Christel MI, Billard A. Comparison between macaques' and humans' kinematics of prehension: the role of morphological differences and control mechanisms.
Behav Brain Res 2002;
131:169-84. [PMID:
11844584 DOI:
10.1016/s0166-4328(01)00372-2]
[Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reaching and grasping has been widely studied in both macaques and humans, mainly with the aim of finding similar patterns of behavior in the two species. Little attention has yet been given to how morphological and behavioral differences between the two species might affect the kinematics of the movement. In this study, we present a careful analysis of the similarities and differences between humans' and macaques' prehension movements and discuss these with respect to both the control system and the biomechanics of the arm. Five humans and five macaques performed the same task, namely grasping small feeding objects using a precision grip. Macaques were observed in unconstrained conditions, free to adjust their body posture. The behavioral protocol for macaques revealed a postural preference for sitting and keeping the elbow slightly flexed when applying a precision grip. In agreement with the literature, kinematics revealed general features of movement common to both humans and macaques. However, within a similar timeframe, macaques produced steeper and wider excursion of the elbow and of the wrist, smaller abduction of the shoulder joint and larger displacement of the torso than humans did. The three-joint limb revealed stronger irregularities for the macaques. We hypothesize that the larger kinematic irregularities and the specific elbow--shoulder posture in macaques result in part from an effort of the control system to compensate for different biomechanical constraints, namely for limited shoulder-joint excursion, in order to achieve a similar range of comfort of motion. Finally, we briefly consider the influence of primitive neural circuits responsible for arm motion during locomotion and speculated on their influence on the control of reaching in macaques.
Collapse