1
|
Astrocytic IGF-IRs Induce Adenosine-Mediated Inhibitory Downregulation and Improve Sensory Discrimination. J Neurosci 2021; 41:4768-4781. [PMID: 33911021 DOI: 10.1523/jneurosci.0005-21.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/20/2021] [Accepted: 03/28/2021] [Indexed: 12/13/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I) signaling plays a key role in learning and memory processes. While the effects of IGF-I on neurons have been studied extensively, the involvement of astrocytes in IGF-I signaling and the consequences on synaptic plasticity and animal behavior remain unknown. We have found that IGF-I induces long-term potentiation (LTPIGFI) of the postsynaptic potentials that is caused by a long-term depression of inhibitory synaptic transmission in mice. We have demonstrated that this long-lasting decrease in the inhibitory synaptic transmission is evoked by astrocytic activation through its IGF-I receptors (IGF-IRs). We show that LTPIGFI not only increases the output of pyramidal neurons, but also favors the NMDAR-dependent LTP, resulting in the crucial information processing at the barrel cortex since specific deletion of IGF-IR in cortical astrocytes impairs the whisker discrimination task. Our work reveals a novel mechanism and functional consequences of IGF-I signaling on cortical inhibitory synaptic plasticity and animal behavior, revealing that astrocytes are key elements in these processes.SIGNIFICANCE STATEMENT Insulin-like growth factor-I (IGF-I) signaling plays key regulatory roles in multiple processes of brain physiology, such as learning and memory. Yet, the underlying mechanisms remain largely undefined. Here we demonstrate that astrocytes respond to IGF-I signaling, elevating their intracellular Ca2+ and stimulating the release of ATP/adenosine, which triggers the LTD of cortical inhibitory synapses, thus regulating the behavioral task performance related to cortical sensory information processing. Therefore, the present work represents a major conceptual advance in our knowledge of the cellular basis of IGF-I signaling in brain function, by including for the first time astrocytes as key mediators of IGF-I actions on synaptic plasticity, cortical sensory information discrimination and animal behavior.
Collapse
|
2
|
Sabzalizadeh M, Afarinesh MR, Esmaeili-Mahani S, Sheibani V. Focal unilateral mechanical lesion in barrel cortex impairs rat’s abilities to discriminate textures. Somatosens Mot Res 2020; 38:1-10. [DOI: 10.1080/08990220.2020.1828055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mansoureh Sabzalizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Afarinesh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Campelo T, Augusto E, Chenouard N, de Miranda A, Kouskoff V, Camus C, Choquet D, Gambino F. AMPAR-Dependent Synaptic Plasticity Initiates Cortical Remapping and Adaptive Behaviors during Sensory Experience. Cell Rep 2020; 32:108097. [PMID: 32877679 PMCID: PMC7487777 DOI: 10.1016/j.celrep.2020.108097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/30/2020] [Accepted: 08/11/2020] [Indexed: 11/28/2022] Open
Abstract
Cortical plasticity improves behaviors and helps recover lost functions after injury. However, the underlying synaptic mechanisms remain unclear. In mice, we show that trimming all but one whisker enhances sensory responses from the spared whisker in the barrel cortex and occludes whisker-mediated synaptic potentiation (w-Pot) in vivo. In addition, whisker-dependent behaviors that are initially impaired by single-whisker experience (SWE) rapidly recover when associated cortical regions remap. Cross-linking the surface GluA2 subunit of AMPA receptors (AMPARs) suppresses the expression of w-Pot, presumably by blocking AMPAR surface diffusion, in mice with all whiskers intact, indicating that synaptic potentiation in vivo requires AMPAR trafficking. We use this approach to demonstrate that w-Pot is required for SWE-mediated strengthening of synaptic inputs and initiates the recovery of previously learned skills during the early phases of SWE. Taken together, our data reveal that w-Pot mediates cortical remapping and behavioral improvement upon partial sensory deafferentation.
Collapse
Affiliation(s)
- Tiago Campelo
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Elisabete Augusto
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Nicolas Chenouard
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Aron de Miranda
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Vladimir Kouskoff
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Come Camus
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Daniel Choquet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France; University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, 33000 Bordeaux, France.
| | - Frédéric Gambino
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France.
