1
|
Howell J, Omwenga S, Jimenez M, Hammarton TC. Analysis of the Leishmania mexicana promastigote cell cycle using imaging flow cytometry provides new insights into cell cycle flexibility and events of short duration. PLoS One 2024; 19:e0311367. [PMID: 39361666 PMCID: PMC11449296 DOI: 10.1371/journal.pone.0311367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024] Open
Abstract
Promastigote Leishmania mexicana have a complex cell division cycle characterised by the ordered replication of several single-copy organelles, a prolonged S phase and rapid G2 and cytokinesis phases, accompanied by cell cycle stage-associated morphological changes. Here we exploit these morphological changes to develop a high-throughput and semi-automated imaging flow cytometry (IFC) pipeline to analyse the cell cycle in live L. mexicana. Firstly, we demonstrate that, unlike several other DNA stains, Vybrant™ DyeCycle™ Orange (DCO) is non-toxic and enables quantitative DNA imaging in live promastigotes. Secondly, by tagging the orphan spindle kinesin, KINF, with mNeonGreen, we describe KINF's cell cycle-dependent expression and localisation. Then, by combining manual gating of DCO DNA intensity profiles with automated masking and morphological measurements of parasite images, visual determination of the number of flagella per cell, and automated masking and analysis of mNG:KINF fluorescence, we provide a newly detailed description of L. mexicana promastigote cell cycle events that, for the first time, includes the durations of individual G2, mitosis and post-mitosis phases, and identifies G1 cells within the first 12 minutes of the new cell cycle. Our custom-developed masking and gating scheme allowed us to identify elusive G2 cells and to demonstrate that the CDK-inhibitor, flavopiridol, arrests cells in G2 phase, rather than mitosis, providing proof-of-principle of the utility of IFC for drug mechanism-of-action studies. Further, the high-throughput nature of IFC allowed the close examination of promastigote cytokinesis, revealing considerable flexibility in both the timing of cytokinesis initiation and the direction of furrowing, in contrast to the related kinetoplastid parasite, Trypanosoma brucei and many other cell types. Our new pipeline offers many advantages over traditional methods of cell cycle analysis such as fluorescence microscopy and flow cytometry and paves the way for novel high-throughput analysis of Leishmania cell division.
Collapse
Affiliation(s)
- Jessie Howell
- James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Sulochana Omwenga
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Melanie Jimenez
- Biomedical Engineering Department, University of Strathclyde, Glasgow, United Kingdom
| | - Tansy C. Hammarton
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Sheikh SY, Hassan F, Shukla D, Bala S, Faruqui T, Akhter Y, Khan AR, Nasibullah M. A review on potential therapeutic targets for the treatment of leishmaniasis. Parasitol Int 2024; 100:102863. [PMID: 38272301 DOI: 10.1016/j.parint.2024.102863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/22/2023] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
Leishmania, a protozoan parasite, is responsible for the occurrence of leishmaniasis, a disease that is prevalent in tropical regions. Visceral Leishmaniasis (VL), also known as kala-azar in Asian countries, is one of the most significant forms of VL, along with Cutaneous Leishmaniasis (CL) and Mucocutaneous Leishmaniasis (ML). Management of this condition typically entails the use of chemotherapy as the sole therapeutic option. The current treatments for leishmaniasis present several drawbacks, including a multitude of side effects, prolonged treatment duration, disparate efficacy across different regions, and the emergence of resistance. To address this urgent need, it is imperative to identify alternative treatments that are both safer and more effective. The identification of appropriate pharmacological targets in conjunction with biological pathways constitutes the initial stage of drug discovery. In this review, we have addressed the key metabolic pathways that represent potential pharmacological targets as well as prominent treatment options for leishmaniasis.
Collapse
Affiliation(s)
- Sabahat Yasmeen Sheikh
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow 226026, India
| | - Firoj Hassan
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow 226026, India
| | - Deepanjali Shukla
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow 226026, India
| | - Shashi Bala
- Department of Chemistry, Lucknow University, Lucknow 226026, India
| | - Tabrez Faruqui
- Department of Biosciences, Integral University, Lucknow 226026, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow 226026, India
| | - Malik Nasibullah
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow 226026, India.
| |
Collapse
|
3
|
Rana N, Grover P, Singh H. Recent Developments and Future Perspectives of Purine Derivatives as a Promising Scaffold in Drug Discovery. Curr Top Med Chem 2024; 24:541-579. [PMID: 38288806 DOI: 10.2174/0115680266290152240110074034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 05/31/2024]
Abstract
Numerous purine-containing compounds have undergone extensive investigation for their medical efficacy across various diseases. The swift progress in purine-based medicinal chemistry has brought to light the therapeutic capabilities of purine-derived compounds in addressing challenging medical conditions. Defined by a heterocyclic ring comprising a pyrimidine ring linked with an imidazole ring, purine exhibits a diverse array of therapeutic attributes. This review systematically addresses the multifaceted potential of purine derivatives in combating various diseases, including their roles as anticancer agents, antiviral compounds (anti-herpes, anti-HIV, and anti-influenzae), autoimmune and anti-inflammatory agents, antihyperuricemic and anti-gout solutions, antimicrobial agents, antitubercular compounds, anti-leishmanial agents, and anticonvulsants. Emphasis is placed on the remarkable progress made in developing purine-based compounds, elucidating their significant target sites. The article provides a comprehensive exploration of developments in both natural and synthetic purines, offering insights into their role in managing a diverse range of illnesses. Additionally, the discussion delves into the structure-activity relationships and biological activities of the most promising purine molecules. The intriguing capabilities revealed by these purine-based scaffolds unequivocally position them at the forefront of drug candidate development. As such, this review holds potential significance for researchers actively involved in synthesizing purine-based drug candidates, providing a roadmap for the continued advancement of this promising field.
