other thalamic nuclei surrounding LP project to dorsolateral to dorsomedial peripheral regions of the striatum but do not project to DCS. These findings indicate that DCS is a region of convergence for thalamostriatal and corticostriatal projections from regions that are themselves interconnected, serving as the key element of the corticostriatal-thalamic network mediating spatial processing and directed attention.
Collapse
|
12
|
Brenneman MM, Wagner SJ, Cheatwood JL, Heldt SA, Corwin JV, Reep RL, Kartje GL, Mir AK, Schwab ME. Nogo-A inhibition induces recovery from neglect in rats. Behav Brain Res 2007; 187:262-72. [PMID: 17963852 DOI: 10.1016/j.bbr.2007.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 08/15/2007] [Accepted: 09/17/2007] [Indexed: 11/24/2022]
Abstract
Neglect is a complex human cognitive spatial disorder typically induced by damage to prefrontal or posterior parietal association cortices. Behavioral treatments for neglect rarely generalize outside of the therapeutic context or across tasks within the same therapeutic context. Recovery, when it occurs, is spontaneous over the course of weeks to months, but often it is incomplete. A number of studies have indicated that anti-Nogo-A antibodies can be used to enhance plasticity and behavioral recovery following damage to motor cortex, and spinal cord. In the present studies the anti-Nogo-A antibodies IN-1, 7B12, or 11C7 were applied intraventricularly to adult rats demonstrating severe neglect produced by unilateral medial agranular cortex lesions in rats. The three separate anti-Nogo-A antibody groups were treated immediately following the medial agranular cortex lesions. Each of the three antibodies induced dramatic significant behavioral recovery from neglect relative to controls. Severing the corpus callosum to destroy inputs from the contralesional hemisphere resulted in reinstatement of severe neglect, pointing to a possible role of interhemispheric mechanisms in behavioral recovery from neglect.
Collapse
|
13
|
Hoover WB, Vertes RP. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 2007; 212:149-79. [PMID: 17717690 DOI: 10.1007/s00429-007-0150-4] [Citation(s) in RCA: 988] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 06/04/2007] [Indexed: 11/28/2022]
Abstract
The medial prefrontal cortex (mPFC) has been associated with diverse functions including attentional processes, visceromotor activity, decision making, goal directed behavior, and working memory. Using retrograde tracing techniques, we examined, compared, and contrasted afferent projections to the four divisions of the mPFC in the rat: the medial (frontal) agranular (AGm), anterior cingulate (AC), prelimbic (PL), and infralimbic (IL) cortices. Each division of the mPFC receives a unique set of afferent projections. There is a shift dorsoventrally along the mPFC from predominantly sensorimotor input to the dorsal mPFC (AGm and dorsal AC) to primarily 'limbic' input to the ventral mPFC (PL and IL). The AGm and dorsal AC receive afferent projections from widespread areas of the cortex (and associated thalamic nuclei) representing all sensory modalities. This information is presumably integrated at, and utilized by, the dorsal mPFC in goal directed actions. In contrast with the dorsal mPFC, the ventral mPFC receives significantly less cortical input overall and afferents from limbic as opposed to sensorimotor regions of cortex. The main sources of afferent projections to PL/IL are from the orbitomedial prefrontal, agranular insular, perirhinal and entorhinal cortices, the hippocampus, the claustrum, the medial basal forebrain, the basal nuclei of amygdala, the midline thalamus and monoaminergic nuclei of the brainstem. With a few exceptions, there are few projections from the hypothalamus to the dorsal or ventral mPFC. Accordingly, subcortical limbic information mainly reaches the mPFC via the midline thalamus and basal nuclei of amygdala. As discussed herein, based on patterns of afferent (as well as efferent) projections, PL is positioned to serve a direct role in cognitive functions homologous to dorsolateral PFC of primates, whereas IL appears to represent a visceromotor center homologous to the orbitomedial PFC of primates.