| |
Collapse
|
4
|
Chaudhary R, Rema V. Deficits in Behavioral Functions of Intact Barrel Cortex Following Lesions of Homotopic Contralateral Cortex. Front Syst Neurosci 2018; 12:57. [PMID: 30524251 PMCID: PMC6262316 DOI: 10.3389/fnsys.2018.00057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/17/2018] [Indexed: 12/02/2022] Open
Abstract
Focal unilateral injuries to the somatosensory whisker barrel cortex have been shown cause long-lasting deficits in the activity and experience-dependent plasticity of neurons in the intact contralateral barrel cortex. However, the long-term effect of these deficits on behavioral functions of the intact contralesional cortex is not clear. In this study, we used the “Gap-crossing task” a barrel cortex-dependent, whisker-sensitive, tactile behavior to test the hypothesis that unilateral lesions of the somatosensory cortex would affect behavioral functions of the intact somatosensory cortex and degrade the execution of a bilaterally learnt behavior. Adult rats were trained to perform the Gap-crossing task using whiskers on both sides of the face. The barrel cortex was then lesioned unilaterally by subpial aspiration. As observed in other studies, when rats used whiskers that directly projected to the lesioned hemisphere the performance of Gap-crossing was drastically compromised, perhaps due to direct effect of lesion. Significant and persistent deficits were present when the lesioned rats performed Gap-crossing task using whiskers that projected to the intact cortex. The deficits were specific to performance of the task at the highest levels of sensitivity. Comparable deficits were seen when normal, bilaterally trained, rats performed the Gap-crossing task with only the whiskers on one side of the face or when they used only two rows of whiskers (D row and E row) intact on both side of the face. These findings indicate that the prolonged impairment in execution of the learnt task by rats with unilateral lesions of somatosensory cortex could be because sensory inputs from one set of whiskers to the intact cortex is insufficient to provide adequate sensory information at higher thresholds of detection. Our data suggest that optimal performance of somatosensory behavior requires dynamic activity-driven interhemispheric interactions from the entire somatosensory inputs between homotopic areas of the cerebral cortex. These results imply that focal unilateral cortical injuries, including those in humans, are likely to have widespread bilateral effects on information processing including in intact areas of the cortex.
Collapse
Affiliation(s)
| | - V Rema
- National Brain Research Centre, Manesar, India
| |
Collapse
|
5
|
Rink S, Bendella H, Alsolivany K, Meyer C, Woehler A, Jansen R, Isik Z, Stein G, Wennmachers S, Nakamura M, Angelov DN. Constitutively reduced sensory capacity promotes better recovery after spinal cord-injury (SCI) in blind rats of the dystrophic RCS strain. Restor Neurol Neurosci 2018; 36:397-416. [DOI: 10.3233/rnn-170789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Svenja Rink
- Department of Prosthetic Dentistry, School of Dental and Oral Medicine, University of Cologne, Germany
| | - Habib Bendella
- Department of Neurosurgery, University of Witten/Herdecke, Cologne Merheim Medical Center (CMMC), Cologne, Germany
| | | | - Carolin Meyer
- Department of Orthopedics and Traumatology, University of Cologne, Germany
| | | | - Ramona Jansen
- Department of Anatomy I, University of Cologne, Germany
| | - Zeynep Isik
- Department of Anatomy I, University of Cologne, Germany
| | - Gregor Stein
- Department of Orthopaedics and Trauma Surgery, Helios Klinikum Siegburg, Germany
| | | | - Makoto Nakamura
- Department of Neurosurgery, University of Witten/Herdecke, Cologne Merheim Medical Center (CMMC), Cologne, Germany
| | | |
Collapse
|
6
|
Tsytsarev V, Arakawa H, Zhao S, Chédotal A, Erzurumlu RS. Behavioral Consequences of a Bifacial Map in the Mouse Somatosensory Cortex. J Neurosci 2017; 37:7209-7218. [PMID: 28663199 PMCID: PMC5546400 DOI: 10.1523/jneurosci.0598-17.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/14/2017] [Accepted: 06/19/2017] [Indexed: 02/04/2023] Open
Abstract
The whisker system is an important sensory organ with extensive neural representations in the brain of the mouse. Patterned neural modules (barrelettes) in the ipsilateral principal sensory nucleus of the trigeminal nerve (PrV) correspond to the whiskers. Axons of the PrV barrelette neurons cross the midline and confer the whisker-related patterning to the contralateral ventroposteromedial nucleus of the thalamus, and subsequently to the cortex. In this way, specific neural modules called barreloids and barrels in the contralateral thalamus and cortex represent each whisker. Partial midline crossing of the PrV axons, in a conditional Robo3 mutant (Robo3R3-5cKO) mouse line, leads to the formation of bilateral whisker maps in the ventroposteromedial, as well as the barrel cortex. We used voltage-sensitive dye optical imaging and somatosensory and motor behavioral tests to characterize the consequences of bifacial maps in the thalamocortical system. Voltage-sensitive dye optical imaging verified functional, bilateral whisker representation in the barrel cortex and activation of distinct cortical loci following ipsilateral and contralateral stimulation of the specific whiskers. The mutant animals were comparable with the control animals in sensorimotor tests. However, they showed noticeable deficits in all of the whisker-dependent or -related tests, including Y-maze exploration, horizontal surface approach, bridge crossing, gap crossing, texture discrimination, floating in water, and whisking laterality. Our results indicate that bifacial maps along the thalamocortical system do not offer a functional advantage. Instead, they lead to impairments, possibly due to the smaller size of the whisker-related modules and interference between the ipsilateral and contralateral whisker representations in the same thalamus and cortex.SIGNIFICANCE STATEMENT The whisker sensory system plays a quintessentially important role in exploratory behavior of mice and other nocturnal rodents. Here, we studied a novel mutant mouse line, in which the projections from the brainstem to the thalamus are disrupted. This led to formation of bilateral whisker maps in both the thalamus and the cortex. The two whisker maps crowd in a space normally devoted to the contralateral map alone and in a nonoverlapping fashion. Stimulation of the whiskers on either side activates the corresponding region of the map. Mice with bilateral whisker maps perform well in general sensorimotor tasks but show poor performance in specific tests that require whisker-dependent tactile discrimination. These observations indicate that contralateral, instead of bilateral, representation of the sensory space plays a critical role in acuity and fine discrimination during somesthesis.
