1
|
Llanos-Lizcano A, Hämmerle M, Sperduti A, Sawyer S, Zagorc B, Özdoğan KT, Guellil M, Cheronet O, Kuhlwilm M, Pinhasi R, Gelabert P. Intra-individual variability in ancient plasmodium DNA recovery highlights need for enhanced sampling. Sci Rep 2025; 15:757. [PMID: 39755798 PMCID: PMC11700196 DOI: 10.1038/s41598-024-85038-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025] Open
Abstract
Malaria has been a leading cause of death in human populations for centuries and remains a major public health challenge in African countries, especially affecting children. Among the five Plasmodium species infecting humans, Plasmodium falciparum is the most lethal. Ancient DNA research has provided key insights into the origins, evolution, and virulence of pathogens that affect humans. However, extensive screening of ancient skeletal remains for Plasmodium DNA has shown that such genomic material is rare, with no studies so far addressing potential intra-individual variability. Consequently, the pool of ancient mitochondrial DNA (mtDNA) or genomic sequences for P. falciparum is extremely limited, with fewer than 20 ancient sequences available for genetic analysis, and no complete P. falciparum mtDNA from Classical antiquity published to date. To investigate intra-individual diversity and genetic origins of P. falciparum from the Roman period, we generated 39 sequencing libraries from multiple teeth and two from the femur of a Roman malaria-infected individual. The results revealed considerable variability in P. falciparum recovery across different dental samples within the individual, while the femur samples showed no preservation of Plasmodium DNA. The reconstructed 43-fold P. falciparum mtDNA genome supports the hypothesis of an Indian origin for European P. falciparum and suggests mtDNA continuity in Europe over the past 2000 years.
Collapse
Affiliation(s)
- Alejandro Llanos-Lizcano
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Facultad de Química y Farmacia, Universidad del Atlántico, Barranquilla, Colombia
| | - Michelle Hämmerle
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Alessandra Sperduti
- Museo delle Civiltà, Roma, Italy
- Dipartimento di Archeologia, Asia, Africa e Mediterraneo, Università L'Orientale, Napoli, Italy
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Brina Zagorc
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | | | - Meriam Guellil
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Martin Kuhlwilm
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| | - Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Tian Y, Ye R, Zhang D, Zhang Y. The evolutionary history of Plasmodium falciparum from mitochondrial and apicoplast genomes of China-Myanmar border isolates. Parasit Vectors 2024; 17:548. [PMID: 39736695 DOI: 10.1186/s13071-024-06629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/12/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND The frequent communication between African and Southeast Asian (SEA) countries has led to the risk of imported malaria cases in the China-Myanmar border (CMB) region. Therefore, tracing the origins of new malaria infections is important in the maintenance of malaria-free zones in this border region. A new genotyping tool based on a robust mitochondrial (mt) /apicoplast (apico) barcode was developed to estimate genetic diversity and infer the evolutionary history of Plasmodium falciparum across the major distribution ranges. However, the mt/apico genomes of P. falciparum isolates from the CMB region to date are poorly characterized, even though this region is highly endemic to P. falciparum malaria. METHODS We have sequenced the whole mt/apico genome of 34 CMB field isolates and utilized a published data set of 147 mt/apico genome sequences to present global genetic diversity and to revisit the evolutionary history of the CMB P. falciparum. RESULTS Genetic differentiation based on mt/apico genome of P. falciparum revealed that the CMB (Lazan, Myanmar) isolates presented high genetic diversity with several characteristics of ancestral populations and shared many of the genetic features with West Thailand (Mae Sot; WTH) and to some extent West African (Banjul, Gambia; Navrongo, Ghana; WAF) isolates. The reconstructed haplotype network displayed that the CMB and WTH P. falciparum isolates have the highest representation (five) in the five ancestral (central) haplotypes (H1, H2, H4, H7, and H8), which are comparatively older than isolates from other SEA populations as well as the WAF populations. In addition, the highest estimate of the time to the Most Recent Common Ancestor (TMRCA) of 42,400 (95% CI 18,300-82100) years ago was presented by the CMB P. falciparum compared to the other regional populations. The statistically significant negative values of Fu's Fs with unimodal distribution in pairwise mismatch distribution curves indicate past demographic expansions in CMB P. falciparum with slow population expansion between approximately 12,500-20,000 ybp. CONCLUSIONS The results on the complete mt/apico genome sequence analysis of the CMB P. falciparum indicated high genetic diversity with ancient population expansion and TMRCA, and it seems probable that P. falciparum might have existed in CMB, WTH, and WAF for a long time before being introduced into other Southeast Asian countries or regions. To reduce the impact of sample size or geographic bias on the estimate of the evolutionary timeline, future studies need to expand the range of sample collection and ensure the representativeness of samples across geographic distributions. Additionally, by mapping global patterns of mt/apico genome polymorphism, we will gain valuable insights into the evolutionary history of P. falciparum and optimised strategies for controlling P. falciparum malaria at international borders.
Collapse
Affiliation(s)
- Yini Tian
- Department of Tropical Diseases, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Run Ye
- Department of Tropical Diseases, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Dongmei Zhang
- Department of Tropical Diseases, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Yilong Zhang
- Department of Tropical Diseases, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Andolina C, Graumans W, Guelbeogo M, van Gemert GJ, Ramijth J, Harouna S, Soumanaba Z, Stoter R, Vegte-Bolmer M, Pangos M, Sinnis P, Collins K, Staedke SG, Tiono AB, Drakeley C, Lanke K, Bousema T. Quantification of sporozoite expelling by Anopheles mosquitoes infected with laboratory and naturally circulating P. falciparum gametocytes. eLife 2024; 12:RP90989. [PMID: 38517746 PMCID: PMC10959522 DOI: 10.7554/elife.90989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
It is currently unknown whether all Plasmodium falciparum-infected mosquitoes are equally infectious. We assessed sporogonic development using cultured gametocytes in the Netherlands and naturally circulating strains in Burkina Faso. We quantified the number of sporozoites expelled into artificial skin in relation to intact oocysts, ruptured oocysts, and residual salivary gland sporozoites. In laboratory conditions, higher total sporozoite burden was associated with shorter duration of sporogony (p<0.001). Overall, 53% (116/216) of infected Anopheles stephensi mosquitoes expelled sporozoites into artificial skin with a median of 136 expelled sporozoites (interquartile range [IQR], 34-501). There was a strong positive correlation between ruptured oocyst number and salivary gland sporozoite load (ρ = 0.8; p<0.0001) and a weaker positive correlation between salivary gland sporozoite load and number of sporozoites expelled (ρ = 0.35; p=0.0002). In Burkina Faso, Anopheles coluzzii mosquitoes were infected by natural gametocyte carriers. Among salivary gland sporozoite positive mosquitoes, 89% (33/37) expelled sporozoites with a median of 1035 expelled sporozoites (IQR, 171-2969). Again, we observed a strong correlation between ruptured oocyst number and salivary gland sporozoite load (ρ = 0.9; p<0.0001) and a positive correlation between salivary gland sporozoite load and the number of sporozoites expelled (ρ = 0.7; p<0.0001). Several mosquitoes expelled multiple parasite clones during probing. Whilst sporozoite expelling was regularly observed from mosquitoes with low infection burdens, our findings indicate that mosquito infection burden is positively associated with the number of expelled sporozoites. Future work is required to determine the direct implications of these findings for transmission potential.
Collapse
Affiliation(s)
- Chiara Andolina
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Wouter Graumans
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Moussa Guelbeogo
- Centre National de Recherche et de Formation sur le PaludismeOuagadougouBurkina Faso
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Jordache Ramijth
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Soré Harouna
- Centre National de Recherche et de Formation sur le PaludismeOuagadougouBurkina Faso
| | - Zongo Soumanaba
- Centre National de Recherche et de Formation sur le PaludismeOuagadougouBurkina Faso
| | - Rianne Stoter
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Marga Vegte-Bolmer
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Martina Pangos
- Department of Plastic and Reconstructive Surgery, Azienda Ospedaliero Universitaria GiulianoIsontina TriesteTriesteItaly
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns HopkinsBloomberg School of Public HealthBaltimoreUnited States
| | - Katharine Collins
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Sarah G Staedke
- Liverpool School of Tropical MedicineLiverpoolUnited Kingdom
| | - Alfred B Tiono
- Centre National de Recherche et de Formation sur le PaludismeOuagadougouBurkina Faso
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Kjerstin Lanke
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
- Department of Immunology and Infection, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| |
Collapse
|
4
|
Su X, Stadler RV, Xu F, Wu J. Malaria Genomics, Vaccine Development, and Microbiome. Pathogens 2023; 12:1061. [PMID: 37624021 PMCID: PMC10459703 DOI: 10.3390/pathogens12081061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Recent advances in malaria genetics and genomics have transformed many aspects of malaria research in areas of molecular evolution, epidemiology, transmission, host-parasite interaction, drug resistance, pathogenicity, and vaccine development. Here, in addition to introducing some background information on malaria parasite biology, parasite genetics/genomics, and genotyping methods, we discuss some applications of genetic and genomic approaches in vaccine development and in studying interactions with microbiota. Genetic and genomic data can be used to search for novel vaccine targets, design an effective vaccine strategy, identify protective antigens in a whole-organism vaccine, and evaluate the efficacy of a vaccine. Microbiota has been shown to influence disease outcomes and vaccine efficacy; studying the effects of microbiota in pathogenicity and immunity may provide information for disease control. Malaria genetics and genomics will continue to contribute greatly to many fields of malaria research.
Collapse
Affiliation(s)
- Xinzhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; (R.V.S.); (F.X.); (J.W.)
| | | | | | | |
Collapse
|
5
|
Rougeron V, Boundenga L, Arnathau C, Durand P, Renaud F, Prugnolle F. A population genetic perspective on the origin, spread and adaptation of the human malaria agents Plasmodium falciparum and Plasmodium vivax. FEMS Microbiol Rev 2021; 46:6373923. [PMID: 34550355 DOI: 10.1093/femsre/fuab047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/06/2021] [Indexed: 01/20/2023] Open
Abstract
Malaria is considered one of the most important scourges that humanity has faced during its history, being responsible every year for numerous deaths worldwide. The disease is caused by protozoan parasites, among which two species are responsible of the majority of the burden, Plasmodium falciparum and Plasmodium vivax. For these two parasite species, the questions of their origin (how and when they appeared in humans), of their spread throughout the world, as well as how they have adapted to humans have long been of interest to the scientific community. Here, we review the current knowledge that has accumulated on these different questions, thanks in particular to the analysis of the genetic and genomic variability of these parasites and comparison with related Plasmodium species infecting other host species (like non-human primates). In this paper we review the existing body of knowledge, including current research dealing with these questions, focusing particularly on genetic analysis and genomic variability of these parasites and comparison with related Plasmodium species infecting other species of host (such as non-human primates).
Collapse
Affiliation(s)
- Virginie Rougeron
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - Larson Boundenga
- CIRMF, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Céline Arnathau
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - Patrick Durand
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - François Renaud
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - Franck Prugnolle
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| |
Collapse
|
6
|
Lamien-Meda A, Fuehrer HP, Leitsch D, Noedl H. A powerful qPCR-high resolution melting assay with taqman probe in plasmodium species differentiation. Malar J 2021; 20:121. [PMID: 33639949 PMCID: PMC7916309 DOI: 10.1186/s12936-021-03662-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The use of highly sensitive molecular tools in malaria diagnosis is currently largely restricted to research and epidemiological settings, but will ultimately be essential during elimination and potentially eradication. Accurate diagnosis and differentiation down to species levels, including the two Plasmodium ovale species and zoonotic variants of the disease, will be important for the understanding of changing epidemiological patterns of the disease. METHODS A qPCR-high resolution melting (HRM) method was to detect and differentiate all human Plasmodium species with one forward and one reverse primer set. The HRM detection method was further refined using a hydrolysis probe to specifically discriminate Plasmodium falciparum. RESULTS Out of the 113 samples tested with the developed HRM-qPCR- P. falciparum probe assay, 96 (85.0 %) single infections, 12 (10.6 %) mixed infections, and 5 (4.4 %) were Plasmodium negative. The results were concordant with those of the nested PCR at 98.2 %. The assay limit of detection was varied from 21.47 to 46.43 copies /µl, equivalent to 1-2.11 parasites/µl. All P. falciparum infections were confirmed with the associated Taqman probe. CONCLUSIONS Although the dependence on qPCR currently limits its deployment in resource-limited environments, this assay is highly sensitive and specific, easy to perform and convenient for Plasmodium mono-infection and may provide a novel tool for rapid and accurate malaria diagnosis also in epidemiological studies.
