1
|
Świądro-Piętoń M, Dudek D, Wietecha-Posłuszny R. Direct Immersion-Solid Phase Microextraction for Therapeutic Drug Monitoring of Patients with Mood Disorders. Molecules 2024; 29:676. [PMID: 38338419 PMCID: PMC10856736 DOI: 10.3390/molecules29030676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
This article discusses a new method for monitoring drug concentrations in blood samples from patients with mood disorders. The method uses solid-phase microextraction to extract analytes directly from blood samples. It has been adapted to identify the most commonly used drugs in mood disorders, including amitriptyline, citalopram, fluoxetine, paroxetine, sertraline, trazodone, duloxetine, venlafaxine, lamotrigine, quetiapine, olanzapine, and mirtazapine. The analysis is carried out using high-performance liquid chromatography coupled with mass spectroscopy. The proposed DI-SPME/LC-MS method allows for a simple and quick screening analysis while minimizing the volume of the tested sample and solvent, in line with the principles of green analytical chemistry. The method was used to analyze 38 blood samples taken from patients with mood disorders, and drug concentrations were determined and compared with therapeutic and toxic dose ranges. This allowed for better control of the course of treatment.
Collapse
Affiliation(s)
- Magdalena Świądro-Piętoń
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 2, Gronostajowa St., 30-387 Kraków, Poland;
| | - Dominika Dudek
- Department of Adult Psychiatry, Medical College, Jagiellonian University, 21a, Mikołaja Kopernika St., 31-387 Kraków, Poland;
| | - Renata Wietecha-Posłuszny
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 2, Gronostajowa St., 30-387 Kraków, Poland;
| |
Collapse
|
2
|
Shang Y, Meng X, Liu J, Song N, Zheng H, Han C, Ma Q. Applications of mass spectrometry in cosmetic analysis: An overview. J Chromatogr A 2023; 1705:464175. [PMID: 37406420 DOI: 10.1016/j.chroma.2023.464175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Mass spectrometry (MS) is a crucial tool in cosmetic analysis. It is widely used for ingredient screening, quality control, risk monitoring, authenticity verification, and efficacy evaluation. However, due to the diversity of cosmetic products and the rapid development of MS-based analytical methods, the relevant literature needs a more systematic collation of information on this subject to unravel the true potential of MS in cosmetic analysis. Herein, an overview of the role of MS in cosmetic analysis over the past two decades is presented. The currently used sample preparation methods, ionization techniques, and types of mass analyzers are demonstrated in detail. In addition, a brief perspective on the future development of MS for cosmetic analysis is provided.
Collapse
Affiliation(s)
- Yuhan Shang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Xianshuang Meng
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Juan Liu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Naining Song
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Hongyan Zheng
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Chao Han
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
3
|
Świądro-Piętoń M, Chromiec A, Zawadzki M, Wietecha-Posłuszny R. The DI-SPME Method for Determination of Selected Narcotics and Their Metabolites, and Application to Bone Marrow and Whole Blood Analysis. Molecules 2022; 27:molecules27134116. [PMID: 35807361 PMCID: PMC9268437 DOI: 10.3390/molecules27134116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
The present investigation utilised the quick and easy SPME/LC-MS method to determine selected narcotic substances and their metabolites in whole blood. The study included qualitative analysis and validation of the method. Analytes were determined in the linearity range of 25−300 ng/mL. The precision during and between days (in general CV < 13.41%), and the LOD which results in between 0.36 and 11.08 ng/mL, and the LOQ between 1.20 and 36.90 ng/mL were investigated. The validation results obtained, as well as the results of subsequent in-laboratory tests, confirmed the applicability of the method in the analysis of blood samples. An attempt to apply the method to the analysis of bone marrow samples has yielded promising results; however, more detailed studies are needed in this area.
Collapse
Affiliation(s)
- Magdalena Świądro-Piętoń
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Kraków, Poland; (M.Ś.-P.); (A.C.)
| | - Alicja Chromiec
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Kraków, Poland; (M.Ś.-P.); (A.C.)
| | - Marcin Zawadzki
- Department of Forensic Medicine, Medical University in Wroclaw, 4 Jana Mikulicza-Radeckiego St., 50-345 Wrocław, Poland;
| | - Renata Wietecha-Posłuszny
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Kraków, Poland; (M.Ś.-P.); (A.C.)