Collapse
Affiliation(s)
- Neha Rana
- School of Pharmacy (SOP), Noida International University, Yamuna Expressway, Gautam Budh Nagar, 203201, India
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| | - Hridayanand Singh
- Dr. K. N. Modi Institute of Pharmaceutical Education and Research, Modinagar, 201204, Uttar Pradesh, India
| |
Collapse
|
4
|
Joshi H, Tuli HS, Ranjan A, Chauhan A, Haque S, Ramniwas S, Bhatia GK, Kandari D. The Pharmacological Implications of Flavopiridol: An Updated Overview. Molecules 2023; 28:7530. [PMID: 38005250 PMCID: PMC10673037 DOI: 10.3390/molecules28227530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Flavopiridol is a flavone synthesized from the natural product rohitukine, which is derived from an Indian medicinal plant, namely Dysoxylum binectariferum Hiern. A deeper understanding of the biological mechanisms by which such molecules act may allow scientists to develop effective therapeutic strategies against a variety of life-threatening diseases, such as cancer, viruses, fungal infections, parasites, and neurodegenerative diseases. Mechanistic insight of flavopiridol reveals its potential for kinase inhibitory activity of CDKs (cyclin-dependent kinases) and other kinases, leading to the inhibition of various processes, including cell cycle progression, apoptosis, tumor proliferation, angiogenesis, tumor metastasis, and the inflammation process. The synthetic derivatives of flavopiridol have overcome a few demerits of its parent compound. Moreover, these derivatives have much improved CDK-inhibitory activity and therapeutic abilities for treating severe human diseases. It appears that flavopiridol has potential as a candidate for the formulation of an integrated strategy to combat and alleviate human diseases. This review article aims to unravel the potential therapeutic effectiveness of flavopiridol and its possible mechanism of action.
Collapse
Affiliation(s)
- Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India;
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, Rostov-on-Don 344090, Russia;
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Sector 125, Noida 201301, India;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 11022801, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 13306, United Arab Emirates
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali 140413, India;
| | - Gurpreet Kaur Bhatia
- Department of Physics, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Divya Kandari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| |
Collapse
|
5
|
Ambaru B, Gangadharan GM, Subramanya HS, Gupta CM. Profilin is involved in G1 to S phase progression and mitotic spindle orientation during Leishmania donovani cell division cycle. PLoS One 2022; 17:e0265692. [PMID: 35316283 PMCID: PMC8939790 DOI: 10.1371/journal.pone.0265692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/04/2022] [Indexed: 11/27/2022] Open
Abstract
Profilin is a multi-ligand binding protein, which is a key regulator of actin dynamics and involved in regulating several cellular functions. It is present in all eukaryotes, including trypanosomatids such as Leishmania. However, not much is known about its functions in these organisms. Our earlier studies have shown that Leishmania parasites express a single homologue of profilin (LdPfn) that binds actin, phosphoinositides and poly- L- proline motives, and depletion of its intracellular pool to 50%of normal levels affects the cell growth and intracellular trafficking. Here, we show, employing affinity pull-down and mass spectroscopy, that LdPfn interacted with a large number of proteins, including those involved in mRNA processing and protein translation initiation, such as eIF4A1. Further, we reveal, using mRNA Seq analysis, that depletion of LdPfn in Leishmania cells (LdPfn+/-) resulted in significantly reduced expression of genes which encode proteins involved in cell cycle regulation, mRNA translation initiation, nucleosides and amino acids transport. In addition, we show that in LdPfn+/- cells, cellular levels of eIF4A1 protein were significantly decreased, and during their cell division cycle, G1-to-S phase progression was delayed and orientation of mitotic spindle altered. These changes were, however, reversed to normal by episomal expression of GFP-LdPfn in LdPfn+/- cells. Taken together, our results indicate that profilin is involved in regulation of G1-to-S phase progression and mitotic spindle orientation in Leishmania cell cycle, perhaps through its interaction with elF4A1 protein.
Collapse
Affiliation(s)
- Bindu Ambaru
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | | | - Chhitar M. Gupta
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
- * E-mail:
| |
Collapse
|
6
|
Bustamante C, Muskus C, Ochoa R. Rational computational approaches to predict novel drug candidates against leishmaniasis. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2022. [DOI: 10.1016/bs.armc.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Ramu D, Singh S. Potential molecular targets of Leishmania pathways in developing novel antileishmanials. Future Microbiol 2021; 17:41-57. [PMID: 34877877 DOI: 10.2217/fmb-2021-0094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The illness known as leishmaniasis has not become a household name like malaria, although it stands as the second-largest parasitic disease, surpassed only by malaria. As no licensed vaccine is available, treatment for leishmaniasis mostly relies on chemotherapy. Inefficiency and drug resistance are the major impediments in current therapeutics. In this scenario, identification of novel molecular drug candidates is indispensable to develop robust antileishmanials. The exploration of structure-based drugs to target enzymes/molecules of Leishmania which differ structurally/functionally from their equivalents in mammalian hosts not only helps in developing a new class of antileishmanials, but also paves the way to understand Leishmania biology. This review provides a comprehensive overview on possible drug candidates relating to various Leishmania molecular pathways.