Collapse
Affiliation(s)
- Vassiliy Tsytsarev
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
| | - Hiroyuki Arakawa
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
| | - Shuxin Zhao
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
| | - Alain Chédotal
- Centre de Recherche Institut de la Vision, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S968, 75012 Paris, France
| | - Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
| |
Collapse
|
7
|
Sun QQ, Zhou C, Yang W, Petrus D. Continuous spike-waves during slow-wave sleep in a mouse model of focal cortical dysplasia. Epilepsia 2016; 57:1581-1593. [PMID: 27527919 DOI: 10.1111/epi.13501] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To examine if mice with focal cortical dysplasia (FCD) develop spontaneous epileptic seizures and, if so, determine the key electroencephalography (EEG) features. METHODS Unilateral single freeze lesions to the S1 region (SFLS1R) were made in postnatal day 0-1 pups to induce a neocortical microgyrus in the right cortical hemisphere. Continuous 24-h recordings with intracranial EEG electrodes and behavioral tests were performed in adult SFLS1R and sham-control mice to assess neurologic status. RESULTS A high percentage of adult SFLS1R animals (89%, 40/45) exhibited at least one or more spontaneous nonconvulsive seizure events over the course of 24 h. Of these animals, 60% (27/45) presented with a chronic seizure state that was persistent throughout the recording session, consisting of bursts of rhythmic high-amplitude spike-wave activities and primarily occurring during periods of slow-wave sleep. In comparison, none of the control, age-matched, mice (0/12) developed seizures. The epileptic discharge pattern closely resembled a pattern of continuous spike-waves during slow-wave sleep (CSWS) of the human syndrome described as an electrical status epilepticus during slow-wave sleep (ESES). Key findings in the SFLS1R model indicated that the observed CSWS (1) were more prevalent in female (18/23) versus male (9/22, p < 0.05), (2) were strongest in the right S1 region although generalized to other brain regions, (3) were associated with significant cognitive and behavioral deficits, (4) were temporarily alleviated by ethosuximide treatment or optogenetic activation of cortical γ-aminobutyric acid (GABA)ergic neurons, and (5) theta and alpha band rhythms may play a key role in the generalization of spike-wave activities. SIGNIFICANCE This is the first report of an in vivo animal FCD model that induces chronic spontaneous electrographic brain seizures. Further characterization of the abnormal oscillations in this mouse model may lead to a better understanding of the mechanisms of CSWS/ESES.
Collapse
Affiliation(s)
- Qian-Quan Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, U.S.A.
| | - Chen Zhou
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, U.S.A
| | - Weiguo Yang
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, U.S.A
| | - Daniel Petrus
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, U.S.A
| |
Collapse
|
8
|
Grosheva M, Nohroudi K, Schwarz A, Rink S, Bendella H, Sarikcioglu L, Klimaschewski L, Gordon T, Angelov DN. Comparison of trophic factors' expression between paralyzed and recovering muscles after facial nerve injury. A quantitative analysis in time course. Exp Neurol 2016; 279:137-148. [PMID: 26940083 DOI: 10.1016/j.expneurol.2016.02.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/07/2016] [Accepted: 02/26/2016] [Indexed: 01/08/2023]
Abstract
After peripheral nerve injury, recovery of motor performance negatively correlates with the poly-innervation of neuromuscular junctions (NMJ) due to excessive sprouting of the terminal Schwann cells. Denervated muscles produce short-range diffusible sprouting stimuli, of which some are neurotrophic factors. Based on recent data that vibrissal whisking is restored perfectly during facial nerve regeneration in blind rats from the Sprague Dawley (SD)/RCS strain, we compared the expression of brain derived neurotrophic factor (BDNF), fibroblast growth factor-2 (FGF2), insulin growth factors 1 and 2 (IGF1, IGF2) and nerve growth factor (NGF) between SD/RCS and SD-rats with normal vision but poor recovery of whisking function after facial nerve injury. To establish which trophic factors might be responsible for proper NMJ-reinnervation, the transected facial nerve was surgically repaired (facial-facial anastomosis, FFA) for subsequent analysis of mRNA and proteins expressed in the levator labii superioris muscle. A complicated time course of expression included (1) a late rise in BDNF protein that followed earlier elevated gene expression, (2) an early increase in FGF2 and IGF2 protein after 2 days with sustained gene expression, (3) reduced IGF1 protein at 28 days coincident with decline of raised mRNA levels to baseline, and (4) reduced NGF protein between 2 and 14 days with maintained gene expression found in blind rats but not the rats with normal vision. These findings suggest that recovery of motor function after peripheral nerve injury is due, at least in part, to a complex regulation of lesion-associated neurotrophic factors and cytokines in denervated muscles. The increase of FGF-2 protein and concomittant decrease of NGF (with no significant changes in BDNF or IGF levels) during the first week following FFA in SD/RCS blind rats possibly prevents the distal branching of regenerating axons resulting in reduced poly-innervation of motor endplates.