Collapse
Affiliation(s)
- Aline Lamien-Meda
- Institute for Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria.
| | - Hans-Peter Fuehrer
- Institute of Parasitology, University of Veterinary Medicine, Vienna, Austria
| | - David Leitsch
- Institute for Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Harald Noedl
- Malaria Research Initiative Bandarban, Vienna, Austria
| |
Collapse
|
7
|
Noviyanti R, Miotto O, Barry A, Marfurt J, Siegel S, Thuy-Nhien N, Quang HH, Anggraeni ND, Laihad F, Liu Y, Sumiwi ME, Trimarsanto H, Coutrier F, Fadila N, Ghanchi N, Johora FT, Puspitasari AM, Tavul L, Trianty L, Utami RAS, Wang D, Wangchuck K, Price RN, Auburn S. Implementing parasite genotyping into national surveillance frameworks: feedback from control programmes and researchers in the Asia-Pacific region. Malar J 2020; 19:271. [PMID: 32718342 PMCID: PMC7385952 DOI: 10.1186/s12936-020-03330-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/09/2020] [Indexed: 01/13/2023] Open
Abstract
The Asia-Pacific region faces formidable challenges in achieving malaria elimination by the proposed target in 2030. Molecular surveillance of Plasmodium parasites can provide important information on malaria transmission and adaptation, which can inform national malaria control programmes (NMCPs) in decision-making processes. In November 2019 a parasite genotyping workshop was held in Jakarta, Indonesia, to review molecular approaches for parasite surveillance and explore ways in which these tools can be integrated into public health systems and inform policy. The meeting was attended by 70 participants from 8 malaria-endemic countries and partners of the Asia Pacific Malaria Elimination Network. The participants acknowledged the utility of multiple use cases for parasite genotyping including: quantifying the prevalence of drug resistant parasites, predicting risks of treatment failure, identifying major routes and reservoirs of infection, monitoring imported malaria and its contribution to local transmission, characterizing the origins and dynamics of malaria outbreaks, and estimating the frequency of Plasmodium vivax relapses. However, the priority of each use case varies with different endemic settings. Although a one-size-fits-all approach to molecular surveillance is unlikely to be applicable across the Asia-Pacific region, consensus on the spectrum of added-value activities will help support data sharing across national boundaries. Knowledge exchange is needed to establish local expertise in different laboratory-based methodologies and bioinformatics processes. Collaborative research involving local and international teams will help maximize the impact of analytical outputs on the operational needs of NMCPs. Research is also needed to explore the cost-effectiveness of genetic epidemiology for different use cases to help to leverage funding for wide-scale implementation. Engagement between NMCPs and local researchers will be critical throughout this process.
Collapse
Affiliation(s)
| | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Alyssa Barry
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Burnet Institute, Melbourne, VIC, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Sasha Siegel
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Nguyen Thuy-Nhien
- Centre for Tropical Medicine, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Huynh Hong Quang
- Institute of Malariology, Parasitology and Entomology, Quy Nhon, Vietnam
| | | | | | - Yaobao Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | | | | | - Farah Coutrier
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Nadia Fadila
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Najia Ghanchi
- Pathology, Aga Khan University Hospital, Karachi, Pakistan
| | - Fatema Tuj Johora
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh Mohakhali, Dhaka, Bangladesh
| | | | - Livingstone Tavul
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Leily Trianty
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | - Duoquan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Kesang Wangchuck
- Royal Center for Disease Control, Department of Public Health, Ministry of Health, Thimphu, Bhutan
| | - Ric N Price
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah Auburn
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Graumans W, Andolina C, Awandu SS, Grignard L, Lanke K, Bousema T. Plasmodium falciparum Gametocyte Enrichment in Peripheral Blood Samples by Magnetic Fractionation: Gametocyte Yields and Possibilities to Reuse Columns. Am J Trop Med Hyg 2020; 100:572-577. [PMID: 30608048 PMCID: PMC6402936 DOI: 10.4269/ajtmh.18-0773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gametocytes are sexual stage malaria parasites responsible for transmission to mosquitoes. Multiple gametocyte-producing clones may be present in natural infections, but the molecular characterization of gametocytes is challenging. Because of their magnetic properties, gametocyte enrichment can be achieved by magnetic fractionation. This increases detection sensitivity and allows specific genotyping of clones that contribute to malaria transmission. Here, we determined the percentage of Plasmodium falciparum gametocytes successfully bound to magnetic activated cell sorting (MACS) LS columns during magnetic fractionation and assessed whether columns can be reused without risking contamination or affecting column binding efficiency. Bound column fractions were quantified using multiplex quantitative reverse transcription polymerase chain reaction (qRT-PCR) for male (pfMGET) and female (CCp4) gametocytes and ring-stage asexual parasites (SBP1). To investigate cross contamination between columns, parasite strain identity was determined by merozoite surface protein 2 genotyping followed by capillary electrophoresis fragment sizing. A reproducible high percentage of gametocytes was bound to MACS LS columns with < 5% gametocytes appearing in the flow-through and < 0.6% asexual ring-stage parasites appearing in the gametocyte fraction. A high yield (> 94%) of gametocyte enrichment was achieved when columns were used up to five times with lower binding success after eight times (79%). We observed no evidence for cross contamination between columns.
Collapse
Affiliation(s)
- Wouter Graumans
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Chiara Andolina
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Shehu S Awandu
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Lynn Grignard
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kjerstin Lanke
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.,Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
9
|
Plasmodium Genomics and Genetics: New Insights into Malaria Pathogenesis, Drug Resistance, Epidemiology, and Evolution. Clin Microbiol Rev 2019; 32:32/4/e00019-19. [PMID: 31366610 DOI: 10.1128/cmr.00019-19] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Protozoan Plasmodium parasites are the causative agents of malaria, a deadly disease that continues to afflict hundreds of millions of people every year. Infections with malaria parasites can be asymptomatic, with mild or severe symptoms, or fatal, depending on many factors such as parasite virulence and host immune status. Malaria can be treated with various drugs, with artemisinin-based combination therapies (ACTs) being the first-line choice. Recent advances in genetics and genomics of malaria parasites have contributed greatly to our understanding of parasite population dynamics, transmission, drug responses, and pathogenesis. However, knowledge gaps in parasite biology and host-parasite interactions still remain. Parasites resistant to multiple antimalarial drugs have emerged, while advanced clinical trials have shown partial efficacy for one available vaccine. Here we discuss genetic and genomic studies of Plasmodium biology, host-parasite interactions, population structures, mosquito infectivity, antigenic variation, and targets for treatment and immunization. Knowledge from these studies will advance our understanding of malaria pathogenesis, epidemiology, and evolution and will support work to discover and develop new medicines and vaccines.
Collapse
|
10
|
Schmedes SE, Patel D, Kelley J, Udhayakumar V, Talundzic E. Using the Plasmodium mitochondrial genome for classifying mixed-species infections and inferring the geographical origin of P. falciparum parasites imported to the U.S. PLoS One 2019; 14:e0215754. [PMID: 31039178 PMCID: PMC6490880 DOI: 10.1371/journal.pone.0215754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/08/2019] [Indexed: 12/20/2022] Open
Abstract
The ability to identify mixed-species infections and track the origin of Plasmodium parasites can further enhance the development of treatment and prevention recommendations as well as outbreak investigations. Here, we explore the utility of using the full Plasmodium mitochondrial genome to classify Plasmodium species, detect mixed infections, and infer the geographical origin of imported P. falciparum parasites to the United States (U.S.). Using the recently developed standardized, high-throughput Malaria Resistance Surveillance (MaRS) protocol, the full Plasmodium mitochondrial genomes of 265 malaria cases imported to the U.S. from 2014-2017 were sequenced and analyzed. P. falciparum infections were found in 94.7% (251/265) of samples. Five percent (14/265) of samples were identified as mixed- Plasmodium species or non-P. falciparum, including P. vivax, P. malariae, P. ovale curtisi, and P. ovale wallikeri. P. falciparum mitochondrial haplotypes analysis revealed greater than eighteen percent of samples to have at least two P. falciparum mitochondrial genome haplotypes, indicating either heteroplasmy or multi-clonal infections. Maximum-likelihood phylogenies of 912 P. falciparum mitochondrial genomes with known country origin were used to infer the geographical origin of thirteen samples from persons with unknown travel histories as: Africa (country unspecified) (n = 10), Ghana (n = 1), Southeast Asia (n = 1), and the Philippines (n = 1). We demonstrate the utility and current limitations of using the Plasmodium mitochondrial genome to classify samples with mixed-infections and infer the geographical origin of imported P. falciparum malaria cases to the U.S. with unknown travel history.
Collapse
Affiliation(s)
- Sarah E. Schmedes
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States America
- Association of Public Health Laboratories, Silver Spring, Maryland, United States America
| | - Dhruviben Patel
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States America
- Williams Consulting LLC, Baltimore, Maryland, United States America
| | - Julia Kelley
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States America
- Atlanta Research and Education Foundation, Atlanta, Georgia, United States America
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States America
| | - Eldin Talundzic
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States America
| |
Collapse
|
11
|
Sabharwal A, Sharma D, Vellarikkal SK, Jayarajan R, Verma A, Senthivel V, Scaria V, Sivasubbu S. Organellar transcriptome sequencing reveals mitochondrial localization of nuclear encoded transcripts. Mitochondrion 2018; 46:59-68. [PMID: 29486245 DOI: 10.1016/j.mito.2018.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 01/23/2018] [Accepted: 02/22/2018] [Indexed: 01/10/2023]
Abstract
Mitochondria are organelles involved in a variety of biological functions in the cell, apart from their principal role in generation of ATP, the cellular currency of energy. The mitochondria, in spite of being compact organelles, are capable of performing complex biological functions largely because of the ability to exchange proteins, RNA, chemical metabolites and other biomolecules between cellular compartments. A close network of biomolecular interactions are known to modulate the crosstalk between the mitochondria and the nuclear genome. Apart from the small repertoire of genes encoded by the mitochondrial genome, it is now known that the functionality of the organelle is highly reliant on a number of proteins encoded by the nuclear genome, which localize to the mitochondria. With exceptions to a few anecdotal examples, the transcripts that have the potential to localize to the mitochondria have been poorly studied. We used a deep sequencing approach to identify transcripts encoded by the nuclear genome which localize to the mitoplast in a zebrafish model. We prioritized 292 candidate transcripts of nuclear origin that are potentially localized to the mitochondrial matrix. We experimentally demonstrated that the transcript encoding the nuclear encoded ribosomal protein 11 (Rpl11) localizes to the mitochondria. This study represents a comprehensive analysis of the mitochondrial localization of nuclear encoded transcripts. Our analysis has provided insights into a new layer of biomolecular pathways modulating mitochondrial-nuclear cross-talk. This provides a starting point towards understanding the role of nuclear encoded transcripts that localize to mitochondria and their influence on mitochondrial function.
Collapse
Affiliation(s)
- Ankit Sabharwal
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, Delhi 110 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR IGIB South Campus, Mathura Road, Delhi 110020, India
| | - Disha Sharma
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, Delhi 110 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR IGIB South Campus, Mathura Road, Delhi 110020, India
| | - Shamsudheen Karuthedath Vellarikkal
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, Delhi 110 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR IGIB South Campus, Mathura Road, Delhi 110020, India
| | - Rijith Jayarajan
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, Delhi 110 020, India
| | - Ankit Verma
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, Delhi 110 020, India
| | - Vigneshwar Senthivel
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, Delhi 110 020, India
| | - Vinod Scaria
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, Delhi 110 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR IGIB South Campus, Mathura Road, Delhi 110020, India.
| | - Sridhar Sivasubbu
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, Delhi 110 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR IGIB South Campus, Mathura Road, Delhi 110020, India.
| |
Collapse
|
12
|
Validation of Putative Apicoplast-Targeting Drugs Using a Chemical Supplementation Assay in Cultured Human Malaria Parasites. Antimicrob Agents Chemother 2017; 62:AAC.01161-17. [PMID: 29109165 DOI: 10.1128/aac.01161-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/18/2017] [Indexed: 11/20/2022] Open
Abstract
Malaria parasites contain a relict plastid, the apicoplast, which is considered an excellent drug target due to its bacterial-like ancestry. Numerous parasiticidals have been proposed to target the apicoplast, but few have had their actual targets substantiated. Isopentenyl pyrophosphate (IPP) production is the sole required function of the apicoplast in the blood stage of the parasite life cycle, and IPP supplementation rescues parasites from apicoplast-perturbing drugs. Hence, any drug that kills parasites when IPP is supplied in culture must have a nonapicoplast target. Here, we use IPP supplementation to discriminate whether 23 purported apicoplast-targeting drugs are on- or off-target. We demonstrate that a prokaryotic DNA replication inhibitor (ciprofloxacin), several prokaryotic translation inhibitors (chloramphenicol, doxycycline, tetracycline, clindamycin, azithromycin, erythromycin, and clarithromycin), a tRNA synthase inhibitor (mupirocin), and two IPP synthesis pathway inhibitors (fosmidomycin and FR900098) have apicoplast targets. Intriguingly, fosmidomycin and FR900098 leave the apicoplast intact, whereas the others eventually result in apicoplast loss. Actinonin, an inhibitor of bacterial posttranslational modification, does not produce a typical delayed-death response but is rescued with IPP, thereby confirming its apicoplast target. Parasites treated with putative apicoplast fatty acid pathway inhibitors could not be rescued, demonstrating that these drugs have their primary targets outside the apicoplast, which agrees with the dispensability of the apicoplast fatty acid synthesis pathways in the blood stage of malaria parasites. IPP supplementation provides a simple test of whether a compound has a target in the apicoplast and can be used to screen novel compounds for mode of action.