- Correspondence: or
| |
Collapse
|
4
|
Bakaraki Turan N, Zaman BT, Chormey DS, Onkal Engin G, Bakırdere S. Atrazine: From Detection to Remediation – A Minireview. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1937196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nouha Bakaraki Turan
- Civil Engineering Faculty, Environmental Engineering Department, Yildiz Technical University, İstanbul, Turkey
| | - Buse Tuğba Zaman
- Faculty of Art and Science, Department of Chemistry, Yildiz Technical University, İstanbul, Turkey
| | - Dotse Selali Chormey
- Faculty of Art and Science, Department of Chemistry, Yildiz Technical University, İstanbul, Turkey
| | - Güleda Onkal Engin
- Civil Engineering Faculty, Environmental Engineering Department, Yildiz Technical University, İstanbul, Turkey
| | - Sezgin Bakırdere
- Faculty of Art and Science, Department of Chemistry, Yildiz Technical University, İstanbul, Turkey
| |
Collapse
|
5
|
Kataoka H. In-tube solid-phase microextraction: Current trends and future perspectives. J Chromatogr A 2020; 1636:461787. [PMID: 33359971 DOI: 10.1016/j.chroma.2020.461787] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 01/01/2023]
Abstract
In-tube solid-phase microextraction (IT-SPME) was developed about 24 years ago as an effective sample preparation technique using an open tubular capillary column as an extraction device. IT-SPME is useful for micro-concentration, automated sample cleanup, and rapid online analysis, and can be used to determine the analytes in complex matrices simple sample processing methods such as direct sample injection or filtration. IT-SPME is usually performed in combination with high-performance liquid chromatography using an online column switching technology, in which the entire process from sample preparation to separation to data analysis is automated using the autosampler. Furthermore, IT-SPME minimizes the use of harmful organic solvents and is simple and labor-saving, making it a sustainable and environmentally friendly green analytical technique. Various operating systems and new sorbent materials have been developed to improve its extraction efficiency by, for example, enhancing its sorption capacity and selectivity. In addition, IT-SPME methods have been widely applied in environmental analysis, food analysis and bioanalysis. This review describes the present state of IT-SPME technology and summarizes its current trends and future perspectives, including method development and strategies to improve extraction efficiency.
Collapse
Affiliation(s)
- Hiroyuki Kataoka
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan.
| |
Collapse
|
6
|
Mahmud MMC, Shellie RA, Keast R. Unravelling the relationship between aroma compounds and consumer acceptance: Coffee as an example. Compr Rev Food Sci Food Saf 2020; 19:2380-2420. [DOI: 10.1111/1541-4337.12595] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 04/01/2020] [Accepted: 05/25/2020] [Indexed: 11/27/2022]
Affiliation(s)
- M M Chayan Mahmud
- CASS Food Research Center, School of Exercise and Nutrition SciencesDeakin University Burwood Victoria Australia
| | - Robert A. Shellie
- CASS Food Research Center, School of Exercise and Nutrition SciencesDeakin University Burwood Victoria Australia
| | - Russell Keast
- CASS Food Research Center, School of Exercise and Nutrition SciencesDeakin University Burwood Victoria Australia
| |
Collapse
|
7
|
Chormey DS, Bakırdere S. Principles and Recent Advancements in Microextraction Techniques. FUNDAMENTALS OF QUORUM SENSING, ANALYTICAL METHODS AND APPLICATIONS IN MEMBRANE BIOREACTORS 2018. [DOI: 10.1016/bs.coac.2018.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Lin J, Dai Y, Guo YN, Xu HR, Wang XC. Volatile profile analysis and quality prediction of Longjing tea (Camellia sinensis) by HS-SPME/GC-MS. J Zhejiang Univ Sci B 2013; 13:972-80. [PMID: 23225852 DOI: 10.1631/jzus.b1200086] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study aimed to analyze the volatile chemical profile of Longjing tea, and further develop a prediction model for aroma quality of Longjing tea based on potent odorants. A total of 21 Longjing samples were analyzed by headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). Pearson's linear correlation analysis and partial least square (PLS) regression were applied to investigate the relationship between sensory aroma scores and the volatile compounds. Results showed that 60 volatile compounds could be commonly detected in this famous green tea. Terpenes and esters were two major groups characterized, representing 33.89% and 15.53% of the total peak area respectively. Ten compounds were determined to contribute significantly to the perceived aroma quality of Longjing tea, especially linalool (0.701), nonanal (0.738), (Z)-3-hexenyl hexanoate (-0.785), and β-ionone (-0.763). On the basis of these 10 compounds, a model (correlation coefficient of 89.4% and cross-validated correlation coefficient of 80.4%) was constructed to predict the aroma quality of Longjing tea. Summarily, this study has provided a novel option for quality prediction of green tea based on HS-SPME/GC-MS technique.
Collapse
Affiliation(s)
- Jie Lin
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | |
Collapse
|
9
|
Beránek J, Kubátová A. Evaluation of solid-phase microextraction methods for determination of trace concentration aldehydes in aqueous solution. J Chromatogr A 2008; 1209:44-54. [DOI: 10.1016/j.chroma.2008.09.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 09/01/2008] [Accepted: 09/05/2008] [Indexed: 11/29/2022]
|
10
|
Potter OG, Hilder EF. Porous polymer monoliths for extraction: Diverse applications and platforms. J Sep Sci 2008; 31:1881-906. [DOI: 10.1002/jssc.200800116] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Wardencki W, Michulec M, Curylo J. A review of theoretical and practical aspects of solid-phase microextraction in food analysis. Int J Food Sci Technol 2004. [DOI: 10.1111/j.1365-2621.2004.00839.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
|