Collapse
Affiliation(s)
- Dandugudumula Ramu
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, 201314, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
8
|
Ochoa R, Ortega-Pajares A, Castello FA, Serral F, Fernández Do Porto D, Villa-Pulgarin JA, Varela-M RE, Muskus C. Identification of Potential Kinase Inhibitors within the PI3K/AKT Pathway of Leishmania Species. Biomolecules 2021; 11:biom11071037. [PMID: 34356660 PMCID: PMC8301987 DOI: 10.3390/biom11071037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 07/06/2021] [Indexed: 11/25/2022] Open
Abstract
Leishmaniasis is a public health disease that requires the development of more effective treatments and the identification of novel molecular targets. Since blocking the PI3K/AKT pathway has been successfully studied as an effective anticancer strategy for decades, we examined whether the same approach would also be feasible in Leishmania due to their high amount and diverse set of annotated proteins. Here, we used a best reciprocal hits protocol to identify potential protein kinase homologues in an annotated human PI3K/AKT pathway. We calculated their ligandibility based on available bioactivity data of the reported homologues and modelled their 3D structures to estimate the druggability of their binding pockets. The models were used to run a virtual screening method with molecular docking. We found and studied five protein kinases in five different Leishmania species, which are AKT, CDK, AMPK, mTOR and GSK3 homologues from the studied pathways. The compounds found for different enzymes and species were analysed and suggested as starting point scaffolds for the design of inhibitors. We studied the kinases’ participation in protein–protein interaction networks, and the potential deleterious effects, if inhibited, were supported with the literature. In the case of Leishmania GSK3, an inhibitor of its human counterpart, prioritized by our method, was validated in vitro to test its anti-Leishmania activity and indirectly infer the presence of the enzyme in the parasite. The analysis contributes to improving the knowledge about the presence of similar signalling pathways in Leishmania, as well as the discovery of compounds acting against any of these kinases as potential molecular targets in the parasite.
Collapse
Affiliation(s)
- Rodrigo Ochoa
- Programa de Estudio y Control de Enfermedades Tropicales PECET, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia;
- Biophysics of Tropical Diseases Max Planck Tandem Group, University of Antioquia, Medellín 050010, Colombia
- Correspondence: (R.O.); (R.E.V.-M.)
| | - Amaya Ortega-Pajares
- Department of Medicine, The Peter Doherty Institute, University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Florencia A. Castello
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), IC-CONICET Ciudad Universitaria, Pabellon 2, Ciudad de Buenos Aires C1428EHA, Argentina; (F.A.C.); (F.S.); (D.F.D.P.)
| | - Federico Serral
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), IC-CONICET Ciudad Universitaria, Pabellon 2, Ciudad de Buenos Aires C1428EHA, Argentina; (F.A.C.); (F.S.); (D.F.D.P.)
| | - Darío Fernández Do Porto
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), IC-CONICET Ciudad Universitaria, Pabellon 2, Ciudad de Buenos Aires C1428EHA, Argentina; (F.A.C.); (F.S.); (D.F.D.P.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Pabellon 2, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Janny A. Villa-Pulgarin
- Grupo de Investigaciones Biomédicas, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín 050034, Colombia;
| | - Rubén E. Varela-M
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760035, Colombia
- Correspondence: (R.O.); (R.E.V.-M.)
| | - Carlos Muskus
- Programa de Estudio y Control de Enfermedades Tropicales PECET, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia;
| |
Collapse
|
9
|
Efstathiou A, Smirlis D. Leishmania Protein Kinases: Important Regulators of the Parasite Life Cycle and Molecular Targets for Treating Leishmaniasis. Microorganisms 2021; 9:microorganisms9040691. [PMID: 33801655 PMCID: PMC8066228 DOI: 10.3390/microorganisms9040691] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Leishmania is a protozoan parasite of the trypanosomatid family, causing a wide range of diseases with different clinical manifestations including cutaneous, mucocutaneous and visceral leishmaniasis. According to WHO, one billion people are at risk of Leishmania infection as they live in endemic areas while there are 12 million infected people worldwide. Annually, 0.9-1.6 million new infections are reported and 20-50 thousand deaths occur due to Leishmania infection. As current chemotherapy for treating leishmaniasis exhibits numerous drawbacks and due to the lack of effective human vaccine, there is an urgent need to develop new antileishmanial therapy treatment. To this end, eukaryotic protein kinases can be ideal target candidates for rational drug design against leishmaniasis. Eukaryotic protein kinases mediate signal transduction through protein phosphorylation and their inhibition is anticipated to be disease modifying as they regulate all essential processes for Leishmania viability and completion of the parasitic life cycle including cell-cycle progression, differentiation and virulence. This review highlights existing knowledge concerning the exploitation of Leishmania protein kinases as molecular targets to treat leishmaniasis and the current knowledge of their role in the biology of Leishmania spp. and in the regulation of signalling events that promote parasite survival in the insect vector or the mammalian host.
Collapse
|
10
|
Broni E, Kwofie SK, Asiedu SO, Miller WA, Wilson MD. A Molecular Modeling Approach to Identify Potential Antileishmanial Compounds Against the Cell Division Cycle (cdc)-2-Related Kinase 12 (CRK12) Receptor of Leishmania donovani. Biomolecules 2021; 11:458. [PMID: 33803906 PMCID: PMC8003136 DOI: 10.3390/biom11030458] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/11/2022] Open
Abstract
The huge burden of leishmaniasis caused by the trypanosomatid protozoan parasite Leishmania is well known. This illness was included in the list of neglected tropical diseases targeted for elimination by the World Health Organization. However, the increasing evidence of resistance to existing antimonial drugs has made the eradication of the disease difficult to achieve, thus warranting the search for new drug targets. We report here studies that used computational methods to identify inhibitors of receptors from natural products. The cell division cycle-2-related kinase 12 (CRK12) receptor is a plausible drug target against Leishmania donovani. This study modelled the 3D molecular structure of the L. donovani CRK12 (LdCRK12) and screened for small molecules with potential inhibitory activity from African flora. An integrated library of 7722 African natural product-derived compounds and known inhibitors were screened against the LdCRK12 using AutoDock Vina after performing energy minimization with GROMACS 2018. Four natural products, namely sesamin (NANPDB1649), methyl ellagic acid (NANPDB1406), stylopine (NANPDB2581), and sennecicannabine (NANPDB6446) were found to be potential LdCRK12 inhibitory molecules. The molecular docking studies revealed two compounds NANPDB1406 and NANPDB2581 with binding affinities of -9.5 and -9.2 kcal/mol, respectively, against LdCRK12 which were higher than those of the known inhibitors and drugs, including GSK3186899, amphotericin B, miltefosine, and paromomycin. All the four compounds were predicted to have inhibitory constant (Ki) values ranging from 0.108 to 0.587 μM. NANPDB2581, NANPDB1649 and NANPDB1406 were also predicted as antileishmanial with Pa and Pi values of 0.415 and 0.043, 0.391 and 0.052, and 0.351 and 0.071, respectively. Molecular dynamics simulations coupled with molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) computations reinforced their good binding mechanisms. Most compounds were observed to bind in the ATP binding pocket of the kinase domain. Lys488 was predicted as a key residue critical for ligand binding in the ATP binding pocket of the LdCRK12. The molecules were pharmacologically profiled as druglike with inconsequential toxicity. The identified molecules have scaffolds that could form the backbone for fragment-based drug design of novel leishmanicides but warrant further studies to evaluate their therapeutic potential.