Collapse
|
13
|
Bilbao-Ramos P, Dea-Ayuela MA, Cardenas-Alegría O, Salamanca E, Santalla-Vargas JA, Benito C, Flores N, Bolás-Fernández F. Leishmaniasis in the major endemic region of Plurinational State of Bolivia: Species identification, phylogeography and drug susceptibility implications. Acta Trop 2017; 176:150-161. [PMID: 28751163 DOI: 10.1016/j.actatropica.2017.07.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 07/21/2017] [Accepted: 07/23/2017] [Indexed: 01/23/2023]
Abstract
The Plurinational State of Bolivia is one of the Latin American countries with the highest prevalence of leishmaniasis, highlighting the lowlands of the Department of La Paz where about 50% of the total cases were reported. The control of the disease can be seriously compromised by the intrinsic variability of the circulating species that may limit the efficacy of treatment while favoring the emergence of resistance. Fifty-five isolates of Leishmania from cutaneous and mucocutaneous lesions from patients living in different provinces of the Department of La Paz were tested. Molecular characterization of isolates was carried out by 3 classical markers: the rRNA internal transcribed spacer 1 (ITS-1), the heat shock protein 70 (HSP70) and the mitochondrial cytochrome b (Cyt-b). These markers were amplified by PCR and their products digested by the restriction endonuclease enzymes AseI and HaeIII followed by subsequent sequencing of Cyt-b gene and ITS-1 region for subsequent phylogenetic analysis. The combined use of these 3 markers allowed us to assign 36 isolates (65.5%) to the complex Leishmania (Viannia) braziliensis, 4 isolates (7, 27%) to L. (Viannia) lainsoni. and the remaining 15 isolates (23.7%) to a local variant of L. (Leishmania) mexicana. Concerning in vitro drug susceptibility the amastigotes from all isolates where highly sensitive to Fungizone® (mean IC50 between 0.23 and 0.5μg/mL) whereas against Glucantime® the sensitivity was moderate (mean IC50 ranging from 50.84μg/mL for L. (V.) braziliensis to 18.23μg/mL for L. (L.) mexicana. L. (V.) lainsoni was not sensitive to Glucantime®. The susceptibility to miltefosine was highly variable among species isolates, being L. (L.) mexicana the most sensitive, followed by L. (V.) braziliensis and L. (V.) lainsoni (mean IC50 of 8.24μg/mL, 17.85μg/mL and 23.28μg/mL, respectively).
Collapse
|
14
|
Campbell MA, Łukasik P, Simon C, McCutcheon JP. Idiosyncratic Genome Degradation in a Bacterial Endosymbiont of Periodical Cicadas. Curr Biol 2017; 27:3568-3575.e3. [DOI: 10.1016/j.cub.2017.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 10/25/2022]
|
15
|
Taylor AR, Schaffner SF, Cerqueira GC, Nkhoma SC, Anderson TJC, Sriprawat K, Pyae Phyo A, Nosten F, Neafsey DE, Buckee CO. Quantifying connectivity between local Plasmodium falciparum malaria parasite populations using identity by descent. PLoS Genet 2017; 13:e1007065. [PMID: 29077712 PMCID: PMC5678785 DOI: 10.1371/journal.pgen.1007065] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/08/2017] [Accepted: 10/10/2017] [Indexed: 01/18/2023] Open
Abstract
With the rapidly increasing abundance and accessibility of genomic data, there is a growing interest in using population genetic approaches to characterize fine-scale dispersal of organisms, providing insight into biological processes across a broad range of fields including ecology, evolution and epidemiology. For sexually recombining haploid organisms such as the human malaria parasite P. falciparum, however, there have been no systematic assessments of the type of data and methods required to resolve fine scale connectivity. This analytical gap hinders the use of genomics for understanding local transmission patterns, a crucial goal for policy makers charged with eliminating this important human pathogen. Here we use data collected from four clinics with a catchment area spanning approximately 120 km of the Thai-Myanmar border to compare the ability of divergence (FST) and relatedness based on identity by descent (IBD) to resolve spatial connectivity between malaria parasites collected from proximal clinics. We found no relationship between inter-clinic distance and FST, likely due to sampling of highly related parasites within clinics, but a significant decline in IBD-based relatedness with increasing inter-clinic distance. This association was contingent upon the data set type and size. We estimated that approximately 147 single-infection whole genome sequenced parasite samples or 222 single-infection parasite samples genotyped at 93 single nucleotide polymorphisms (SNPs) were sufficient to recover a robust spatial trend estimate at this scale. In summary, surveillance efforts cannot rely on classical measures of genetic divergence to measure P. falciparum transmission on a local scale. Given adequate sampling, IBD-based relatedness provides a useful alternative, and robust trends can be obtained from parasite samples genotyped at approximately 100 SNPs.
Collapse
Affiliation(s)
- Aimee R. Taylor
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Stephen F. Schaffner
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Gustavo C. Cerqueira
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Standwell C. Nkhoma
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Timothy J. C. Anderson
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research building, University of Oxford, Old Road campus, Oxford, United Kingdom
| | - Daniel E. Neafsey
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Caroline O. Buckee
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
16
|
Mitochondrial DNA from the eradicated European Plasmodium vivax and P. falciparum from 70-year-old slides from the Ebro Delta in Spain. Proc Natl Acad Sci U S A 2016; 113:11495-11500. [PMID: 27671660 DOI: 10.1073/pnas.1611017113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phylogenetic analysis of Plasmodium parasites has indicated that their modern-day distribution is a result of a series of human-mediated dispersals involving transport between Africa, Europe, America, and Asia. A major outstanding question is the phylogenetic affinity of the malaria causing parasites Plasmodium vivax and falciparum in historic southern Europe-where it was endemic until the mid-20th century, after which it was eradicated across the region. Resolving the identity of these parasites will be critical for answering several hypotheses on the malaria dispersal. Recently, a set of slides with blood stains of malaria-affected people from the Ebro Delta (Spain), dated between 1942 and 1944, have been found in a local medical collection. We extracted DNA from three slides, two of them stained with Giemsa (on which Plasmodium parasites could still be seen under the microscope) and another one consisting of dried blood spots. We generated the data using Illumina sequencing after using several strategies aimed at increasing the Plasmodium DNA yield: depletion of the human genomic (g)DNA content through hybridization with human gDNA baits, and capture-enrichment using gDNA derived from P. falciparum Plasmodium mitochondrial genome sequences were subsequently reconstructed from the resulting data. Phylogenetic analysis of the eradicated European P. vivax mtDNA genome indicates that the European isolate is closely related to the most common present-day American haplotype and likely entered the American continent post-Columbian contact. Furthermore, the European P. falciparum mtDNA indicates a link with current Indian strains that is in agreement with historical accounts.
Collapse
|
17
|
Loy DE, Liu W, Li Y, Learn GH, Plenderleith LJ, Sundararaman SA, Sharp PM, Hahn BH. Out of Africa: origins and evolution of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Int J Parasitol 2016; 47:87-97. [PMID: 27381764 DOI: 10.1016/j.ijpara.2016.05.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/25/2016] [Accepted: 05/28/2016] [Indexed: 12/22/2022]
Abstract
Plasmodium falciparum and Plasmodium vivax account for more than 95% of all human malaria infections, and thus pose a serious public health challenge. To control and potentially eliminate these pathogens, it is important to understand their origins and evolutionary history. Until recently, it was widely believed that P. falciparum had co-evolved with humans (and our ancestors) over millions of years, whilst P. vivax was assumed to have emerged in southeastern Asia following the cross-species transmission of a parasite from a macaque. However, the discovery of a multitude of Plasmodium spp. in chimpanzees and gorillas has refuted these theories and instead revealed that both P. falciparum and P. vivax evolved from parasites infecting wild-living African apes. It is now clear that P. falciparum resulted from a recent cross-species transmission of a parasite from a gorilla, whilst P. vivax emerged from an ancestral stock of parasites that infected chimpanzees, gorillas and humans in Africa, until the spread of the protective Duffy-negative mutation eliminated P. vivax from human populations there. Although many questions remain concerning the biology and zoonotic potential of the P. falciparum- and P. vivax-like parasites infecting apes, comparative genomics, coupled with functional parasite and vector studies, are likely to yield new insights into ape Plasmodium transmission and pathogenesis that are relevant to the treatment and prevention of human malaria.
Collapse
Affiliation(s)
- Dorothy E Loy
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weimin Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yingying Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gerald H Learn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sesh A Sundararaman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul M Sharp
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Variation in susceptibility of African Plasmodium falciparum malaria parasites to TEP1 mediated killing in Anopheles gambiae mosquitoes. Sci Rep 2016; 6:20440. [PMID: 26861587 PMCID: PMC4748223 DOI: 10.1038/srep20440] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/04/2016] [Indexed: 12/26/2022] Open
Abstract
Anopheles gambiae s.s. mosquitoes are efficient vectors for Plasmodium falciparum, although variation exists in their susceptibility to infection. This variation depends partly on the thioester-containing protein 1 (TEP1) and TEP depletion results in significantly elevated numbers of oocysts in susceptible and resistant mosquitoes. Polymorphism in the Plasmodium gene coding for the surface protein Pfs47 modulates resistance of some parasite laboratory strains to TEP1-mediated killing. Here, we examined resistance of P. falciparum isolates of African origin (NF54, NF165 and NF166) to TEP1-mediated killing in a susceptible Ngousso and a refractory L3–5 strain of A. gambiae. All parasite clones successfully developed in susceptible mosquitoes with limited evidence for an impact of TEP1 on transmission efficiency. In contrast, NF166 and NF165 oocyst densities were strongly reduced in refractory mosquitoes and TEP1 silencing significantly increased oocyst densities. Our results reveal differences between African P. falciparum strains in their capacity to evade TEP1-mediated killing in resistant mosquitoes. There was no significant correlation between Pfs47 genotype and resistance of a given P. falciparum isolate for TEP1 killing. These data suggest that polymorphisms in this locus are not the sole mediators of immune evasion of African malaria parasites.
Collapse
|
19
|
Molina-Cruz A, Barillas-Mury C. The remarkable journey of adaptation of the Plasmodium falciparum malaria parasite to New World anopheline mosquitoes. Mem Inst Oswaldo Cruz 2015; 109:662-7. [PMID: 25185006 PMCID: PMC4156459 DOI: 10.1590/0074-0276130553] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/25/2014] [Indexed: 12/22/2022] Open
Abstract
Plasmodium falciparum originated in Africa, dispersed around the
world as a result of human migration and had to adapt to several different indigenous
anopheline mosquitoes. Anophelines from the New World are evolutionary distant form
African ones and this probably resulted in a more stringent selection of
Plasmodium as it adapted to these vectors. It is thought that
Plasmodium has been genetically selected by some anopheline species
through unknown mechanisms. The mosquito immune system can greatly limit infection
and P. falciparum evolved a strategy to evade these responses, at
least in part mediated by Pfs47, a highly polymorphic gene. We
propose that adaptation of P. falciparum to new vectors may require
evasion of their immune system. Parasites with a Pfs47 haplotype
compatible with the indigenous mosquito vector would be able to survive and be
transmitted. The mosquito antiplasmodial response could be an important determinant
of P. falciparum population structure and could affect malaria
transmission in the Americas.
Collapse
Affiliation(s)
- Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
20
|
The complete mitochondrial genomes of five Eimeria species infecting domestic rabbits. Exp Parasitol 2015; 159:67-71. [PMID: 26358270 DOI: 10.1016/j.exppara.2015.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 06/16/2015] [Accepted: 09/03/2015] [Indexed: 11/21/2022]
Abstract
Rabbit coccidiosis caused by members of the genus Eimeria can cause enormous economic impact worldwide, but the genetics, epidemiology and biology of these parasites remain poorly understood. In the present study, we sequenced and annotated the complete mitochondrial (mt) genomes of five Eimeria species that commonly infect the domestic rabbits. The complete mt genomes of Eimeria intestinalis, Eimeria flavescens, Eimeria media, Eimeria vejdovskyi and Eimeria irresidua were 6261bp, 6258bp, 6168bp, 6254bp, 6259bp in length, respectively. All of the mt genomes consist of 3 genes for proteins (cytb, cox1, and cox3), 14 gene fragments for the large subunit (LSU) rRNA and 11 gene fragments for the small subunit (SSU) rRNA, but no transfer RNA (tRNA) genes. The gene order of the mt genomes is similar to that of Plasmodium, but distinct from Haemosporida and Theileria. Phylogenetic analyses based on full nucleotide sequences using Bayesian analysis revealed that the monophyly of the Eimeria of rabbits was strongly statistically supported with a Bayesian posterior probabilities. These data provide novel mtDNA markers for studying the population genetics and molecular epidemiology of the Eimeria species, and should have implications for the molecular diagnosis, prevention and control of coccidiosis in rabbits.
Collapse
|
21
|
Tyagi S, Pande V, Das A. Mitochondrial genome sequence diversity of Indian Plasmodium falciparum isolates. Mem Inst Oswaldo Cruz 2015; 109:494-8. [PMID: 25075789 PMCID: PMC4155855 DOI: 10.1590/0074-0276130531] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 03/11/2014] [Indexed: 11/22/2022] Open
Abstract
We have analysed the whole mitochondrial (mt) genome sequences (each
~6 kilo nucleotide base pairs in length) of four field isolates of the malaria
parasite Plasmodium falciparum collected from different locations
in India. Comparative genomic analyses of mt genome sequences
revealed three novel India-specific single nucleotide polymorphisms. In general, high
mt genome diversity was found in Indian P.
falciparum, at a level comparable to African isolates. A population
phylogenetic tree placed the presently sequenced Indian P. falciparum
with the global isolates, while a previously sequenced Indian isolate was an
outlier. Although this preliminary study is limited to a few numbers of isolates, the
data have provided fundamental evidence of the mt genome diversity
and evolutionary relationships of Indian P. falciparum with that of
global isolates.