Collapse
Affiliation(s)
- Maria Grosheva
- Department of Oto-Rhino-Laryngology, University of Cologne, Germany
| | | | - Alisa Schwarz
- Department of Anatomy I, University of Cologne, Germany
| | - Svenja Rink
- Department of Anatomy I, University of Cologne, Germany
| | - Habib Bendella
- Department of Neurosurgery, Hospital Merheim, University of Witten-Herdecke, Cologne, Germany
| | | | - Lars Klimaschewski
- Division of Neuroanatomy Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Tessa Gordon
- Department of Surgery,The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | |
Collapse
|
9
|
Region-Specific Disruption of Adenylate Cyclase Type 1 Gene Differentially Affects Somatosensorimotor Behaviors in Mice(1,2,3). eNeuro 2014; 1:eN-NWR-0007-14. [PMID: 26464960 PMCID: PMC4596139 DOI: 10.1523/eneuro.0007-14.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/24/2014] [Accepted: 10/24/2014] [Indexed: 02/04/2023] Open
Abstract
The neuron-specific calcium-stimulated adenylate cyclase 1 (AC1) is important for refinement of topographic maps in the brain. AC1 is expressed at all levels of the somatosensory pathway and global or region-specific gene deletions lead to differential pattern phenotypes. Region-specific adenylyl cyclase 1 (AC1) loss of function differentially affects both patterning and sensorimotor behaviors in mice. AC1 is expressed at all levels of the somatosensory pathway and plays a major role in refinement and patterning of topographic sensory maps. Cortex-specific AC1 loss of function (CxAC1KO mice) does not affect barrel patterning and activation of specific barrels corresponding to stimulated whiskers and does not impair sensorimotor behaviors. While global (AC1KO) and thalamus-specific (ThAC1KO) AC1 loss of function leads to absence of barrel patterns, selective whisker stimulation activates topographically aligned cortical loci. Despite functional topography of the whisker-barrel cortex, sensorimotor and social behaviors are impaired, indicating the importance of patterning of topographical sensory maps in the neocortex. ![]()
Adenylate cyclase type I (AC1) is primarily, and, abundantly, expressed in the brain. Intracellular calcium/calmodulin increases regulate AC1 in an activity-dependent manner. Upon stimulation, AC1 produces cAMP and it is involved in the patterning and the refinement of neural circuits. In mice, spontaneous mutations or targeted deletion of the Adcy1 gene, which encodes AC1, resulted in neuronal pattern formation defects. Neural modules in the primary somatosensory (SI) cortex, the barrels, which represent the topographic distribution of the whiskers on the snout, failed to form (Welker et al., 1996; Abdel-Majid et al., 1998). Cortex- or thalamus-specific Adcy1 deletions led to different cortical pattern phenotypes, with thalamus-specific disruption phenotype being more severe (Iwasato et al., 2008; Suzuki et al., 2013). Despite the absence of barrels in the “barrelless”/Adcy1 null mice, thalamocortical terminal bouton density and activation of cortical zones following whisker stimulation were roughly topographic (Abdel-Majid et al., 1998; Gheorghita et al., 2006). To what extent does patterning of the cortical somatosensory body map play a role in sensorimotor behaviors? In this study, we tested mice with global, cortical, or thalamic loss of AC1 function in a battery of sensorimotor and social behavior tests and compared them to mice with all of the whiskers clipped. Contrary to intuitive expectations that any region-specific or global disruption of the AC1 function would lead to similar behavioral phenotypes, we found significant differences in the degree of impairment between these strains.
Collapse
|
10
|
Thalamic NMDA receptor function is necessary for patterning of the thalamocortical somatosensory map and for sensorimotor behaviors. J Neurosci 2014; 34:12001-14. [PMID: 25186746 DOI: 10.1523/jneurosci.1663-14.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NMDARs play a major role in patterning of topographic sensory maps in the brain. Genetic knock-out of the essential subunit of NMDARs in excitatory cortical neurons prevents whisker-specific neural pattern formation in the barrel cortex. To determine the role of NMDARs en route to the cortex, we generated sensory thalamus-specific NR1 (Grin1)-null mice (ThNR1KO). A multipronged approach, using histology, electrophysiology, optical imaging, and behavioral testing revealed that, in these mice, whisker patterns develop in the trigeminal brainstem but do not develop in the somatosensory thalamus. Subsequently, there is no barrel formation in the neocortex yet a partial afferent patterning develops. Whisker stimulation evokes weak cortical activity and presynaptic neurotransmitter release probability is also affected. We found several behavioral deficits in tasks, ranging from sensorimotor to social and cognitive. Collectively, these results show that thalamic NMDARs play a critical role in the patterning of the somatosensory thalamic and cortical maps and their impairment may lead to pronounced behavioral defects.