Collapse
Affiliation(s)
- Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana;
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana;
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 54, Ghana
| | - Seth O. Asiedu
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana; (S.O.A.); (M.D.W.)
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA;
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL 60153, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, IL 19104, USA
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana; (S.O.A.); (M.D.W.)
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA;
| |
Collapse
|
11
|
Baker N, Catta-Preta CMC, Neish R, Sadlova J, Powell B, Alves-Ferreira EVC, Geoghegan V, Carnielli JBT, Newling K, Hughes C, Vojtkova B, Anand J, Mihut A, Walrad PB, Wilson LG, Pitchford JW, Volf P, Mottram JC. Systematic functional analysis of Leishmania protein kinases identifies regulators of differentiation or survival. Nat Commun 2021; 12:1244. [PMID: 33623024 PMCID: PMC7902614 DOI: 10.1038/s41467-021-21360-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/13/2021] [Indexed: 01/31/2023] Open
Abstract
Differentiation between distinct stages is fundamental for the life cycle of intracellular protozoan parasites and for transmission between hosts, requiring stringent spatial and temporal regulation. Here, we apply kinome-wide gene deletion and gene tagging in Leishmania mexicana promastigotes to define protein kinases with life cycle transition roles. Whilst 162 are dispensable, 44 protein kinase genes are refractory to deletion in promastigotes and are likely core genes required for parasite replication. Phenotyping of pooled gene deletion mutants using bar-seq and projection pursuit clustering reveal functional phenotypic groups of protein kinases involved in differentiation from metacyclic promastigote to amastigote, growth and survival in macrophages and mice, colonisation of the sand fly and motility. This unbiased interrogation of protein kinase function in Leishmania allows targeted investigation of organelle-associated signalling pathways required for successful intracellular parasitism.
Collapse
Affiliation(s)
- N Baker
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - C M C Catta-Preta
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - R Neish
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - J Sadlova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - B Powell
- Department of Mathematics, University of York, York, UK
| | - E V C Alves-Ferreira
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - V Geoghegan
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - J B T Carnielli
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - K Newling
- Department of Biology, University of York, York, UK
| | - C Hughes
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - B Vojtkova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - J Anand
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - A Mihut
- Department of Biology, University of York, York, UK
| | - P B Walrad
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - L G Wilson
- York Biomedical Research Institute, University of York, York, UK
- Department of Physics, University of York, York, UK
| | - J W Pitchford
- Department of Biology, University of York, York, UK
- Department of Mathematics, University of York, York, UK
| | - P Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - J C Mottram
- York Biomedical Research Institute, University of York, York, UK.
- Department of Biology, University of York, York, UK.
| |
Collapse
|
12
|
Martínez de Iturrate P, Sebastián-Pérez V, Nácher-Vázquez M, Tremper CS, Smirlis D, Martín J, Martínez A, Campillo NE, Rivas L, Gil C. Towards discovery of new leishmanicidal scaffolds able to inhibit Leishmania GSK-3. J Enzyme Inhib Med Chem 2020; 35:199-210. [PMID: 31752556 PMCID: PMC6882465 DOI: 10.1080/14756366.2019.1693704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/29/2019] [Accepted: 11/10/2019] [Indexed: 01/06/2023] Open
Abstract
Previous reports have validated the glycogen synthase kinase-3 (GSK-3) as a druggable target against the human protozoan parasite Leishmania. This prompted us to search for new leishmanicidal scaffolds as inhibitors of this enzyme from our in-house library of human GSK-3β inhibitors, as well as from the Leishbox collection of leishmanicidal compounds developed by GlaxoSmithKline. As a result, new leishmanicidal inhibitors acting on Leishmania GSK-3 at micromolar concentrations were found. These inhibitors belong to six different chemical classes (thiadiazolidindione, halomethylketone, maleimide, benzoimidazole, N-phenylpyrimidine-2-amine and oxadiazole). In addition, the binding mode of the most active compounds into Leishmania GSK-3 was approached using computational tools. On the whole, we have uncovered new chemical scaffolds with an appealing prospective in the development and use of Leishmania GSK-3 inhibitors against this infectious protozoan.