Collapse
Affiliation(s)
- Suchi Tyagi
- Evolutionary Genomics and Bioinformatics Laboratory, Division of Genomics and Bioinformatics, National Institute of Malaria Research, New Delhi, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, India
| | - Aparup Das
- Evolutionary Genomics and Bioinformatics Laboratory, Division of Genomics and Bioinformatics, National Institute of Malaria Research, New Delhi, India
| |
Collapse
|
22
|
Tyagi S, Das A. Mitochondrial population genomic analyses reveal population structure and demography of Indian Plasmodium falciparum. Mitochondrion 2015; 24:9-21. [PMID: 26149324 DOI: 10.1016/j.mito.2015.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 06/29/2015] [Accepted: 06/29/2015] [Indexed: 11/30/2022]
Abstract
Inference on the genetic diversity of Plasmodium falciparum populations could help in better management of malaria. A very recent study with mitochondrial (mt) genomes in global P. falciparum had revealed interesting evolutionary genetic patterns of Indian isolates in comparison to global ones. However, no population genetic study using the whole mt genome sequences of P. falciparum isolates collected in the entire distribution range in India has yet been performed. We herewith have analyzed 85 whole mt genomes (48 already published and 37 entirely new) sampled from eight differentially endemic Indian locations to estimate genetic diversity and infer population structure and historical demography of Indian P. falciparum. We found 19 novel Indian-specific Single Nucleotide Polymorphisms (SNPs) and 22 novel haplotypes segregating in Indian P. falciparum. Accordingly, high haplotype and nucleotide diversities were detected in Indian P. falciparum in comparison to many other global isolates. Indian P. falciparum populations were found to be moderately sub-structured with four different genetic clusters. Interestingly, group of local populations aggregate to form each cluster; while samples from Jharkhand and Odisha formed a single cluster, P. falciparum isolates from Asom formed an independent one. Similarly, Surat, Bilaspur and Betul formed a single cluster and Goa and Mangalore formed another. Interestingly, P. falciparum isolates from the two later populations were significantly genetically differentiated from isolates collected in other six Indian locations. Signature of historical population expansion was evident in five population samples, and the onset of expansion event was found to be very similar to African P. falciparum. In agreement with the previous finding, the estimated Time to Most Recent Common Ancestor (TMRCA) and the effective population size were high in Indian P. falciparum. All these genetic features of Indian P. falciparum with high mt genome diversity are somehow similar to Africa, but quite different from other Asian population samples.
Collapse
Affiliation(s)
- Suchi Tyagi
- Evolutionary Genomics and Bioinformatics Laboratory, Division of Genomics and Bioinformatics, National Institute of Malaria Research, New Delhi, India
| | - Aparup Das
- Evolutionary Genomics and Bioinformatics Laboratory, Division of Genomics and Bioinformatics, National Institute of Malaria Research, New Delhi, India.
| |
Collapse
|
23
|
Szczepanowska K, Trifunovic A. Different faces of mitochondrial DNA mutators. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1362-72. [PMID: 26014346 DOI: 10.1016/j.bbabio.2015.05.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 10/23/2022]
Abstract
A number of studies have shown that ageing is associated with increased amounts of mtDNA deletions and/or point mutations in a variety of species as diverse as Caenorhabditis elegans, Drosophila melanogaster, mice, rats, dogs, primates and humans. This detected vulnerability of mtDNA has led to the suggestion that the accumulation of somatic mtDNA mutations might arise from increased oxidative damage and could play an important role in the ageing process by producing cells with a decreased oxidative capacity. However, the vast majority of DNA polymorphisms and disease-causing base-substitution mutations and age-associated mutations that have been detected in human mtDNA are transition mutations. They are likely arising from the slight infidelity of the mitochondrial DNA polymerase. Indeed, transition mutations are also the predominant type of mutation found in mtDNA mutator mice, a model for premature ageing caused by increased mutation load due to the error prone mitochondrial DNA synthesis. These particular misincorporation events could also be exacerbated by dNTP pool imbalances. The role of different repair, replication and maintenance mechanisms that contribute to mtDNA integrity and mutagenesis will be discussed in details in this article. This article is part of a Special Issue entitled: Mitochondrial Dysfunction in Aging.
Collapse
Affiliation(s)
- Karolina Szczepanowska
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, D-50931 Cologne, Germany.
| |
Collapse
|
24
|
Boundenga L, Ollomo B, Rougeron V, Mouele LY, Mve-Ondo B, Delicat-Loembet LM, Moukodoum ND, Okouga AP, Arnathau C, Elguero E, Durand P, Liégeois F, Boué V, Motsch P, Le Flohic G, Ndoungouet A, Paupy C, Ba CT, Renaud F, Prugnolle F. Diversity of malaria parasites in great apes in Gabon. Malar J 2015; 14:111. [PMID: 25889049 PMCID: PMC4364493 DOI: 10.1186/s12936-015-0622-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/22/2015] [Indexed: 12/25/2022] Open
Abstract
Background Until 2009, the Laverania subgenus counted only two representatives: Plasmodium falciparum and Plasmodium reichenowi. The recent development of non-invasive methods allowed re-exploration of plasmodial diversity in African apes. Although a large number of great ape populations have now been studied regarding Plasmodium infections in Africa, there are still vast areas of their distribution that remained unexplored. Gabon constitutes an important part of the range of western central African great ape subspecies (Pan troglodytes troglodytes and Gorilla gorilla gorilla), but has not been studied so far. In the present study, the diversity of Plasmodium species circulating in great apes in Gabon was analysed. Methods The analysis of 1,261 faecal samples from 791 chimpanzees and 470 gorillas collected from 24 sites all over Gabon was performed. Plasmodium infections were characterized by amplification and sequencing of a portion of the Plasmodium cytochrome b gene. Results The analysis of the 1,261 samples revealed that at least six Plasmodium species circulate in great apes in Gabon (Plasmodium praefalciparum, Plasmodium gorA (syn Plasmodium adleri), Plasmodium gorB (syn Plasmodium blacklocki) in gorillas and Plasmodium gaboni, P. reichenowi and Plasmodium billcollinsi in chimpanzees). No new phylogenetic lineages were discovered. The average infection rate was 21.3% for gorillas and 15.4% for chimpanzees. A logistic regression showed that the probability of infection was significantly dependent on the freshness of the droppings but not of the host species or of the average pluviometry of the months of collection.
Collapse
Affiliation(s)
- Larson Boundenga
- Centre International de Recherche Médicale de Franceville, BP 769, Franceville-Gabon, Gabon. .,Laboratoire d'Écologie et Biologie évolutive, Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar, BP5005, Sénégal.
| | - Benjamin Ollomo
- Centre International de Recherche Médicale de Franceville, BP 769, Franceville-Gabon, Gabon.
| | - Virginie Rougeron
- Centre International de Recherche Médicale de Franceville, BP 769, Franceville-Gabon, Gabon. .,MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle), UMR CNRS 5290 / IRD 224, Université Montpellier 1, Montpellier, France.
| | - Lauriane Yacka Mouele
- Centre International de Recherche Médicale de Franceville, BP 769, Franceville-Gabon, Gabon.
| | - Bertrand Mve-Ondo
- Centre International de Recherche Médicale de Franceville, BP 769, Franceville-Gabon, Gabon.
| | | | | | - Alain Prince Okouga
- Centre International de Recherche Médicale de Franceville, BP 769, Franceville-Gabon, Gabon.
| | - Céline Arnathau
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle), UMR CNRS 5290 / IRD 224, Université Montpellier 1, Montpellier, France.
| | - Eric Elguero
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle), UMR CNRS 5290 / IRD 224, Université Montpellier 1, Montpellier, France.
| | - Patrick Durand
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle), UMR CNRS 5290 / IRD 224, Université Montpellier 1, Montpellier, France.
| | - Florian Liégeois
- Centre International de Recherche Médicale de Franceville, BP 769, Franceville-Gabon, Gabon. .,TransVIHMI (Recherche Translationnelle sur le VIH et les Maladies Infectieuses), UMI 233, Institut de Recherche pour le Développement (IRD) and Université Montpellier 1, Montpellier, France.
| | - Vanina Boué
- Centre International de Recherche Médicale de Franceville, BP 769, Franceville-Gabon, Gabon.
| | - Peggy Motsch
- Centre International de Recherche Médicale de Franceville, BP 769, Franceville-Gabon, Gabon.
| | - Guillaume Le Flohic
- Centre International de Recherche Médicale de Franceville, BP 769, Franceville-Gabon, Gabon.
| | - Alphonse Ndoungouet
- Centre International de Recherche Médicale de Franceville, BP 769, Franceville-Gabon, Gabon.
| | - Christophe Paupy
- Centre International de Recherche Médicale de Franceville, BP 769, Franceville-Gabon, Gabon. .,MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle), UMR CNRS 5290 / IRD 224, Université Montpellier 1, Montpellier, France.
| | - Cheikh Tidiane Ba
- Laboratoire d'Écologie et Biologie évolutive, Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar, BP5005, Sénégal.
| | - Francois Renaud
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle), UMR CNRS 5290 / IRD 224, Université Montpellier 1, Montpellier, France.
| | - Franck Prugnolle
- Centre International de Recherche Médicale de Franceville, BP 769, Franceville-Gabon, Gabon. .,MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle), UMR CNRS 5290 / IRD 224, Université Montpellier 1, Montpellier, France.
| |
Collapse
|
25
|
Nadimi M, Stefani FOP, Hijri M. The mitochondrial genome of the glomeromycete Rhizophagus sp. DAOM 213198 reveals an unusual organization consisting of two circular chromosomes. Genome Biol Evol 2014; 7:96-105. [PMID: 25527840 PMCID: PMC4316621 DOI: 10.1093/gbe/evu268] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2014] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial (mt) genomes are intensively studied in Ascomycota and Basidiomycota, but they are poorly documented in basal fungal lineages. In this study, we sequenced the complete mtDNA of Rhizophagus sp. DAOM 213198, a close relative to Rhizophagus irregularis, a widespread, ecologically and economical relevant species belonging to Glomeromycota. Unlike all other known taxonomically close relatives harboring a full-length circular chromosome, mtDNA of Rhizophagus sp. reveals an unusual organization with two circular chromosomes of 61,964 and 29,078 bp. The large chromosome contained nine protein-coding genes (atp9, nad5, cob, nad4, nad1, nad4L, cox1, cox2, and atp8), small subunit rRNA gene (rns), and harbored 20 tRNA-coding genes and 10 orfs, while the small chromosome contained five protein-coding genes (atp6, nad2, nad3, nad6, and cox3), large subunit rRNA gene (rnl) in addition to 5 tRNA-coding genes, and 8 plasmid-related DNA polymerases (dpo). Although structural variation of plant mt genomes is well documented, this study is the first report of the presence of two circular mt genomes in arbuscular mycorrhizal fungi. Interestingly, the presence of dpo at the breakage point in intergenes cox1-cox2 and rnl-atp6 for large and small mtDNAs, respectively, could be responsible for the conversion of Rhizophagus sp. mtDNA into two chromosomes. Using quantitative real-time polymerase chain reaction, we found that both mtDNAs have an equal abundance. This study reports a novel mtDNA organization in Glomeromycota and highlights the importance of studying early divergent fungal lineages to describe novel evolutionary pathways in the fungal kingdom.
Collapse
Affiliation(s)
- Maryam Nadimi
- Département de Sciences Biologiques, Université de Montréal, Institut de Recherche en Biologie Végétale (IRBV), Quebec, Canada
| | - Franck O P Stefani
- Département de Sciences Biologiques, Université de Montréal, Institut de Recherche en Biologie Végétale (IRBV), Quebec, Canada
| | - Mohamed Hijri
- Département de Sciences Biologiques, Université de Montréal, Institut de Recherche en Biologie Végétale (IRBV), Quebec, Canada
| |
Collapse
|
26
|
Ocholla H, Preston MD, Mipando M, Jensen ATR, Campino S, MacInnis B, Alcock D, Terlouw A, Zongo I, Oudraogo JB, Djimde AA, Assefa S, Doumbo OK, Borrmann S, Nzila A, Marsh K, Fairhurst RM, Nosten F, Anderson TJC, Kwiatkowski DP, Craig A, Clark TG, Montgomery J. Whole-genome scans provide evidence of adaptive evolution in Malawian Plasmodium falciparum isolates. J Infect Dis 2014; 210:1991-2000. [PMID: 24948693 PMCID: PMC4241944 DOI: 10.1093/infdis/jiu349] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Selection by host immunity and antimalarial drugs has driven extensive adaptive evolution in Plasmodium falciparum and continues to produce ever-changing landscapes of genetic variation. Methods We performed whole-genome sequencing of 69 P. falciparum isolates from Malawi and used population genetics approaches to investigate genetic diversity and population structure and identify loci under selection. Results High genetic diversity (π = 2.4 × 10−4), moderately high multiplicity of infection (2.7), and low linkage disequilibrium (500-bp) were observed in Chikhwawa District, Malawi, an area of high malaria transmission. Allele frequency–based tests provided evidence of recent population growth in Malawi and detected potential targets of host immunity and candidate vaccine antigens. Comparison of the sequence variation between isolates from Malawi and those from 5 geographically dispersed countries (Kenya, Burkina Faso, Mali, Cambodia, and Thailand) detected population genetic differences between Africa and Asia, within Southeast Asia, and within Africa. Haplotype-based tests of selection to sequence data from all 6 populations identified signals of directional selection at known drug-resistance loci, including pfcrt, pfdhps, pfmdr1, and pfgch1. Conclusions The sequence variations observed at drug-resistance loci reflect differences in each country's historical use of antimalarial drugs and may be useful in formulating local malaria treatment guidelines.