Collapse
|
11
|
Liguz-Lecznar M, Zakrzewska R, Daniszewska K, Kossut M. Functional assessment of sensory functions after photothrombotic stroke in the barrel field of mice. Behav Brain Res 2013; 261:202-9. [PMID: 24388975 DOI: 10.1016/j.bbr.2013.12.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/18/2013] [Accepted: 12/21/2013] [Indexed: 10/25/2022]
Abstract
Motor, sensory and cognitive deficits are common impairments observed in human stroke as well as in animal stroke models. Using a battery of behavioural tests we assessed sensorimotor deficits after photothrombotic stroke localized within or beyond cortical representation of mouse sensory vibrissae. We found restricted, modality specific behavioural consequences in the acute post-stroke period. Among incorporated tests, adhesive removal test, novelty exploration test and sensory labyrinth task were sensitive to the somatosensory cortical deficits. Injured animals explored new objects significantly longer, they also needed distinctly more time to contact and to remove the adhesive tape placed on whiskers contralateral to the infarct. Moreover, we observed that after stroke animals were unable to solve the sensory labyrinth depending only upon tactile sensation from whiskers with injured cortical representation. Spontaneous recovery could be observed within the first post-stroke week for adhesive tape removal and within 14 days for labyrinth performance. However, for the novel object exploration we did not observed the recovery for the period of 18 days after stroke. Moreover, new object exploration test performance differed between the somatosensory and visual cortical impairments. We suggest that those three tests might be valuable in assessing the usefulness of therapies designed to support brain repair after experimental stroke.
Collapse
Affiliation(s)
- Monika Liguz-Lecznar
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Renata Zakrzewska
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Katarzyna Daniszewska
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Malgorzata Kossut
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland; Warsaw School of Social Science and Humanities, 19 Chodakowska St., 03-815 Warsaw, Poland
| |
Collapse
|
12
|
Chaudhary R, Chugh M, Darokhan Z, Katreddi RR, Ramachandra R, Rema V. Physiological slowing and upregulation of inhibition in cortex are correlated with behavioral deficits in protein malnourished rats. PLoS One 2013; 8:e76556. [PMID: 24098531 PMCID: PMC3789706 DOI: 10.1371/journal.pone.0076556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 08/27/2013] [Indexed: 11/19/2022] Open
Abstract
Protein malnutrition during early development has been correlated with cognitive and learning disabilities in children, but the neuronal deficits caused by long-term protein deficiency are not well understood. We exposed rats from gestation up to adulthood to a protein-deficient (PD) diet, to emulate chronic protein malnutrition in humans. The offspring exhibited significantly impaired performance on the 'Gap-crossing' (GC) task after reaching maturity, a behavior that has been shown to depend on normal functioning of the somatosensory cortex. The physiological state of the somatosensory cortex was examined to determine neuronal correlates of the deficits in behavior. Extracellular multi-unit recording from layer 4 (L4) neurons that receive direct thalamocortical inputs and layers 2/3 (L2/3) neurons that are dominated by intracortical connections in the whisker-barrel cortex of PD rats exhibited significantly low spontaneous activity and depressed responses to whisker stimulation. L4 neurons were more severely affected than L2/3 neurons. The response onset was significantly delayed in L4 cells. The peak response latency of L4 and L2/3 neurons was delayed significantly. In L2/3 and L4 of the barrel cortex there was a substantial increase in GAD65 (112% over controls) and much smaller increase in NMDAR1 (12-20%), suggesting enhanced inhibition in the PD cortex. These results show that chronic protein deficiency negatively affects both thalamo-cortical and cortico-cortical transmission during somatosensory information processing. The findings support the interpretation that sustained protein deficiency interferes with features of cortical sensory processing that are likely to underlie the cognitive impairments reported in humans who have suffered from prolonged protein deficiency.
Collapse
Affiliation(s)
| | - Manisha Chugh
- National Brain Research Centre, Manesar, Haryana, India
| | | | | | | | - V. Rema
- National Brain Research Centre, Manesar, Haryana, India
| |
Collapse
|
13
|
Papaioannou S, Brigham L, Krieger P. Sensory deprivation during early development causes an increased exploratory behavior in a whisker-dependent decision task. Brain Behav 2013; 3:24-34. [PMID: 23408764 PMCID: PMC3568787 DOI: 10.1002/brb3.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 09/19/2012] [Accepted: 10/09/2012] [Indexed: 11/08/2022] Open
Abstract
Stimulation of sensory pathways is important for the normal development of cortical sensory areas, and impairments in the normal development can have long-lasting effect on animal's behavior. In particular, disturbances that occur early in development can cause permanent changes in brain structure and function. The behavioral effect of early sensory deprivation was studied in the mouse whisker system using a protocol to induce a 1-week sensory deprivation immediately after birth. Only two rows of whiskers were spared (C and D rows), and the rest were deprived, to create a situation where an unbalanced sensory input, rather than a complete loss of input, causes a reorganization of the sensory map. Sensory deprivation increased the barrel size ratio of the spared CD rows compared with the deprived AB rows; thus, the map reorganization is likely due, at least in part, to a rewiring of thalamocortical projections. The behavioral effect of such a map reorganization was investigated in the gap-crossing task, where the animals used a whisker that was spared during the sensory deprivation. Animals that had been sensory deprived performed equally well with the control animals in the gap-crossing task, but were more active in exploring the gap area and consequently made more approaches to the gap - approaches that on average were of shorter duration. A restricted sensory deprivation of only some whiskers, although it does not seem to affect the overall performance of the animals, does have an effect on their behavioral strategy on executing the gap-crossing task.