Collapse
Affiliation(s)
| | | | | | | | - Despina Smirlis
- Microbiology Department, Hellenic Pasteur Institute, Athens, Greece
| | - Julio Martín
- Global Health R&D, GlaxoSmithKline, Tres Cantos, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | | | - Luis Rivas
- Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| |
Collapse
|
13
|
Bea A, Kröber-Boncardo C, Sandhu M, Brinker C, Clos J. The Leishmania donovani SENP Protease Is Required for SUMO Processing but Not for Viability. Genes (Basel) 2020; 11:E1198. [PMID: 33066659 PMCID: PMC7602377 DOI: 10.3390/genes11101198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 01/13/2023] Open
Abstract
The protozoan parasite Leishmania donovani is part of an early eukaryotic branch and depends on post-transcriptional mechanisms for gene expression regulation. This includes post-transcriptional protein modifications, such as protein phosphorylation. The presence of genes for protein SUMOylation, i.e., the covalent attachment of small ubiquitin-like modifier (SUMO) polypeptides, in the Leishmania genomes prompted us to investigate the importance of the sentrin-specific protease (SENP) and its putative client, SUMO, for the vitality and infectivity of Leishmania donovani. While SENP null mutants are viable with reduced vitality, viable SUMO null mutant lines could not be obtained. SUMO C-terminal processing is disrupted in SENP null mutants, preventing SUMO from covalent attachment to proteins and nuclear translocation. Infectivity in vitro is not affected by the loss of SENP-dependent SUMO processing. We conclude that SENP is required for SUMO processing, but that functions of unprocessed SUMO are critical for Leishmania viability.
Collapse
Affiliation(s)
- Annika Bea
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, D-20359 Hamburg, Germany; (A.B.); (C.K.-B.); (M.S.); (C.B.)
| | - Constanze Kröber-Boncardo
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, D-20359 Hamburg, Germany; (A.B.); (C.K.-B.); (M.S.); (C.B.)
| | - Manpreet Sandhu
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, D-20359 Hamburg, Germany; (A.B.); (C.K.-B.); (M.S.); (C.B.)
- Boehringer Ingelheim RCV, A-1121 Vienna, Austria
| | - Christine Brinker
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, D-20359 Hamburg, Germany; (A.B.); (C.K.-B.); (M.S.); (C.B.)
| | - Joachim Clos
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, D-20359 Hamburg, Germany; (A.B.); (C.K.-B.); (M.S.); (C.B.)
| |
Collapse
|
14
|
Cartuche L, Sifaoui I, López-Arencibia A, Bethencourt-Estrella CJ, San Nicolás-Hernández D, Lorenzo-Morales J, Piñero JE, Díaz-Marrero AR, Fernández JJ. Antikinetoplastid Activity of Indolocarbazoles from Streptomyces sanyensis. Biomolecules 2020; 10:biom10040657. [PMID: 32344693 PMCID: PMC7226613 DOI: 10.3390/biom10040657] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
Chagas disease and leishmaniasis are neglected tropical diseases caused by kinetoplastid parasites of Trypanosoma and Leishmania genera that affect poor and remote populations in developing countries. These parasites share similar complex life cycles and modes of infection. It has been demonstrated that the particular group of phosphorylating enzymes, protein kinases (PKs), are essential for the infective mechanisms and for parasite survival. The natural indolocarbazole staurosporine (STS, 1) has been extensively used as a PKC inhibitor and its antiparasitic effects described. In this research, we analyze the antikinetoplastid activities of three indolocarbazole (ICZs) alkaloids of the family of staurosporine STS, 2-4, and the commercial ICZs rebeccamycin (5), K252a (6), K252b (7), K252c (8), and arcyriaflavin A (9) in order to establish a plausive approach to the mode of action and to provide a preliminary qualitative structure-activity analysis. The most active compound was 7-oxostaurosporine (7OSTS, 2) that showed IC50 values of 3.58 ± 1.10; 0.56 ± 0.06 and 1.58 ± 0.52 µM against L. amazonensis; L. donovani and T. cruzi, and a Selectivity Index (CC50/IC50) of 52 against amastigotes of L. amazonensis compared to the J774A.1 cell line of mouse macrophages.
Collapse
Affiliation(s)
- Luis Cartuche
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Tenerife, Spain
- Departamento de Química y Ciencias Exactas, Sección Química Básica y Aplicada, Universidad Técnica Particular de Loja (UTPL), San Cayetano alto s/n, A.P. 1101608, Loja, Ecuador
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain
| | - Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain
| | - Carlos J. Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain
| | - Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain
- Correspondence: (J.E.P.); (A.R.D.-M.); (J.J.F.)
| | - Ana R. Díaz-Marrero
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Tenerife, Spain
- Correspondence: (J.E.P.); (A.R.D.-M.); (J.J.F.)
| | - José J. Fernández
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Tenerife, Spain
- Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez, 2, 38206 La Laguna, Tenerife, Spain
- Correspondence: (J.E.P.); (A.R.D.-M.); (J.J.F.)
| |
Collapse
|
15
|
Altamura F, Rajesh R, Catta-Preta CMC, Moretti NS, Cestari I. The current drug discovery landscape for trypanosomiasis and leishmaniasis: Challenges and strategies to identify drug targets. Drug Dev Res 2020; 83:225-252. [PMID: 32249457 DOI: 10.1002/ddr.21664] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/05/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
Human trypanosomiasis and leishmaniasis are vector-borne neglected tropical diseases caused by infection with the protozoan parasites Trypanosoma spp. and Leishmania spp., respectively. Once restricted to endemic areas, these diseases are now distributed worldwide due to human migration, climate change, and anthropogenic disturbance, causing significant health and economic burden globally. The current chemotherapy used to treat these diseases has limited efficacy, and drug resistance is spreading. Hence, new drugs are urgently needed. Phenotypic compound screenings have prevailed as the leading method to discover new drug candidates against these diseases. However, the publication of the complete genome sequences of multiple strains, advances in the application of CRISPR/Cas9 technology, and in vivo bioluminescence-based imaging have set the stage for advancing target-based drug discovery. This review analyses the limitations of the narrow pool of available drugs presently used for treating these diseases. It describes the current drug-based clinical trials highlighting the most promising leads. Furthermore, the review presents a focused discussion on the most important biological and pharmacological challenges that target-based drug discovery programs must overcome to advance drug candidates. Finally, it examines the advantages and limitations of modern research tools designed to identify and validate essential genes as drug targets, including genomic editing applications and in vivo imaging.