Collapse
Affiliation(s)
- Harold Ocholla
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme Liverpool School of Tropical Medicine, Pembroke Place, Liverpool
| | - Mark D Preston
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine
| | - Mwapatsa Mipando
- Department of Physiology, College of Medicine, University of Malawi, Blantyre
| | - Anja T R Jensen
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen Department of Infectious Diseases, Copenhagen University Hospital, Denmark
| | | | | | | | - Anja Terlouw
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme Liverpool School of Tropical Medicine, Pembroke Place, Liverpool
| | - Issaka Zongo
- Institut de Recherche en Sciences de la Sant, Bobo-Dioulasso, Burkina Faso
| | | | - Abdoulaye A Djimde
- Wellcome Trust Sanger Institute, Hinxton Malaria Research and Training Centre, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Mali
| | - Samuel Assefa
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine
| | - Ogobara K Doumbo
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Mali
| | | | - Alexis Nzila
- Department of Biology, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Kevin Marsh
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Francois Nosten
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, United Kingdom Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | | | - Dominic P Kwiatkowski
- Wellcome Trust Sanger Institute, Hinxton Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Alister Craig
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine
| | - Jacqui Montgomery
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme Liverpool School of Tropical Medicine, Pembroke Place, Liverpool
| |
Collapse
|
27
|
A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains. Nat Commun 2014; 5:4052. [PMID: 24923250 PMCID: PMC4082634 DOI: 10.1038/ncomms5052] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/06/2014] [Indexed: 11/21/2022] Open
Abstract
Malaria is a major public health problem that is actively being addressed in a global eradication campaign. Increased population mobility through international air travel has elevated the risk of re-introducing parasites to elimination areas and dispersing drug-resistant parasites to new regions. A simple genetic marker that quickly and accurately identifies the geographic origin of infections would be a valuable public health tool for locating the source of imported outbreaks. Here we analyse the mitochondrion and apicoplast genomes of 711 Plasmodium falciparum isolates from 14 countries, and find evidence that they are non-recombining and co-inherited. The high degree of linkage produces a panel of relatively few single-nucleotide polymorphisms (SNPs) that is geographically informative. We design a 23-SNP barcode that is highly predictive (~92%) and easily adapted to aid case management in the field and survey parasite migration worldwide. Tracing the source of malarial infections is an important step towards monitoring and controlling the disease. Here, Preston et al. analyse sequence data from 711 isolates and design a genetic barcode based on combined mitochondrial and apicoplast genomes that is able to distinguish between malaria parasites isolated from different geographical regions.
Collapse
|
28
|
Tyagi S, Pande V, Das A. New insights into the evolutionary history of Plasmodium falciparum from mitochondrial genome sequence analyses of Indian isolates. Mol Ecol 2014; 23:2975-87. [PMID: 24845521 DOI: 10.1111/mec.12800] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 05/16/2014] [Accepted: 05/16/2014] [Indexed: 12/31/2022]
Abstract
Estimating genetic diversity and inferring the evolutionary history of Plasmodium falciparum could be helpful in understanding origin and spread of virulent and drug-resistant forms of the malaria pathogen and therefore contribute to malaria control programme. Genetic diversity of the whole mitochondrial (mt) genome of P. falciparum sampled across the major distribution ranges had been reported, but no Indian P. falciparum isolate had been analysed so far, even though India is highly endemic to P. falciparum malaria. We have sequenced the whole mt genome of 44 Indian field isolates and utilized published data set of 96 genome sequences to present global genetic diversity and to revisit the evolutionary history of P. falciparum. Indian P. falciparum presents high genetic diversity with several characteristics of ancestral populations and shares many of the genetic features with African and to some extent Papua New Guinean (PNG) isolates. Similar to African isolates, Indian P. falciparum populations have maintained high effective population size and undergone rapid expansion in the past with oldest time to the most recent common ancestor (TMRCA). Interestingly, one of the four single nucleotide polymorphisms (SNPs) that differentiates P. falciparum from P. falciparum-like isolates (infecting non-human primates in Africa) was found to be segregating in five Indian P. falciparum isolates. This SNP was in tight linkage with other two novel SNPs that were found exclusively in these five Indian isolates. The results on the mt genome sequence analyses of Indian isolates on the whole add to the current understanding on the evolutionary history of P. falciparum.
Collapse
Affiliation(s)
- Suchi Tyagi
- Evolutionary Genomics and Bioinformatics Laboratory, National Institute of Malaria Research, Sector - 8 Dwarka, New Delhi, 110077, India
| | | | | |
Collapse
|
29
|
Gosling AL, Matisoo-Smith E, Merriman TR. Hyperuricaemia in the Pacific: why the elevated serum urate levels? Rheumatol Int 2014; 34:743-57. [PMID: 24378761 DOI: 10.1007/s00296-013-2922-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/13/2013] [Indexed: 12/22/2022]
Abstract
Pacific Island populations, particularly those of Polynesian descent, have a high prevalence of hyperuricaemia and gout. This is due to an inherently higher urate level among these populations with a demonstrated genetic predisposition. While an excess of urate can cause pathology, urate is also important for human health. It has been implicated as an antioxidant, has a neuroprotective role and is involved in innate immune responses. This paper provides a brief review of urate levels worldwide, with a particular focus on island Southeast Asia and the Pacific. We then present possible evolutionary explanations for the elevated serum urate levels among Pacific populations in the context of the physiological importance of urate and of the settlement history of the region. Finally, we propose that ancestry may play a significant role in hyperuricaemia in these populations and that exposure to malaria prior to population expansion into the wider Pacific may have driven genetic selection for variants contributing to high serum urate.
Collapse
Affiliation(s)
- Anna L Gosling
- Department of Anatomy, Allan Wilson Centre for Molecular Ecology and Evolution, University of Otago, PO Box 913, Dunedin, New Zealand,
| | | | | |
Collapse
|
30
|
Preston MD, Assefa SA, Ocholla H, Sutherland CJ, Borrmann S, Nzila A, Michon P, Hien TT, Bousema T, Drakeley CJ, Zongo I, Ouédraogo JB, Djimde AA, Doumbo OK, Nosten F, Fairhurst RM, Conway DJ, Roper C, Clark TG. PlasmoView: a web-based resource to visualise global Plasmodium falciparum genomic variation. J Infect Dis 2014; 209:1808-15. [PMID: 24338354 PMCID: PMC4017360 DOI: 10.1093/infdis/jit812] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/21/2013] [Indexed: 11/17/2022] Open
Abstract
Malaria is a global public health challenge, with drug resistance a major barrier to disease control and elimination. To meet the urgent need for better treatments and vaccines, a deeper knowledge of Plasmodium biology and malaria epidemiology is required. An improved understanding of the genomic variation of malaria parasites, especially the most virulent Plasmodium falciparum (Pf) species, has the potential to yield new insights in these areas. High-throughput sequencing and genotyping is generating large amounts of genomic data across multiple parasite populations. The resulting ability to identify informative variants, particularly single-nucleotide polymorphisms (SNPs), will lead to the discovery of intra- and inter-population differences and thus enable the development of genetic barcodes for diagnostic assays and clinical studies. Knowledge of genetic variability underlying drug resistance and other differential phenotypes will also facilitate the identification of novel mutations and contribute to surveillance and stratified medicine applications. The PlasmoView interactive web-browsing tool enables the research community to visualise genomic variation and annotation (eg, biological function) in a geographic setting. The first release contains over 600,000 high-quality SNPs in 631 Pf isolates from laboratory strains and four malaria-endemic regions (West Africa, East Africa, Southeast Asia and Oceania).
Collapse
Affiliation(s)
- Mark D. Preston
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Samuel A. Assefa
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Harold Ocholla
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 3, Malawi
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Colin J. Sutherland
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Steffen Borrmann
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Infectious Diseases, Heidelberg University School of Medicine, Heidelberg 69120, Germany
| | - Alexis Nzila
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- King Fahd University of Petroleum and Minerals, PO Box 468, Dhahran 31262, Kingdom of Saudi Arabia
| | - Pascal Michon
- Papua New Guinea Institute of Medical Research, PO Box 483, Madang, Papua New Guinea
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Hospital for Tropical Diseases, District 5, Ho Chi Minh City, Vietnam
| | - Teun Bousema
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Christopher J. Drakeley
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Issaka Zongo
- Institut de Recherche en Sciences de la Sant, Bobo–Dioulasso, Burkina Faso
| | - Jean-Bosco Ouédraogo
- Institut de Recherche en Sciences de la Sant, BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - Abdoulaye A. Djimde
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Bamako, Mali
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Ogobara K. Doumbo
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Bamako, Mali
| | - Francois Nosten
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok 10400, Thailand
- Centre for Tropical Medicine, University of Oxford, Oxford OX3 7LJ, United Kingdom
- Shoklo Malaria Research Unit, Mae Sot TAK 63110, Thailand
| | - Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - David J. Conway
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Cally Roper
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Taane G. Clark
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| |
Collapse
|
31
|
Yalcindag E, Rougeron V, Elguero E, Arnathau C, Durand P, Brisse S, Diancourt L, Aubouy A, Becquart P, D'Alessandro U, Fontenille D, Gamboa D, Maestre A, Ménard D, Musset L, Noya O, Veron V, Wide A, Carme B, Legrand E, Chevillon C, Ayala FJ, Renaud F, Prugnolle F. Patterns of selection onPlasmodium falciparumerythrocyte-binding antigens after the colonization of the New World. Mol Ecol 2014; 23:1979-93. [DOI: 10.1111/mec.12696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Erhan Yalcindag
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle); UMR CNRS 5290/IRD 224; Université Montpellier 1; Université Montpellier 2; CHRU de Montpellier; 39 Avenue Charles Flahault 34295 Montpellier France
- Department of Botany and Zoology; Faculty of Science; Masaryk University; Kotlářská 2 611 37 Brno Czech Republic
| | - Virginie Rougeron
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle); UMR CNRS 5290/IRD 224; Université Montpellier 1; Université Montpellier 2; CHRU de Montpellier; 39 Avenue Charles Flahault 34295 Montpellier France
- Centre International de Recherches Médicales de Franceville (CIRMF); BP 769 Franceville Gabon
| | - Eric Elguero
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle); UMR CNRS 5290/IRD 224; Université Montpellier 1; Université Montpellier 2; CHRU de Montpellier; 39 Avenue Charles Flahault 34295 Montpellier France
| | - Céline Arnathau
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle); UMR CNRS 5290/IRD 224; Université Montpellier 1; Université Montpellier 2; CHRU de Montpellier; 39 Avenue Charles Flahault 34295 Montpellier France
| | - Patrick Durand
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle); UMR CNRS 5290/IRD 224; Université Montpellier 1; Université Montpellier 2; CHRU de Montpellier; 39 Avenue Charles Flahault 34295 Montpellier France
| | - Sylvain Brisse
- Institut Pasteur; Plate-forme Génotypage des Pathogènes et Santé Publique; 28 Rue du docteur Roux 75724 Paris France
| | - Laure Diancourt
- Institut Pasteur; Plate-forme Génotypage des Pathogènes et Santé Publique; 28 Rue du docteur Roux 75724 Paris France
| | - Agnes Aubouy
- Institut de Recherche pour le Développement (IRD); UMR152; Université Paul Sabatier; 35 Chemin des Maraîchers 31062 Toulouse France
| | - Pierre Becquart
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle); UMR CNRS 5290/IRD 224; Université Montpellier 1; Université Montpellier 2; CHRU de Montpellier; 39 Avenue Charles Flahault 34295 Montpellier France
| | | | - Didier Fontenille
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle); UMR CNRS 5290/IRD 224; Université Montpellier 1; Université Montpellier 2; CHRU de Montpellier; 39 Avenue Charles Flahault 34295 Montpellier France
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander Von Humboldt; Universidad Peruana Cayetano Heredia; AP 4314 Lima 100 Peru
| | - Amanda Maestre
- Grupo Salud y Comunidad; Facultad de Medicina; Universidad de Antioquía; Medellín Colombia
| | - Didier Ménard
- Molecular Epidemiology Unit; Pasteur Institute of Cambodia; 5 Boulevard Monivong - PO Box 983 Phnom Penh Cambodia
| | - Lise Musset
- Parasitology laboratory; Institut Pasteur de Guyane; BP6010 97306 Cayenne Cedex French Guiana
| | - Oscar Noya
- Centro para Estudios Sobre Malaria; Instituto de Altos Estudios en Salud “Dr. Arnoldo Gabaldón”-INH; Ministerio del Poder Popular para la Salud; Instituto de Medicina Tropical; Universidad Central de Venezuela; Caracas Venezuela
| | | | - Albina Wide
- Centro para Estudios Sobre Malaria; Instituto de Altos Estudios en Salud “Dr. Arnoldo Gabaldón”-INH; Ministerio del Poder Popular para la Salud; Instituto de Medicina Tropical; Universidad Central de Venezuela; Caracas Venezuela
| | - Bernard Carme
- Centre d'Investigation Clinique Epidémiologie Clinique Antilles; Guyane CIC-EC 802; Cayenne General Hospital; Cayenne French Guiana
| | - Eric Legrand
- Parasitology laboratory; Institut Pasteur de Guyane; BP6010 97306 Cayenne Cedex French Guiana
| | - Christine Chevillon
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle); UMR CNRS 5290/IRD 224; Université Montpellier 1; Université Montpellier 2; CHRU de Montpellier; 39 Avenue Charles Flahault 34295 Montpellier France
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology; University of California; Irvine CA 92697 USA
| | - François Renaud
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle); UMR CNRS 5290/IRD 224; Université Montpellier 1; Université Montpellier 2; CHRU de Montpellier; 39 Avenue Charles Flahault 34295 Montpellier France
| | - Franck Prugnolle
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle); UMR CNRS 5290/IRD 224; Université Montpellier 1; Université Montpellier 2; CHRU de Montpellier; 39 Avenue Charles Flahault 34295 Montpellier France
- Centre International de Recherches Médicales de Franceville (CIRMF); BP 769 Franceville Gabon
| |
Collapse
|
32
|
Rodrigues PT, Alves JMP, Santamaria AM, Calzada JE, Xayavong M, Parise M, da Silva AJ, Ferreira MU. Using mitochondrial genome sequences to track the origin of imported Plasmodium vivax infections diagnosed in the United States. Am J Trop Med Hyg 2014; 90:1102-8. [PMID: 24639297 DOI: 10.4269/ajtmh.13-0588] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Although the geographic origin of malaria cases imported into the United States can often be inferred from travel histories, these histories may be lacking or incomplete. We hypothesized that mitochondrial haplotypes could provide region-specific molecular barcodes for tracing the origin of imported Plasmodium vivax infections. An analysis of 348 mitochondrial genomes from worldwide parasites and new sequences from 69 imported malaria cases diagnosed across the United States allowed for a geographic assignment of most infections originating from the Americas, southeast Asia, east Asia, and Melanesia. However, mitochondrial lineages from Africa, south Asia, central Asia, and the Middle East, which altogether contribute the vast majority of imported malaria cases in the United States, were closely related to each other and could not be reliably assigned to their geographic origins. More mitochondrial genomes are required to characterize molecular barcodes of P. vivax from these regions.