Collapse
Affiliation(s)
- Stylianos Papaioannou
- Department of Neuroscience, Karolinska Institutet, Stockholm Brain Institute Stockholm, Sweden
| | | | | |
Collapse
|
14
|
Miyazaki T, Takase K, Nakajima W, Tada H, Ohya D, Sano A, Goto T, Hirase H, Malinow R, Takahashi T. Disrupted cortical function underlies behavior dysfunction due to social isolation. J Clin Invest 2012; 122:2690-701. [PMID: 22706303 DOI: 10.1172/jci63060] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/09/2012] [Indexed: 01/21/2023] Open
Abstract
Stressful events during early childhood can have a profound lifelong influence on emotional and cognitive behaviors. However, the mechanisms by which stress affects neonatal brain circuit formation are poorly understood. Here, we show that neonatal social isolation disrupts molecular, cellular, and circuit developmental processes, leading to behavioral dysfunction. Neonatal isolation prevented long-term potentiation and experience-dependent synaptic trafficking of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors normally occurring during circuit formation in the rodent barrel cortex. This inhibition of AMPA receptor trafficking was mediated by an increase of the stress glucocorticoid hormone and was associated with reduced calcium/calmodulin-dependent protein kinase type II (CaMKII) signaling, resulting in attenuated whisker sensitivity at the cortex. These effects led to defects in whisker-dependent behavior in juvenile animals. These results indicate that neonatal social isolation alters neuronal plasticity mechanisms and perturbs the initial establishment of a normal cortical circuit, which potentially explains the long-lasting behavioral effects of neonatal stress.
Collapse
Affiliation(s)
- Tomoyuki Miyazaki
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Jablonka J, Burnat K, Witte O, Kossut M. Remapping of the somatosensory cortex after a photothrombotic stroke: dynamics of the compensatory reorganization. Neuroscience 2010; 165:90-100. [DOI: 10.1016/j.neuroscience.2009.09.074] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 09/25/2009] [Accepted: 09/26/2009] [Indexed: 10/20/2022]
|
17
|
Celikel T, Sakmann B. Sensory integration across space and in time for decision making in the somatosensory system of rodents. Proc Natl Acad Sci U S A 2007; 104:1395-400. [PMID: 17227858 PMCID: PMC1783091 DOI: 10.1073/pnas.0610267104] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Environment is represented in the brain by a neural code that is a result of the spatiotemporal pattern of incoming sensory information. Sensory neurons encode inputs across space and in time such that activity of a given cell inhibits the ability of near-simultaneously arriving sensory stimuli to excite the cell. At the behavioral level, consequences of such suppression are unknown. We investigated the contribution of spatially distributed, near-simultaneous sensory inputs to decision making in a whisker-dependent learning task. Mice learned the task with a single whisker or multiple whiskers alike. Both groups of mice had similar learning curves and final success rates. However, multiple-whisker animals had faster response times than single-whisker mice, requiring only about half the time to perform the task successfully. The results show that spatially distributed sensory inputs in a highly redundant sensory environment improve speed but not accuracy of the decisions made during simple sensory detection. Suppression of the near-simultaneous sensory inputs could, therefore, act to reduce the sensory redundancy.
Collapse
Affiliation(s)
- Tansu Celikel
- Department of Cell Physiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- *To whom correspondence may be addressed. E-mail:
or
| | - Bert Sakmann
- Department of Cell Physiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- *To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
18
|
Kvajo M, Albrecht H, Meins M, Hengst U, Troncoso E, Lefort S, Kiss JZ, Petersen CCH, Monard D. Regulation of brain proteolytic activity is necessary for the in vivo function of NMDA receptors. J Neurosci 2005; 24:9734-43. [PMID: 15509762 PMCID: PMC6730139 DOI: 10.1523/jneurosci.3306-04.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Serine proteases are considered to be involved in plasticity-related events in the nervous system, but their in vivo targets and the importance of their control by endogenous inhibitors are still not clarified. Here, we demonstrate the crucial role of a potent serine protease inhibitor, protease nexin-1 (PN-1), in the regulation of activity-dependent brain proteolytic activity and the functioning of sensory pathways. Neuronal activity regulates the expression of PN-1, which in turn controls brain proteolytic activity. In PN-1-/- mice, absence of PN-1 leads to increased brain proteolytic activity, which is correlated with an activity-dependent decrease in the NR1 subunit of the NMDA receptor. Correspondingly, reduced NMDA receptor signaling is detected in their barrel cortex. This is coupled to decreased sensory evoked potentials in the barrel cortex and impaired whisker-dependent sensory motor function. Thus, a tight control of serine protease activity is critical for the in vivo function of the NMDA receptors and the proper function of sensory pathways.