Collapse
Affiliation(s)
- Fernando Altamura
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Rishi Rajesh
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | | | - Nilmar S Moretti
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Igor Cestari
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, Quebec, Canada
| |
Collapse
|
16
|
Scotti MT, Monteiro AFM, de Oliveira Viana J, Bezerra Mendonça Junior FJ, Ishiki HM, Tchouboun EN, De Araújo RSA, Scotti L. Recent Theoretical Studies Concerning Important Tropical Infections. Curr Med Chem 2020; 27:795-834. [DOI: 10.2174/0929867326666190711121418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/20/2018] [Accepted: 04/12/2019] [Indexed: 01/02/2023]
Abstract
Neglected Tropical Diseases (NTDs) form a group of diseases that are strongly associated
with poverty, flourish in impoverished environments, and thrive best in tropical areas,
where they tend to present overlap. They comprise several diseases, and the symptoms
vary dramatically from disease to disease, often causing from extreme pain, and untold misery
that anchors populations to poverty, permanent disability, and death. They affect more than 1
billion people worldwide; mostly in poor populations living in tropical and subtropical climates.
In this review, several complementary in silico approaches are presented; including
identification of new therapeutic targets, novel mechanisms of activity, high-throughput
screening of small-molecule libraries, as well as in silico quantitative structure-activity relationship
and recent molecular docking studies. Current and active research against Sleeping
Sickness, American trypanosomiasis, Leishmaniasis and Schistosomiasis infections will hopefully
lead to safer, more effective, less costly and more widely available treatments against
these parasitic forms of Neglected Tropical Diseases (NTDs) in the near future.
Collapse
Affiliation(s)
- Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Alex France Messias Monteiro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Jéssika de Oliveira Viana
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | | | - Hamilton M. Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente, SP, Brazil
| | | | - Rodrigo Santos A. De Araújo
- Laboratory of Synthesis and Drug Delivery, Department of Biological Science, State University of Paraiba, Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| |
Collapse
|
17
|
Yagoubat A, Crobu L, Berry L, Kuk N, Lefebvre M, Sarrazin A, Bastien P, Sterkers Y. Universal highly efficient conditional knockout system in
Leishmania
, with a focus on untranscribed region preservation. Cell Microbiol 2020; 22:e13159. [DOI: 10.1111/cmi.13159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Akila Yagoubat
- MiVEGECUniversity of Montpellier, CNRS, IRD, CHU Montpellier France
| | - Lucien Crobu
- MiVEGECUniversity of Montpellier, CNRS, IRD, CHU Montpellier France
| | - Laurence Berry
- Laboratory of Pathogen Host Interactions, Microscopie Electronique et Analytique, CNRSUniversity of Montpellier Montpellier France
| | - Nada Kuk
- MiVEGECUniversity of Montpellier, CNRS, IRD, CHU Montpellier France
| | - Michèle Lefebvre
- MiVEGECUniversity of Montpellier, CNRS, IRD, CHU Montpellier France
| | - Amélie Sarrazin
- Montpellier RIO Imaging Facility, Montpellier BIOCAMPUSUniversity of Montpellier, Arnaud de Villeneuve Campus Imaging Facility‐Institut de Génétique Humaine‐CNRS Montpellier France
| | - Patrick Bastien
- MiVEGECUniversity of Montpellier, CNRS, IRD, CHU Montpellier France
| | - Yvon Sterkers
- MiVEGECUniversity of Montpellier, CNRS, IRD, CHU Montpellier France
| |
Collapse
|
18
|
Borba JV, Silva AC, Ramos PI, Grazzia N, Miguel DC, Muratov EN, Furnham N, Andrade CH. Unveiling the Kinomes of Leishmania infantum and L. braziliensis Empowers the Discovery of New Kinase Targets and Antileishmanial Compounds. Comput Struct Biotechnol J 2019; 17:352-361. [PMID: 30949306 PMCID: PMC6429582 DOI: 10.1016/j.csbj.2019.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/31/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by parasites of the genus Leishmania (NTD) endemic in 98 countries. Although some drugs are available, current treatments deal with issues such as toxicity, low efficacy, and emergence of resistance. Therefore, there is an urgent need to identify new targets for the development of new antileishmanial drugs. Protein kinases (PKs), which play an essential role in many biological processes, have become potential drug targets for many parasitic diseases. A refined bioinformatics pipeline was applied in order to define and compare the kinomes of L. infantum and L. braziliensis, species that cause cutaneous and visceral manifestations of leishmaniasis in the Americas, the latter being potentially fatal if untreated. Respectively, 224 and 221 PKs were identified in L. infantum and L. braziliensis overall. Almost all unclassified eukaryotic PKs were assigned to six of nine major kinase groups and, consequently, most have been classified into family and subfamily. Furthermore, revealing the kinomes for both Leishmania species allowed for the prioritization of potential drug targets that could be explored for discovering new drugs against leishmaniasis. Finally, we used a drug repurposing approach and prioritized seven approved drugs and investigational compounds to be experimentally tested against Leishmania. Trametinib and NMS-1286937 inhibited the growth of L. infantum and L. braziliensis promastigotes and amastigotes and therefore might be good candidates for the drug repurposing pipeline.