Collapse
Affiliation(s)
- Priscila T Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Parasitology, Gorgas Memorial Institute of Health, Panama City, Panama; Center for Global Health, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - João Marcelo P Alves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Parasitology, Gorgas Memorial Institute of Health, Panama City, Panama; Center for Global Health, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ana María Santamaria
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Parasitology, Gorgas Memorial Institute of Health, Panama City, Panama; Center for Global Health, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - José E Calzada
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Parasitology, Gorgas Memorial Institute of Health, Panama City, Panama; Center for Global Health, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Maniphet Xayavong
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Parasitology, Gorgas Memorial Institute of Health, Panama City, Panama; Center for Global Health, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Monica Parise
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Parasitology, Gorgas Memorial Institute of Health, Panama City, Panama; Center for Global Health, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Alexandre J da Silva
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Parasitology, Gorgas Memorial Institute of Health, Panama City, Panama; Center for Global Health, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Parasitology, Gorgas Memorial Institute of Health, Panama City, Panama; Center for Global Health, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
33
|
Tanabe K, Jombart T, Horibe S, Palacpac NMQ, Honma H, Tachibana SI, Nakamura M, Horii T, Kishino H, Mita T. Plasmodium falciparum mitochondrial genetic diversity exhibits isolation-by-distance patterns supporting a sub-Saharan African origin. Mitochondrion 2013; 13:630-6. [PMID: 24004956 DOI: 10.1016/j.mito.2013.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/13/2013] [Accepted: 08/26/2013] [Indexed: 01/31/2023]
Abstract
The geographical distribution of single nucleotide polymorphism (SNP) in the mitochondrial genome of the human malaria parasite Plasmodium falciparum was investigated. We identified 88 SNPs in 516 isolates from seven parasite populations in Africa, Southeast Asia and Oceania. Analysis of the SNPs postulated a sub-Saharan African origin and recovered a strong negative correlation between within-population SNP diversity and geographic distance from the putative African origin over Southeast Asia and Oceania. These results are consistent with those previously obtained for nuclear genome-encoded housekeeping genes, indicating that the pattern of inheritance does not substantially affect the geographical distribution of SNPs.
Collapse
Affiliation(s)
- Kazuyuki Tanabe
- Laboratory of Malariology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Neafsey DE, Galinsky K, Jiang RHY, Young L, Sykes SM, Saif S, Gujja S, Goldberg JM, Young S, Zeng Q, Chapman SB, Dash AP, Anvikar AR, Sutton PL, Birren BW, Escalante AA, Barnwell JW, Carlton JM. The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum. Nat Genet 2012; 44:1046-50. [PMID: 22863733 PMCID: PMC3432710 DOI: 10.1038/ng.2373] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 07/09/2012] [Indexed: 11/09/2022]
Abstract
We sequenced and annotated the genomes of four P. vivax strains collected from disparate geographic locations, tripling the number of genome sequences available for this understudied parasite and providing the first genome-wide perspective of global variability in this species. We observe approximately twice as much SNP diversity among these isolates as we do among a comparable collection of isolates of P. falciparum, a malaria-causing parasite that results in higher mortality. This indicates a distinct history of global colonization and/or a more stable demographic history for P. vivax relative to P. falciparum, which is thought to have undergone a recent population bottleneck. The SNP diversity, as well as additional microsatellite and gene family variability, suggests a capacity for greater functional variation in the global population of P. vivax. These findings warrant a deeper survey of variation in P. vivax to equip disease interventions targeting the distinctive biology of this neglected but major pathogen.
Collapse
|
35
|
Chang HH, Park DJ, Galinsky KJ, Schaffner SF, Ndiaye D, Ndir O, Mboup S, Wiegand RC, Volkman SK, Sabeti PC, Wirth DF, Neafsey DE, Hartl DL. Genomic sequencing of Plasmodium falciparum malaria parasites from Senegal reveals the demographic history of the population. Mol Biol Evol 2012; 29:3427-39. [PMID: 22734050 DOI: 10.1093/molbev/mss161] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Malaria is a deadly disease that causes nearly one million deaths each year. To develop methods to control and eradicate malaria, it is important to understand the genetic basis of Plasmodium falciparum adaptations to antimalarial treatments and the human immune system while taking into account its demographic history. To study the demographic history and identify genes under selection more efficiently, we sequenced the complete genomes of 25 culture-adapted P. falciparum isolates from three sites in Senegal. We show that there is no significant population structure among these Senegal sampling sites. By fitting demographic models to the synonymous allele-frequency spectrum, we also estimated a major 60-fold population expansion of this parasite population ∼20,000-40,000 years ago. Using inferred demographic history as a null model for coalescent simulation, we identified candidate genes under selection, including genes identified before, such as pfcrt and PfAMA1, as well as new candidate genes. Interestingly, we also found selection against G/C to A/T changes that offsets the large mutational bias toward A/T, and two unusual patterns: similar synonymous and nonsynonymous allele-frequency spectra, and 18% of genes having a nonsynonymous-to-synonymous polymorphism ratio >1.
Collapse
Affiliation(s)
- Hsiao-Han Chang
- Department of Organismic and Evolutionary Biology, Harvard University.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Feagin JE, Harrell MI, Lee JC, Coe KJ, Sands BH, Cannone JJ, Tami G, Schnare MN, Gutell RR. The fragmented mitochondrial ribosomal RNAs of Plasmodium falciparum. PLoS One 2012; 7:e38320. [PMID: 22761677 PMCID: PMC3382252 DOI: 10.1371/journal.pone.0038320] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/03/2012] [Indexed: 11/18/2022] Open
Abstract
Background The mitochondrial genome in the human malaria parasite Plasmodium falciparum is most unusual. Over half the genome is composed of the genes for three classic mitochondrial proteins: cytochrome oxidase subunits I and III and apocytochrome b. The remainder encodes numerous small RNAs, ranging in size from 23 to 190 nt. Previous analysis revealed that some of these transcripts have significant sequence identity with highly conserved regions of large and small subunit rRNAs, and can form the expected secondary structures. However, these rRNA fragments are not encoded in linear order; instead, they are intermixed with one another and the protein coding genes, and are coded on both strands of the genome. This unorthodox arrangement hindered the identification of transcripts corresponding to other regions of rRNA that are highly conserved and/or are known to participate directly in protein synthesis. Principal Findings The identification of 14 additional small mitochondrial transcripts from P. falcipaurm and the assignment of 27 small RNAs (12 SSU RNAs totaling 804 nt, 15 LSU RNAs totaling 1233 nt) to specific regions of rRNA are supported by multiple lines of evidence. The regions now represented are highly similar to those of the small but contiguous mitochondrial rRNAs of Caenorhabditis elegans. The P. falciparum rRNA fragments cluster on the interfaces of the two ribosomal subunits in the three-dimensional structure of the ribosome. Significance All of the rRNA fragments are now presumed to have been identified with experimental methods, and nearly all of these have been mapped onto the SSU and LSU rRNAs. Conversely, all regions of the rRNAs that are known to be directly associated with protein synthesis have been identified in the P. falciparum mitochondrial genome and RNA transcripts. The fragmentation of the rRNA in the P. falciparum mitochondrion is the most extreme example of any rRNA fragmentation discovered.
Collapse
Affiliation(s)
- Jean E Feagin
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yalcindag E, Elguero E, Arnathau C, Durand P, Akiana J, Anderson TJ, Aubouy A, Balloux F, Besnard P, Bogreau H, Carnevale P, D'Alessandro U, Fontenille D, Gamboa D, Jombart T, Le Mire J, Leroy E, Maestre A, Mayxay M, Ménard D, Musset L, Newton PN, Nkoghé D, Noya O, Ollomo B, Rogier C, Veron V, Wide A, Zakeri S, Carme B, Legrand E, Chevillon C, Ayala FJ, Renaud F, Prugnolle F. Multiple independent introductions of Plasmodium falciparum in South America. Proc Natl Acad Sci U S A 2012; 109:511-6. [PMID: 22203975 PMCID: PMC3258587 DOI: 10.1073/pnas.1119058109] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The origin of Plasmodium falciparum in South America is controversial. Some studies suggest a recent introduction during the European colonizations and the transatlantic slave trade. Other evidence--archeological and genetic--suggests a much older origin. We collected and analyzed P. falciparum isolates from different regions of the world, encompassing the distribution range of the parasite, including populations from sub-Saharan Africa, the Middle East, Southeast Asia, and South America. Analyses of microsatellite and SNP polymorphisms show that the populations of P. falciparum in South America are subdivided in two main genetic clusters (northern and southern). Phylogenetic analyses, as well as Approximate Bayesian Computation methods suggest independent introductions of the two clusters from African sources. Our estimates of divergence time between the South American populations and their likely sources favor a likely introduction from Africa during the transatlantic slave trade.