Collapse
Affiliation(s)
- Mirna Kvajo
- Friedrich Miescher Institute, CH-4058 Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hoffman JR, Greenberg JH, Furuya D, Craik RL, Fanelli P, Breslow S, Sheehan S, Ketschek A, Damkaoutis C, Reivich M, Hand P. Rats recovering from unilateral barrel-cortex ischemia are capable of completing a whisker-dependent task using only their affected whiskers. Brain Res 2003; 965:91-9. [PMID: 12591124 DOI: 10.1016/s0006-8993(02)04141-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rats use their vibrissae for a variety of exploratory tasks including location of objects and discrimination of texture. This study examines recovery in vibrissal function following a unilateral ischemic injury to the somatosensory cortex. Vibrissal function was examined in adult food-restricted rats performing on a two-texture discrimination device. Animals were trained and tested until the criteria of >80% correct choices was demonstrated on three consecutive days. Ischemic rats were constrained to use the affected whiskers by clipping the ipsilateral vibrissae. One group was tested after ischemia, a second group was trained before ischemia and then tested, and a third group was pre-trained and received whisker stimulation and tested post-ischemia. Nai;ve animals recovering from ischemia took longer to reach criteria than intact or unilateral trimmed control animals. Pre-trained animals with compression ischemia receiving whisker stimulation with sucrose water completed the task to criteria in the fewest number of trials. The results indicate that recovery of vibrissal function occurs following a unilateral ischemic injury. Histological analysis in animals without whisker stimulation indicates that the number of normal appearing cortical barrels following ischemia was inversely correlated to the number of trials needed to complete the behavioral task. This suggests that the natural recovery of the ability to discriminate textures is related to the degree of damage to the barrel cortex. The relationship between cortical barrels and behavioral recovery did not hold for the ischemic animals receiving whisker stimulation. This latter group demonstrated recovery despite marked anatomical lesions suggesting that the intervention influenced reorganization.
Collapse
Affiliation(s)
- John R Hoffman
- Department of Biology, Arcadia University, 450 S. Easton Road, Glenside, PA 19038, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kiss JZ, Troncoso E, Djebbara Z, Vutskits L, Muller D. The role of neural cell adhesion molecules in plasticity and repair. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 36:175-84. [PMID: 11690614 DOI: 10.1016/s0165-0173(01)00093-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Repair and functional recovery after brain injury critically depends on structural and functional plasticity of preserved neuronal networks. A striking feature of brain structures where tissue reorganization and plasticity occur is a strong expression of the polysialylated neural cell adhesion molecule (PSA-NCAM). An important role of this molecule in various aspects of neuronal and synaptic plasticity has been revealed by many studies. Recently, a new mechanism has been elucidated whereby PSA-NCAM may contribute to signalling mediated by the neurotrophic factor BDNF, thereby sensitizing neurons to this growth factor. This mechanism was shown to be important for activity-induced synaptic plasticity and for the survival and differentiation of cortical neurons. A cross-talk between these molecules may, thus, reveal a key factor for properties of structural plasticity and in particular could mediate the activity-dependent aspects of synaptic network remodeling. Animal models have been developed to assess the role of these molecules in functional recovery after lesions.
Collapse
Affiliation(s)
- J Z Kiss
- Department of Morphology, Centre Médical Universitaire, 1 Rue Michel Servet, CH-1211 4, Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
21
|
Panzeri S, Petersen RS, Schultz SR, Lebedev M, Diamond ME. The role of spike timing in the coding of stimulus location in rat somatosensory cortex. Neuron 2001; 29:769-77. [PMID: 11301035 DOI: 10.1016/s0896-6273(01)00251-3] [Citation(s) in RCA: 293] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although the timing of single spikes is known to code for time-varying features of a sensory stimulus, it remains unclear whether time is also exploited in the neuronal coding of the spatial structure of the environment, where nontemporal stimulus features are fundamental. This report demonstrates that, in the whisker representation of rat cortex, precise spike timing of single neurons increases the information transmitted about stimulus location by 44%, compared to that transmitted only by the total number of spikes. Crucial to this code is the timing of the first spike after whisker movement. Complex, single neuron spike patterns play a smaller, synergistic role. Timing permits very few spikes to transmit high quantities of information about a behaviorally significant, spatial stimulus.
Collapse
Affiliation(s)
- S Panzeri
- Neural Systems Group, Department of Psychology, Ridley Building, University of Newcastle upon Tyne, NE1 7RU, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Chapter 7 Thalamocortical and corticocortical interactions in the somatosensory system. PROGRESS IN BRAIN RESEARCH 2001. [DOI: 10.1016/s0079-6123(01)30008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
23
|
Hicks RR, Li C, Zhang L, Dhillon HS, Prasad MR, Seroogy KB. Alterations in BDNF and trkB mRNA levels in the cerebral cortex following experimental brain trauma in rats. J Neurotrauma 1999; 16:501-10. [PMID: 10391366 DOI: 10.1089/neu.1999.16.501] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Recent studies have suggested that brain-derived neurotrophic factor (BNDF) and its receptor, trkB, may provide neuroprotection following injury to the central nervous system. Conversely, other studies have implicated BDNF as a contributing factor to neurodegenerative events that occur following injury. In order to further investigate the role of BDNF in neuroprotection, we subjected adult rats to a lateral fluid percussion (FP) injury of moderate severity (2.0-2.1 atm) or sham injury. After survival periods of 1, 3, 6, 24, or 72 h, the brains were processed for the in situ hybridization localization of BDNF and trkB mRNAs using 35S-labeled cRNA probes. Hybridization levels were compared between injured and sham animals for regions of the cortex that were located within, adjacent to, and remote from the site of the cortical contusion. BDNF mRNA levels were significantly decreased in the injured cortex at 72 h, increased in adjacent cortical areas at 3 h, and increased bilaterally in the piriform cortex from 3 to 24 h post-FP injury. Expression of trkB mRNA was significantly decreased at all postinjury time-points in the injured cortex and at 24 h in the adjacent cortex. These results demonstrate that, following lateral FP injury, BDNF and trkB mRNA levels are decreased in cortical regions that contain degenerating neurons, generally unchanged in adjacent regions, and increased in remote areas. Thus, injury-induced decreases in the expression of BDNF and trkB may confer vulnerability to neurons within the cortical contusion.