Collapse
Affiliation(s)
- Joyce V.B. Borba
- Labmol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, Goiânia, GO, 74605-510, Brazil
| | - Arthur C. Silva
- Labmol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, Goiânia, GO, 74605-510, Brazil
| | - Pablo I.P. Ramos
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, BA, 40296-710, Brazil
| | - Nathalia Grazzia
- LEBIL – Laboratory of Leishmania Biology Infection Studies, Department of Animal Biology, Biology Institute, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Danilo C. Miguel
- LEBIL – Laboratory of Leishmania Biology Infection Studies, Department of Animal Biology, Biology Institute, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Eugene N. Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Chemical Technology, Odessa National Polytechnic University, Odessa, 65000, Ukraine
| | - Nicholas Furnham
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Carolina H. Andrade
- Labmol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, Goiânia, GO, 74605-510, Brazil
| |
Collapse
|
19
|
Abstract
Conditional gene deletion using dimerizable Cre recombinase (DiCre) is so far the best developed system for the phenotypic analysis of essential genes in Leishmania species. Here, we describe a protocol for the generation of a conditional gene deletion mutant and the subsequent inducible deletion of a target gene. Leishmania parasites are genetically modified to express two inactive Cre subunits (DiCre) and a single LoxP-flanked version of a target gene in a context where both endogenous copies of the gene have been deleted. Treatment with rapamycin dimerizes the DiCre subunits, resulting in activation of the enzyme, recombination between the LoxP sites, and excision of the LoxP-flanked target gene. Subsequent phenotyping allows for the analysis of essential gene function.
Collapse
|
20
|
Cyclin-dependent kinase 12 is a drug target for visceral leishmaniasis. Nature 2018; 560:192-197. [PMID: 30046105 PMCID: PMC6402543 DOI: 10.1038/s41586-018-0356-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 06/11/2018] [Indexed: 01/28/2023]
Abstract
Visceral leishmaniasis causes considerable mortality and morbidity in many parts of the world. There is an urgent need for the development of new, effective treatments for this disease. Here we describe the development of an anti-leishmanial drug-like chemical series based on a pyrazolopyrimidine scaffold. The leading compound from this series (7, DDD853651/GSK3186899) is efficacious in a mouse model of visceral leishmaniasis, has suitable physicochemical, pharmacokinetic and toxicological properties for further development, and has been declared a preclinical candidate. Detailed mode-of-action studies indicate that compounds from this series act principally by inhibiting the parasite cdc-2-related kinase 12 (CRK12), thus defining a druggable target for visceral leishmaniasis.
Collapse
|
21
|
Jones NG, Catta-Preta CMC, Lima APCA, Mottram JC. Genetically Validated Drug Targets in Leishmania: Current Knowledge and Future Prospects. ACS Infect Dis 2018; 4:467-477. [PMID: 29384366 PMCID: PMC5902788 DOI: 10.1021/acsinfecdis.7b00244] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
There has been a very limited number
of high-throughput screening campaigns carried out with Leishmania drug targets. In part, this is due to the small number of suitable
target genes that have been shown by genetic or chemical methods to
be essential for the parasite. In this perspective, we discuss the
state of genetic target validation in the field of Leishmania research and review the 200 Leishmania genes and
36 Trypanosoma cruzi genes for which gene deletion
attempts have been made since the first published case in 1990. We
define a quality score for the different genetic deletion techniques
that can be used to identify potential drug targets. We also discuss
how the advances in genome-scale gene disruption techniques have been
used to assist target-based and phenotypic-based drug development
in other parasitic protozoa and why Leishmania has
lacked a similar approach so far. The prospects for this scale of
work are considered in the context of the application of CRISPR/Cas9
gene editing as a useful tool in Leishmania.
Collapse
Affiliation(s)
- Nathaniel G. Jones
- Centre for Immunology and Infection, Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, U.K
| | - Carolina M. C. Catta-Preta
- Centre for Immunology and Infection, Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, U.K
| | - Ana Paula C. A. Lima
- Instituto de Biofisica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil
| | - Jeremy C. Mottram
- Centre for Immunology and Infection, Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, U.K
| |
Collapse
|
22
|
Abstract
AbstractThe protozoan parasiteLeishmaniais endemic in large parts of the world which causes leishmaniasis. Its visceral form is fatal if not treated and is caused mostly byLeishmania donovani,Leishmania infantumandLeishmania chagasi. Given the difficulties linked to vector (sandfly) control and the lack of an effective vaccine, the control of leishmaniasis relies mostly on chemotherapy. Unfortunately, the prevalence of parasites becoming resistant to the first-line drug pentavalent antimony (SbV) is increasing worldwide. Few alternative drugs are available that includes amphotericin B, pentamidine and miltefosine (oral). Already, decreases in efficacy, resistance and toxicity have been noted against these drugs. Dry antileishmanial pipeline further indicates the slow pace of drug discovery in this field where resistance as a major barrier. Full understanding of the genetic and molecular basis of the parasite is lagging. Since leishmaniasis is a neglected disease and occurs predominantly in the developing world largely, therefore, it is unaddressed. The pharma industry argues that development of the new drug is too costly and risky to invest in low return neglected diseases is very high. Research is also needed to identify new and effective drug targets. The lack of drug research and development for neglected diseases will require some new strategies. We have discussed the various cause of slow pace of antileishmanial drug discovery in this review to pay attention of researchers and also take the public and private initiative to make the process fast for new antileishmanial drug development.
Collapse
|
23
|
Ansari MY, Dikhit MR, Sahoo GC, Ali V, Das P. Recent advancement and treatment of leishmaniasis based on pharmacoinformatics approach: Current and future outlook. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Roca C, Sebastián-Pérez V, Campillo NE. In silico Tools for Target Identification and Drug Molecular Docking in Leishmania. DRUG DISCOVERY FOR LEISHMANIASIS 2017. [DOI: 10.1039/9781788010177-00130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neglected tropical diseases represent a significant health burden in large parts of the world. Drug discovery is currently a key bottleneck in the pipeline of these diseases. In this chapter, the in silico approaches used for the processes involved in drug discovery, identification and validation of druggable Leishmania targets, and design and optimisation of new anti-leishmanial drugs are discussed. We also provide a general view of the different computational tools that can be employed in pursuit of this aim, along with the most interesting cases found in the literature.