Collapse
Affiliation(s)
- Erhan Yalcindag
- Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Unité Mixte de Recherche 5290-224, Centre National de la Recherche Scientifique-Institut de Recherche pour le Développement-Université de Montpellier I-Université de Montpellier II, 34394 Montpellier Cedex 5, France
| | - Eric Elguero
- Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Unité Mixte de Recherche 5290-224, Centre National de la Recherche Scientifique-Institut de Recherche pour le Développement-Université de Montpellier I-Université de Montpellier II, 34394 Montpellier Cedex 5, France
| | - Céline Arnathau
- Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Unité Mixte de Recherche 5290-224, Centre National de la Recherche Scientifique-Institut de Recherche pour le Développement-Université de Montpellier I-Université de Montpellier II, 34394 Montpellier Cedex 5, France
| | - Patrick Durand
- Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Unité Mixte de Recherche 5290-224, Centre National de la Recherche Scientifique-Institut de Recherche pour le Développement-Université de Montpellier I-Université de Montpellier II, 34394 Montpellier Cedex 5, France
| | - Jean Akiana
- Service Epidémiologie Moléculaire et Parasitaire, Département de la Médecine Préventive et des Essais Cliniques, Laboratoire National de Santé Publique, Brazzaville, 1 Kinshasa, Republic of the Congo
| | - Timothy J. Anderson
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78245
| | - Agnes Aubouy
- Institut de Recherche pour le Développement–Unité Mixte de Recherche 152, Université Paul Sabatier, 31062 Toulouse, France
| | - François Balloux
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College, London W2 1PG, United Kingdom
| | - Patrick Besnard
- Malaria Control Program, Société Nationale de Métallurgie (Sonamet), Lobito, Angola
| | - Hervé Bogreau
- Institute for Biomedical Research of the French Army and Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes–Unité Mixte de Recherche 6236, Allée du Médecin Colonel Jamot, Marseille, Cedex 07, France
| | - Pierre Carnevale
- Institut de Recherche pour le Développement, 34394 Montpellier, France
| | - Umberto D'Alessandro
- Department of Parasitology, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Didier Fontenille
- Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Unité Mixte de Recherche 5290-224, Centre National de la Recherche Scientifique-Institut de Recherche pour le Développement-Université de Montpellier I-Université de Montpellier II, 34394 Montpellier Cedex 5, France
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, AP 4314, Lima 100, Peru
| | - Thibaut Jombart
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College, London W2 1PG, United Kingdom
| | - Jacques Le Mire
- Malaria Control Program, Société Nationale de Métallurgie (Sonamet), Lobito, Angola
| | - Eric Leroy
- Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Unité Mixte de Recherche 5290-224, Centre National de la Recherche Scientifique-Institut de Recherche pour le Développement-Université de Montpellier I-Université de Montpellier II, 34394 Montpellier Cedex 5, France
- Unité Emergence des Pathologies Virales, Unité Mixte de Recherche 190, Institut de Recherche pour le Développement, Université de la Méditerranée, Centre International de Recherche médicale de Franceville BP 769 Franceville, Gabon
| | - Amanda Maestre
- Grupo Salud y Comunidad, Facultad de Medicina, Universidad de Antioquía, Medellín, Colombia
| | - Mayfong Mayxay
- Wellcome Trust–Mahosot Hospital–Oxford Tropical Medicine Research Collaboration, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | - Didier Ménard
- Molecular Epidemiology Unit, Pasteur Institute of Cambodia, 12152 Phnom Penh, Cambodia
| | - Lise Musset
- Parasitology Unit, Institut Pasteur de Guyane, BP6010, 97306 Cayenne Cedex, French Guiana
| | - Paul N. Newton
- Wellcome Trust–Mahosot Hospital–Oxford Tropical Medicine Research Collaboration, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | - Dieudonné Nkoghé
- Unité Emergence des Pathologies Virales, Unité Mixte de Recherche 190, Institut de Recherche pour le Développement, Université de la Méditerranée, Centre International de Recherche médicale de Franceville BP 769 Franceville, Gabon
| | - Oscar Noya
- Centro para Estudios Sobre Malaria, Instituto de Altos Estudios en Salud “Dr. Arnoldo Gabaldón”, Ministerio del Poder Popular para la Salud and Instituto de Medicina Tropical, Universidad Central de Venezuela, 2101 Maracay, Caracas, Venezuela
| | - Benjamin Ollomo
- Unité Emergence des Pathologies Virales, Unité Mixte de Recherche 190, Institut de Recherche pour le Développement, Université de la Méditerranée, Centre International de Recherche médicale de Franceville BP 769 Franceville, Gabon
| | - Christophe Rogier
- Institute for Biomedical Research of the French Army and Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes–Unité Mixte de Recherche 6236, Allée du Médecin Colonel Jamot, Marseille, Cedex 07, France
| | - Vincent Veron
- Centre d'Investigation Clinique Epidémiologie Clinique Antilles, Guyane 802, Cayenne General Hospital, 97306 Cayenne, French Guiana
| | - Albina Wide
- Centro para Estudios Sobre Malaria, Instituto de Altos Estudios en Salud “Dr. Arnoldo Gabaldón”, Ministerio del Poder Popular para la Salud and Instituto de Medicina Tropical, Universidad Central de Venezuela, 2101 Maracay, Caracas, Venezuela
| | - Sedigheh Zakeri
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, 13164 Tehran, Iran; and
| | - Bernard Carme
- Centre d'Investigation Clinique Epidémiologie Clinique Antilles, Guyane 802, Cayenne General Hospital, 97306 Cayenne, French Guiana
| | - Eric Legrand
- Parasitology Unit, Institut Pasteur de Guyane, BP6010, 97306 Cayenne Cedex, French Guiana
| | - Christine Chevillon
- Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Unité Mixte de Recherche 5290-224, Centre National de la Recherche Scientifique-Institut de Recherche pour le Développement-Université de Montpellier I-Université de Montpellier II, 34394 Montpellier Cedex 5, France
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| | - François Renaud
- Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Unité Mixte de Recherche 5290-224, Centre National de la Recherche Scientifique-Institut de Recherche pour le Développement-Université de Montpellier I-Université de Montpellier II, 34394 Montpellier Cedex 5, France
| | - Franck Prugnolle
- Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Unité Mixte de Recherche 5290-224, Centre National de la Recherche Scientifique-Institut de Recherche pour le Développement-Université de Montpellier I-Université de Montpellier II, 34394 Montpellier Cedex 5, France
| |
Collapse
|
38
|
GFP-targeting allows visualization of the apicoplast throughout the life cycle of live malaria parasites. Biol Cell 2012; 101:415-30, 5 p following 430. [DOI: 10.1042/bc20080202] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Snounou G, Escalante A, Kasenene J, Rénia L, Grüner AC, Krief S. Le paludisme chez les hominidés. BULLETIN DE L ACADEMIE NATIONALE DE MEDECINE 2011. [DOI: 10.1016/s0001-4079(19)31931-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
40
|
Blanquart S, Gascuel O. Mitochondrial genes support a common origin of rodent malaria parasites and Plasmodium falciparum's relatives infecting great apes. BMC Evol Biol 2011; 11:70. [PMID: 21406081 PMCID: PMC3070646 DOI: 10.1186/1471-2148-11-70] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 03/15/2011] [Indexed: 11/16/2022] Open
Abstract
Background Plasmodium falciparum is responsible for the most acute form of human malaria. Most recent studies demonstrate that it belongs to a monophyletic lineage specialized in the infection of great ape hosts. Several other Plasmodium species cause human malaria. They all belong to another distinct lineage of parasites which infect a wider range of primate species. All known mammalian malaria parasites appear to be monophyletic. Their clade includes the two previous distinct lineages of parasites of primates and great apes, one lineage of rodent parasites, and presumably Hepatocystis species. Plasmodium falciparum and great ape parasites are commonly thought to be the sister-group of all other mammal-infecting malaria parasites. However, some studies supported contradictory origins and found parasites of great apes to be closer to those of rodents, or to those of other primates. Results To distinguish between these mutually exclusive hypotheses on the origin of Plasmodium falciparum and its great ape infecting relatives, we performed a comprehensive phylogenetic analysis based on a data set of three mitochondrial genes from 33 to 84 malaria parasites. We showed that malarial mitochondrial genes have evolved slowly and are compositionally homogeneous. We estimated their phylogenetic relationships using Bayesian and maximum-likelihood methods. Inferred trees were checked for their robustness to the (i) site selection, (ii) assumptions of various probabilistic models, and (iii) taxon sampling. Our results robustly support a common ancestry of rodent parasites and Plasmodium falciparum's relatives infecting great apes. Conclusions Our results refute the most common view of the origin of great ape malaria parasites, and instead demonstrate the robustness of a less well-established phylogenetic hypothesis, under which Plasmodium falciparum and its relatives infecting great apes are closely related to rodent parasites. This study sheds light on the evolutionary history of Plasmodium falciparum, a major issue for human health.
Collapse
Affiliation(s)
- Samuel Blanquart
- Méthodes et Algorithmes pour la Bioinformatique, LIRMM, UMR 5506, CNRS-Université de Montpellier 2, Montpellier, France.
| | | |
Collapse
|
41
|
Nygaard S, Braunstein A, Malsen G, Van Dongen S, Gardner PP, Krogh A, Otto TD, Pain A, Berriman M, McAuliffe J, Dermitzakis ET, Jeffares DC. Long- and short-term selective forces on malaria parasite genomes. PLoS Genet 2010; 6:e1001099. [PMID: 20838588 PMCID: PMC2936524 DOI: 10.1371/journal.pgen.1001099] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 07/28/2010] [Indexed: 11/18/2022] Open
Abstract
Plasmodium parasites, the causal agents of malaria, result in more than 1 million deaths annually. Plasmodium are unicellular eukaryotes with small ∼23 Mb genomes encoding ∼5200 protein-coding genes. The protein-coding genes comprise about half of these genomes. Although evolutionary processes have a significant impact on malaria control, the selective pressures within Plasmodium genomes are poorly understood, particularly in the non-protein-coding portion of the genome. We use evolutionary methods to describe selective processes in both the coding and non-coding regions of these genomes. Based on genome alignments of seven Plasmodium species, we show that protein-coding, intergenic and intronic regions are all subject to purifying selection and we identify 670 conserved non-genic elements. We then use genome-wide polymorphism data from P. falciparum to describe short-term selective processes in this species and identify some candidate genes for balancing (diversifying) selection. Our analyses suggest that there are many functional elements in the non-genic regions of these genomes and that adaptive evolution has occurred more frequently in the protein-coding regions of the genome.
Collapse
Affiliation(s)
- Sanne Nygaard
- Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Center for Social Evolution, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Braunstein
- Statistics Department, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Google, Inc., Mountain View, California, United States of America
| | - Gareth Malsen
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Stijn Van Dongen
- RNA Genomics, European Bioinformatics Institute, Cambridge, United Kingdom
| | | | - Anders Krogh
- Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Thomas D. Otto
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Arnab Pain
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | | | - Jon McAuliffe
- Statistics Department, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Emmanouil T. Dermitzakis
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- * E-mail: (DJ); (ED)
| | - Daniel C. Jeffares
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
- Department of Genetics, Evolution and Environment, University College London, United Kingdom
- * E-mail: (DJ); (ED)
| |
Collapse
|
42
|
Masuda I, Matsuzaki M, Kita K. Extensive frameshift at all AGG and CCC codons in the mitochondrial cytochrome c oxidase subunit 1 gene of Perkinsus marinus (Alveolata; Dinoflagellata). Nucleic Acids Res 2010; 38:6186-94. [PMID: 20507907 PMCID: PMC2952869 DOI: 10.1093/nar/gkq449] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Diverse mitochondrial (mt) genetic systems have evolved independently of the more uniform nuclear system and often employ modified genetic codes. The organization and genetic system of dinoflagellate mt genomes are particularly unusual and remain an evolutionary enigma. We determined the sequence of full-length cytochrome c oxidase subunit 1 (cox1) mRNA of the earliest diverging dinoflagellate Perkinsus and show that this gene resides in the mt genome. Apparently, this mRNA is not translated in a single reading frame with standard codon usage. Our examination of the nucleotide sequence and three-frame translation of the mRNA suggest that the reading frame must be shifted 10 times, at every AGG and CCC codon, to yield a consensus COX1 protein. We suggest two possible mechanisms for these translational frameshifts: a ribosomal frameshift in which stalled ribosomes skip the first bases of these codons or specialized tRNAs recognizing non-triplet codons, AGGY and CCCCU. Regardless of the mechanism, active and efficient machinery would be required to tolerate the frameshifts predicted in Perkinsus mitochondria. To our knowledge, this is the first evidence of translational frameshifts in protist mitochondria and, by far, is the most extensive case in mitochondria.
Collapse
Affiliation(s)
- Isao Masuda
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
43
|
Afonso A, Neto Z, Castro H, Lopes D, Alves AC, Tomás AM, Rosário VD. Plasmodium chabaudi chabaudi malaria parasites can develop stable resistance to atovaquone with a mutation in the cytochrome b gene. Malar J 2010; 9:135. [PMID: 20492669 PMCID: PMC2881937 DOI: 10.1186/1475-2875-9-135] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 05/21/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium falciparum, has developed resistance to many of the drugs in use. The recommended treatment policy is now to use drug combinations. The atovaquone-proguanil (AP) drug combination, is one of the treatment and prophylaxis options. Atovaquone (ATQ) exerts its action by inhibiting plasmodial mitochondria electron transport at the level of the cytochrome bc1 complex. Plasmodium falciparum in vitro resistance to ATQ has been associated with specific point mutations in the region spanning codons 271-284 of the cytochrome b gene. ATQ -resistant Plasmodium yoelii and Plasmodium berghei lines have been obtained and resistant lines have amino acid mutations in their CYT b protein sequences. Plasmodium chabaudi model for studying drug-responses and drug-resistance selection is a very useful rodent malaria model but no ATQ resistant parasites have been reported so far. The aim of this study was to determine the ATQ sensitivity of the P. chabaudi clones, to select a resistant parasite line and to perform genotypic characterization of the cytb gene of these clones. METHODS To select for ATQ resistance, Plasmodium. chabaudi chabaudi clones were exposed to gradually increasing concentrations of ATQ during several consecutive passages in mice. Plasmodium chabaudi cytb gene was amplified and sequenced. RESULTS ATQ resistance was selected from the clone AS-3CQ. In order to confirm whether an heritable genetic mutation underlies the response of AS-ATQ to ATQ, the stability of the drug resistance phenotype in this clone was evaluated by measuring drug responses after (i) multiple blood passages in the absence of the drug, (ii) freeze/thawing of parasites in liquid nitrogen and (iii) transmission through a mosquito host, Anopheles stephensi. ATQ resistance phenotype of the drug-selected parasite clone kept unaltered. Therefore, ATQ resistance in clone AS-ATQ is genetically encoded. The Minimum Curative Dose of AS-ATQ showed a six-fold increase in MCD to ATQ relative to AS-3CQ. CONCLUSIONS A mutation was found on the P. chabaudi cytb gene from the AS-ATQ sample a substitution at the residue Tyr268 for an Asn, this mutation is homologous to the one found in P. falciparum isolates resistant to ATQ.
Collapse
Affiliation(s)
- Ana Afonso
- Unit of Medical Parasitology and Microbiology (UPMM)/IHMT Rua da Junqueira 100, 1349-008 Lisbon, Portugal.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
During the evolution of the genus Homo, with regard to species habilis, erectus and sapiens, malaria infection played a key biological role, influencing the anthropological development too. Plasmodia causing malaria developed two kinds of evolution, according to a biological and philogenetical point of view. In particular, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale, would have either coevolved with human mankind (coevolution), or reached human species during the most ancient phases of genus Homo evolution. On the other hand, Plasmodium falciparum has been transmitted to humans by monkeys in a more recent period, probably between the end of Mesolithic and the beginning of Neolithic age. The authors show both direct and indirect biomolecular evidences of malaria infection, detected in buried subjects, dating to the Ancient World, and brought to light in the course of archeological excavations in some relevant Mediterranean sites. In this literature review the Authors organize present scientific evidences: these confirm the malarial role in affecting the evolution of populations in Mediterranean countries. The people living in several different regions on the Mediterranean Sea sides, the cradle of western civilization, have been progressively influenced by malaria, in the course of the spread of this endemic disease during the last millennia. In addition, populations affected by endemic malaria developed cultural, dietary and behaviour adaptations, contributing to decrease the risk of disease. These habits were not probably fully conscious. Nevertheless it may be thought that both these customs and biological modifications, caused by malarial plasmodia, favoured the emergence of groups of people with a greater resistance against malaria. All these considered factors decreased demographical impact, influencing in a favourable way the general development and growth of civilization.