Collapse
Affiliation(s)
- R R Hicks
- Division of Physical Therapy, University of Kentucky, Lexington 40536-0003, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Napieralski JA, Banks RJ, Chesselet MF. Motor and somatosensory deficits following uni- and bilateral lesions of the cortex induced by aspiration or thermocoagulation in the adult rat. Exp Neurol 1998; 154:80-8. [PMID: 9875270 DOI: 10.1006/exnr.1998.6893] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that lesions of the sensorimotor cortex induced by either thermocoagulation or aspiration produce different effects on axonal plasticity. We have now investigated whether these methods of lesion also influence the behavioral outcome. The behavioral effects of unilateral and bilateral lesions of the sensorimotor cortex induced by either aspiration or by thermocoagulation of pial blood vessels were examined in adult Sprague-Dawley rats. Rats were tested to determine limb use asymmetry by analyzing (1) coordinated forelimb placement and (2) paw use preference when rearing. Their responsiveness to somatosensory stimulation was tested by analyzing (1) the latency to remove sticky tape on the ventral surface of the paw, and (2) vibrissae-stimulated forelimb placing. Behavioral tests were performed prior to surgery and on day 4, 8, 12, 16, and 20 after surgery. Both unilateral lesions resulted in an over-reliance on the nonimpaired forelimb as early as 4 days after the surgery; functional recovery occurred after 16 days. Animals with bilateral lesions did not use either forelimb for support in postural support behaviors. However, this effect was more apparent in the animals with a thermocoagulatory lesion and, in contrast to the animals with an aspiration lesion, these animals did not show functional recovery. Animals with a unilateral aspiration, but not a thermocoagulatory lesion, showed a slowed response to tactile stimulation applied to the contralateral forelimb. After bilateral lesions, animals showed a slowed response to tactile stimulation applied to either forelimb at early time points after the lesion and recovery of function at later time points. These data indicate that, for the most part, lesions of the sensorimotor cortex by aspiration or thermocoagulation produce very similar effects on the behaviors examined in this study. However, unexpectedly, thermocoagulatory lesions induced a more severe (unilateral lesion) or prolonged (bilateral lesion) deficit in forelimb use than aspiration lesions. Conversely, the effect on tactile stimulation is more prominent after unilateral aspiration than thermocoagulatory lesions.
Collapse
Affiliation(s)
- J A Napieralski
- Department of Pharmacology, University of Pennsylvania Medical School, Philadelphia, USA
| | | | | |
Collapse
|
25
|
Dunn-Meynell AA, Levin BE. Lateralized effect of unilateral somatosensory cortex contusion on behavior and cortical reorganization. Brain Res 1995; 675:143-56. [PMID: 7796123 DOI: 10.1016/0006-8993(95)00050-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previous studies have shown that rats recover function after unilateral somatosensory cortex lesions, possibly by transfer of information processing to other brain areas not normally involved in those functions. In the present study, adult rats underwent unilateral contusions of the somatosensory cortex with ablation of the barrel receptor field. Behavioral testing with modified beam-walking and sensory neglect tasks demonstrated persistent somatosensory deficits in rats with left contusions but no apparent deficits in right injured animals. After 2 months, the [14C]2-deoxyglucose (2-DG) method was used to show the metabolic activity produced by unilateral stimulation of the facial vibrissae. In left injured animals, cortical metabolic activity rostral and caudal to the injury site was depressed both under basal conditions and during right vibrissal stimulation. On the other hand, comparison of the pattern of [14C]2-DG uptake in the intact, right cortex revealed changes in the pattern of glucose utilization associated with left injury combined with right vibrissal stimulation. Pattern changes were quantified by measuring the area in which glucose utilization was within the highest 25% of this range (high activity area; HAA). Right vibrissal stimulation in left injured rats caused an expansion of this HAA in the intact occipital/temporal cortex. Also, in the intact somatosensory cortex of left injured rats, there was an enlarged HAA whether or not vibrissal stimulation was performed. Thus, a combination of depressed peri-injury metabolic activity and aberrant activity in remote brain areas occurs following unilateral somatosensory cortex injury. It remains to be shown whether these factors ameliorate or contribute to persistent behavioral deficits.
Collapse
Affiliation(s)
- A A Dunn-Meynell
- Neurology Service (127), Department of Veterans Affairs Medical Center, East Orange, NJ 07018-1095, USA
| | | |
Collapse
|