Collapse
Affiliation(s)
- Walter B Hoover
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | |
Collapse
|
14
|
Hoff EI, Blokland A, Rutten K, Steinbusch HWM, van Oostenbrugge RJ. Dissociable effects in reaction time performance after unilateral cerebral infarction: A comparison between the left and right frontal cortices in rats. Brain Res 2006; 1069:182-9. [PMID: 16412996 DOI: 10.1016/j.brainres.2005.11.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 11/14/2005] [Accepted: 11/16/2005] [Indexed: 10/25/2022]
Abstract
Reaction time performance reflects the speed of information processing, both in humans and lower vertebrates like the rat. The present study compared reaction time performance in rats following unilateral infarction to the frontal cortex. The objective was to model cognitive impairment as it is seen in humans after stroke. Rats were trained in a reaction time paradigm, after which unilateral cortical infarction was induced photochemically. Reaction time performance was differentially affected after unilateral infarction to either the left or right frontal cortex, whereas sham operation did not result in a significant alteration in reactivity. An overall increase in reaction time of about 10% was present at 4 weeks after frontal infarction. In addition, a lateralized reaction time deficit occurred very early after right frontal infarction as an increase of 10-15% in trials directed towards the contralesional side. Additional analyses showed that these reaction time deficits can be explained differently: the former as a gradual and general decrease in the speed of information processing, whereas the latter shows specific impairment to initiate a contralateral motor response. The former matches well with the mental slowing observed in stroke patients, whereas the latter resembles a neglect phenomenon. We conclude that measuring reaction time performance after frontal cortical infarction in rats could offer a useful tool to model particular human cognitive impairments following cerebral infarction.
Collapse
Affiliation(s)
- Erik I Hoff
- Department of Psychiatry and Neuropsychology, Division Cellular Neuroscience, Maastricht Brain and Behaviour Institute, Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
15
|
Cheatwood JL, Corwin JV, Reep RL. Overlap and interdigitation of cortical and thalamic afferents to dorsocentral striatum in the rat. Brain Res 2005; 1036:90-100. [PMID: 15725405 DOI: 10.1016/j.brainres.2004.12.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 11/30/2004] [Accepted: 12/04/2004] [Indexed: 11/22/2022]
Abstract
Dorsocentral striatum (DCS) is an associative region necessary for directed attention in rats. DCS is defined as the main region in which axons from ipsilateral medial agranular cortex (AGm) terminate within the striatum. In this double-labeling study, we placed a green axonal tracer in area AGm and a red one in an additional brain region. We examined the spatial relationship between terminals from area AGm and other portions of the cortical-basal ganglia-thalamic-cortical network involved in directed attention and its dysfunction, hemispatial neglect, in the rat. These include lateral agranular cortex (AGl), posterior parietal cortex (PPC), ventrolateral orbital cortex (VLO), and secondary visual cortex (Oc2M). One important finding is the presence of a dense focus of labeled axons within DCS after injections in cortical area PPC or Oc2M. In these foci, axons from PPC or Oc2M extensively overlap and interdigitate with axons from cortical area AGm. Additionally, retrograde labeling of striatal neurons, along with double anterograde labeling, suggests that axons from cortical area AGm and AGl cross and possibly make contact with the dendritic processes of single medium spiny neurons. Axons from thalamic nucleus LP were observed to form a dense band dorsal to DCS which is similar to that seen following PPC injections, and a significant number of LP axons were also observed within DCS. Projections from thalamic nucleus VL are present in the dense dorsolateral AGm band that abuts the external capsule, are densest in the dorsolateral striatum, and were not observed in DCS. These results extend previous findings that DCS receives input from diverse cortical areas and thalamic nuclei which are themselves interconnected.
Collapse
Affiliation(s)
- J L Cheatwood
- Department of Physiological Sciences and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | | | | |
Collapse
|
16
|
Reep RL, Cheatwood JL, Corwin JV. Role of the Dorsocentral Striatum in Contralateral Neglect and Recovery from Neglect in Rats. BIOCOMPUTING 2004. [DOI: 10.1007/978-1-4613-0225-4_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|