Collapse
|
45
|
Krief S, Escalante AA, Pacheco MA, Mugisha L, André C, Halbwax M, Fischer A, Krief JM, Kasenene JM, Crandfield M, Cornejo OE, Chavatte JM, Lin C, Letourneur F, Grüner AC, McCutchan TF, Rénia L, Snounou G. On the diversity of malaria parasites in African apes and the origin of Plasmodium falciparum from Bonobos. PLoS Pathog 2010; 6:e1000765. [PMID: 20169187 PMCID: PMC2820532 DOI: 10.1371/journal.ppat.1000765] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 01/13/2010] [Indexed: 11/18/2022] Open
Abstract
The origin of Plasmodium falciparum, the etiological agent of the most dangerous forms of human malaria, remains controversial. Although investigations of homologous parasites in African Apes are crucial to resolve this issue, studies have been restricted to a chimpanzee parasite related to P. falciparum, P. reichenowi, for which a single isolate was available until very recently. Using PCR amplification, we detected Plasmodium parasites in blood samples from 18 of 91 individuals of the genus Pan, including six chimpanzees (three Pan troglodytes troglodytes, three Pan t. schweinfurthii) and twelve bonobos (Pan paniscus). We obtained sequences of the parasites' mitochondrial genomes and/or from two nuclear genes from 14 samples. In addition to P. reichenowi, three other hitherto unknown lineages were found in the chimpanzees. One is related to P. vivax and two to P. falciparum that are likely to belong to distinct species. In the bonobos we found P. falciparum parasites whose mitochondrial genomes indicated that they were distinct from those present in humans, and another parasite lineage related to P. malariae. Phylogenetic analyses based on this diverse set of Plasmodium parasites in African Apes shed new light on the evolutionary history of P. falciparum. The data suggested that P. falciparum did not originate from P. reichenowi of chimpanzees (Pan troglodytes), but rather evolved in bonobos (Pan paniscus), from which it subsequently colonized humans by a host-switch. Finally, our data and that of others indicated that chimpanzees and bonobos maintain malaria parasites, to which humans are susceptible, a factor of some relevance to the renewed efforts to eradicate malaria.
Collapse
Affiliation(s)
- Sabrina Krief
- UMR 7206-USM 104, Eco-Anthropologie et Ethnobiologie, Muséum National d'Histoire Naturelle, Paris, France
| | - Ananias A. Escalante
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - M. Andreina Pacheco
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Lawrence Mugisha
- Chimpanzee Sanctuary & Wildlife Conservation Trust (CSWCT), Entebbe, Uganda
| | - Claudine André
- Lola Ya Bonobo Bonobo Sanctuary, “Petites Chutes de la Lukaya”, Kimwenza–Mont Ngafula, Kinshasa, Democratic Republic of Congo
| | - Michel Halbwax
- Max-Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anne Fischer
- Max-Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - John M. Kasenene
- Department of Botany, Makerere University, Kampala, Uganda; Makerere University Biological Field Station, Fort Portal, Uganda
| | - Mike Crandfield
- Research and Conservation Program, The Maryland Zoo in Baltimore, Baltimore, Maryland, United States of America
| | - Omar E. Cornejo
- Emory University, Program in Population Biology, Ecology, and Evolution, Atlanta, Georgia, United States of America
| | - Jean-Marc Chavatte
- USM0307, Parasitologie Comparée et Modèles Expérimentaux, Muséum National d'Histoire Naturelle, Paris, France
| | - Clara Lin
- Laboratory of Malaria Immunobiology, Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore
| | - Franck Letourneur
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France; INSERM U567, Paris, France
| | - Anne Charlotte Grüner
- Laboratory of Malaria Immunobiology, Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France; INSERM U567, Paris, France
| | - Thomas F. McCutchan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, Maryland, United States of America
| | - Laurent Rénia
- Laboratory of Malaria Immunobiology, Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France; INSERM U567, Paris, France
| | - Georges Snounou
- USM0307, Parasitologie Comparée et Modèles Expérimentaux, Muséum National d'Histoire Naturelle, Paris, France
- Laboratory of Malaria Immunobiology, Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore
- INSERM UMR S 945, Paris, France
- Université Pierre & Marie Curie, Faculté de Médecine Pitié-Salpêtrière, Paris, France
- Department of Microbiology, National University of Singapore, Singapore
| |
Collapse
|
46
|
African great apes are natural hosts of multiple related malaria species, including Plasmodium falciparum. Proc Natl Acad Sci U S A 2010; 107:1458-63. [PMID: 20133889 DOI: 10.1073/pnas.0914440107] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plasmodium reichenowi, a chimpanzee parasite, was until very recently the only known close relative of Plasmodium falciparum, the most virulent agent of human malaria. Recently, Plasmodium gaboni, another closely related chimpanzee parasite, was discovered, suggesting that the diversity of Plasmodium circulating in great apes in Africa might have been underestimated. It was also recently shown that P. reichenowi is a geographically widespread and genetically diverse chimpanzee parasite and that the world diversity of P. falciparum is fully included within the much broader genetic diversity of P. reichenowi. The evidence indicates that all extant populations of P. falciparum originated from P. reichenowi, likely by a single transfer from chimpanzees. In this work, we have studied the diversity of Plasmodium species infecting chimpanzees and gorillas in Central Africa (Cameroon and Gabon) from both wild-living and captive animals. The studies in wild apes used noninvasive sampling methods. We confirm the presence of P. reichenowi and P. gaboni in wild chimpanzees. Moreover, our results reveal the existence of an unexpected genetic diversity of Plasmodium lineages circulating in gorillas. We show that gorillas are naturally infected by two related lineages of parasites that have not been described previously, herein referred to as Plasmodium GorA and P. GorB, but also by P. falciparum, a species previously considered as strictly human specific. The continuously increasing contacts between humans and primate populations raise concerns about further reciprocal host transfers of these pathogens.
Collapse
|
47
|
Pütz J, Giegé R, Florentz C. Diversity and similarity in the tRNA world: overall view and case study on malaria-related tRNAs. FEBS Lett 2009; 584:350-8. [PMID: 19931530 DOI: 10.1016/j.febslet.2009.11.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/12/2009] [Accepted: 11/13/2009] [Indexed: 01/05/2023]
Abstract
Transfer RNAs (tRNAs) are ancient macromolecules that have evolved under various environmental pressures as adaptors in translation in all forms of life but also towards alternative structures and functions. The present knowledge on both "canonical" and "deviating" signature motifs retrieved from vertical and horizontal sequence comparisons is briefly reviewed. Novel characteristics, proper to tRNAs from a given translation system, are revealed by a case study on the nuclear and organellar tRNA sets from malaria-related organisms. Unprecedented distinctive features for Plasmodium falciparum apicoplastic tRNAs appear, which provide novel routes to be explored towards anti-malarial drugs. The ongoing high-throughput sequencing programs are expected to allow for further horizontal comparisons and to reveal other signatures of either full or restricted sets of tRNAs.
Collapse
Affiliation(s)
- Joern Pütz
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | | | | |
Collapse
|
48
|
Comparative Gene Evolution in Haemosporidian (Apicomplexa) Parasites of Birds and Mammals. Mol Biol Evol 2009; 27:537-42. [DOI: 10.1093/molbev/msp283] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
Ollomo B, Durand P, Prugnolle F, Douzery E, Arnathau C, Nkoghe D, Leroy E, Renaud F. A new malaria agent in African hominids. PLoS Pathog 2009; 5:e1000446. [PMID: 19478877 PMCID: PMC2680981 DOI: 10.1371/journal.ppat.1000446] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 04/25/2009] [Indexed: 11/24/2022] Open
Abstract
Plasmodium falciparum is the major human malaria agent responsible for 200 to 300 million infections and one to three million deaths annually, mainly among African infants. The origin and evolution of this pathogen within the human lineage is still unresolved. A single species, P. reichenowi, which infects chimpanzees, is known to be a close sister lineage of P. falciparum. Here we report the discovery of a new Plasmodium species infecting Hominids. This new species has been isolated in two chimpanzees (Pan troglodytes) kept as pets by villagers in Gabon (Africa). Analysis of its complete mitochondrial genome (5529 nucleotides including Cyt b, Cox I and Cox III genes) reveals an older divergence of this lineage from the clade that includes P. falciparum and P. reichenowi (∼21±9 Myrs ago using Bayesian methods and considering that the divergence between P. falciparum and P. reichenowi occurred 4 to 7 million years ago as generally considered in the literature). This time frame would be congruent with the radiation of hominoids, suggesting that this Plasmodium lineage might have been present in early hominoids and that they may both have experienced a simultaneous diversification. Investigation of the nuclear genome of this new species will further the understanding of the genetic adaptations of P. falciparum to humans. The risk of transfer and emergence of this new species in humans must be now seriously considered given that it was found in two chimpanzees living in contact with humans and its close relatedness to the most virulent agent of malaria. In 2002, the publication of the genome of Plasmodium falciparum, the most malignant agent of malaria, generated hopes in the fight against this deadly disease by the opportunities it offered to discover new drug targets. Since then results have not lived up to the expectations. The development of comparative genomics to further understanding of P. falciparum has indeed been hindered by a lack of knowledge of closely related species' genomes. Only one species, P. reichenowi, infecting chimpanzees, was hitherto known as a sister lineage of P. falciparum. Here we describe a new Plasmodium species infecting chimpanzees in Africa. Based on its whole mitochondrial genome, we demonstrate that this species is a relative of P. falciparum and P. reichenowi. The analysis of its genome should thus offer the opportunity to explore P. falciparum specific adaptations to humans. Our results bring new elements to the debate surrounding the origin of this lineage. They suggest that it may have been present in early hominoids and may have experienced a radiation congruent with that of its hosts. Our discovery highlights the paucity of our knowledge on the richness of Plasmodium species infecting primates and calls for more research in this direction.
Collapse
Affiliation(s)
- Benjamin Ollomo
- Unité des Maladies Virales Émergentes, Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Patrick Durand
- Laboratoire Génétique et Evolution des Maladies Infectieuses, UMR 2724 CNRS-IRD, IRD Montpellier, Montpellier, France
| | - Franck Prugnolle
- Laboratoire Génétique et Evolution des Maladies Infectieuses, UMR 2724 CNRS-IRD, IRD Montpellier, Montpellier, France
- * E-mail: (FP); (FR)
| | - Emmanuel Douzery
- Laboratoire de Paléontologie, Phylogénie & Paléobiologie, Institut des Sciences de l'Evolution (UMR 5554 CNRS), Université Montpellier II, Place E. Bataillon, Montpellier, France
| | - Céline Arnathau
- Laboratoire Génétique et Evolution des Maladies Infectieuses, UMR 2724 CNRS-IRD, IRD Montpellier, Montpellier, France
| | - Dieudonné Nkoghe
- Unité des Maladies Virales Émergentes, Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Eric Leroy
- Unité des Maladies Virales Émergentes, Centre International de Recherches Médicales de Franceville, Franceville, Gabon
- Unité Emergence des Pathologies Virales, UMR 190 IRD-Université de la Méditerranée, CIRMF, Franceville, Gabon
| | - François Renaud
- Laboratoire Génétique et Evolution des Maladies Infectieuses, UMR 2724 CNRS-IRD, IRD Montpellier, Montpellier, France
- * E-mail: (FP); (FR)
| |
Collapse
|
50
|
Steenkeste N, Incardona S, Chy S, Duval L, Ekala MT, Lim P, Hewitt S, Sochantha T, Socheat D, Rogier C, Mercereau-Puijalon O, Fandeur T, Ariey F. Towards high-throughput molecular detection of Plasmodium: new approaches and molecular markers. Malar J 2009; 8:86. [PMID: 19402894 PMCID: PMC2686730 DOI: 10.1186/1475-2875-8-86] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 04/29/2009] [Indexed: 11/15/2022] Open
Abstract
Background Several strategies are currently deployed in many countries in the tropics to strengthen malaria control toward malaria elimination. To measure the impact of any intervention, there is a need to detect malaria properly. Mostly, decisions still rely on microscopy diagnosis. But sensitive diagnosis tools enabling to deal with a large number of samples are needed. The molecular detection approach offers a much higher sensitivity, and the flexibility to be automated and upgraded. Methods Two new molecular methods were developed: dot18S, a Plasmodium-specific nested PCR based on the 18S rRNA gene followed by dot-blot detection of species by using species-specific probes and CYTB, a Plasmodium-specific nested PCR based on cytochrome b gene followed by species detection using SNP analysis. The results were compared to those obtained with microscopic examination and the "standard" 18S rRNA gene based nested PCR using species specific primers. 337 samples were diagnosed. Results Compared to the microscopy the three molecular methods were more sensitive, greatly increasing the estimated prevalence of Plasmodium infection, including P. malariae and P. ovale. A high rate of mixed infections was uncovered with about one third of the villagers infected with more than one malaria parasite species. Dot18S and CYTB sensitivity outranged the "standard" nested PCR method, CYTB being the most sensitive. As a consequence, compared to the "standard" nested PCR method for the detection of Plasmodium spp., the sensitivity of dot18S and CYTB was respectively 95.3% and 97.3%. Consistent detection of Plasmodium spp. by the three molecular methods was obtained for 83% of tested isolates. Contradictory results were mostly related to detection of Plasmodium malariae and Plasmodium ovale in mixed infections, due to an "all-or-none" detection effect at low-level parasitaemia. Conclusion A large reservoir of asymptomatic infections was uncovered using the molecular methods. Dot18S and CYTB, the new methods reported herein are highly sensitive, allow parasite DNA extraction as well as genus- and species-specific diagnosis of several hundreds of samples, and are amenable to high-throughput scaling up for larger sample sizes. Such methods provide novel information on malaria prevalence and epidemiology and are suited for active malaria detection. The usefulness of such sensitive malaria diagnosis tools, especially in low endemic areas where eradication plans are now on-going, is discussed in this paper.
Collapse
Affiliation(s)
- Nicolas Steenkeste
- Institut Pasteur du Cambodge, Laboratoire d'Epidémiologie Moléculaire, Phnom Penh, Cambodia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|