Collapse
Affiliation(s)
- Carlos Roca
- Centro de Investigaciones Biológicas (CSIC) Ramiro de Maeztu 9 28040 Madrid Spain
| | | | - Nuria E. Campillo
- Centro de Investigaciones Biológicas (CSIC) Ramiro de Maeztu 9 28040 Madrid Spain
| |
Collapse
|
25
|
Duncan SM, Jones NG, Mottram JC. Recent advances in Leishmania reverse genetics: Manipulating a manipulative parasite. Mol Biochem Parasitol 2017. [DOI: 10.1016/j.molbiopara.2017.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Dichiara M, Marrazzo A, Prezzavento O, Collina S, Rescifina A, Amata E. Repurposing of Human Kinase Inhibitors in Neglected Protozoan Diseases. ChemMedChem 2017; 12:1235-1253. [PMID: 28590590 DOI: 10.1002/cmdc.201700259] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Indexed: 12/11/2022]
Abstract
Human African trypanosomiasis (HAT), Chagas disease, and leishmaniasis belong to a group of infectious diseases known as neglected tropical diseases and are induced by infection with protozoan parasites named trypanosomatids. Drugs in current use have several limitations, and therefore new candidate drugs are required. The majority of current therapeutic trypanosomatid targets are enzymes or cell-surface receptors. Among these, eukaryotic protein kinases are a major group of protein targets whose modulation may be beneficial for the treatment of neglected tropical protozoan diseases. This review summarizes the finding of new hit compounds for neglected tropical protozoan diseases, by repurposing known human kinase inhibitors on trypanosomatids. Kinase inhibitors are grouped by human kinase family and discussed according to the screening (target-based or phenotypic) reported for these compounds on trypanosomatids. This collection aims to provide insight into repurposed human kinase inhibitors and their importance in the development of new chemical entities with potential beneficial effects on the diseases caused by trypanosomatids.
Collapse
Affiliation(s)
- Maria Dichiara
- Department of Drug Sciences, University of Catania, V.le A. Doria, 6, 95100, Catania, Italy
| | - Agostino Marrazzo
- Department of Drug Sciences, University of Catania, V.le A. Doria, 6, 95100, Catania, Italy
| | - Orazio Prezzavento
- Department of Drug Sciences, University of Catania, V.le A. Doria, 6, 95100, Catania, Italy
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, V.le Taramelli, 12, 27100, Pavia, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria, 6, 95100, Catania, Italy
| | - Emanuele Amata
- Department of Drug Sciences, University of Catania, V.le A. Doria, 6, 95100, Catania, Italy
| |
Collapse
|
27
|
Späth GF, Clos J. Joining forces: first application of a rapamycin-induced dimerizable Cre system for conditional null mutant analysis in Leishmania. Mol Microbiol 2016; 100:923-7. [PMID: 26991431 DOI: 10.1111/mmi.13374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 11/29/2022]
Abstract
Reverse genetics in Leishmania spp has gained importance beyond basic research as efforts increase to discover and validate new drug targets. Often, the most promising targets are essential for viability of the parasites, defying a genetic analysis by current gene replacement strategies. Duncan et al. demonstrate the applicability of DiCre recombination in Leishmania for induced replacement of the kinase CRK3 gene in promastigotes. DiCre gene replacement leads to the rapid loss of the gene and allows monitoring the phenotypic effects of the loss of function, eliminating the need for prolonged cultivation and selection. Implementation of the DiCre approach will allow functional genetics of the most important of Leishmania genes and is likely to boost genetic research and drug target discovery.
Collapse
Affiliation(s)
- Gerald F Späth
- Institut Pasteur and INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Joachim Clos
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
28
|
Duncan SM, Myburgh E, Philipon C, Brown E, Meissner M, Brewer J, Mottram JC. Conditional gene deletion with DiCre demonstrates an essential role for CRK3 in Leishmania mexicana cell cycle regulation. Mol Microbiol 2016; 100:931-44. [PMID: 26991545 PMCID: PMC4913733 DOI: 10.1111/mmi.13375] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 12/22/2022]
Abstract
Leishmania mexicana has a large family of cyclin‐dependent kinases (CDKs) that reflect the complex interplay between cell cycle and life cycle progression. Evidence from previous studies indicated that Cdc2‐related kinase 3 (CRK3) in complex with the cyclin CYC6 is a functional homologue of the major cell cycle regulator CDK1, yet definitive genetic evidence for an essential role in parasite proliferation is lacking. To address this, we have implemented an inducible gene deletion system based on a dimerised Cre recombinase (diCre) to target CRK3 and elucidate its role in the cell cycle of L. mexicana. Induction of diCre activity in promastigotes with rapamycin resulted in efficient deletion of floxed CRK3, resulting in G2/M growth arrest. Co‐expression of a CRK3 transgene during rapamycin‐induced deletion of CRK3 resulted in complementation of growth, whereas expression of an active site CRK3T178E mutant did not, showing that protein kinase activity is crucial for CRK3 function. Inducible deletion of CRK3 in stationary phase promastigotes resulted in attenuated growth in mice, thereby confirming CRK3 as a useful therapeutic target and diCre as a valuable new tool for analyzing essential genes in Leishmania.
Collapse
Affiliation(s)
- Samuel M Duncan
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Elmarie Myburgh
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,Centre for Immunology and Infection, Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Cintia Philipon
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Elaine Brown
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,Centre for Immunology and Infection, Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Markus Meissner
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - James Brewer
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jeremy C Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,Centre for Immunology and Infection, Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| |
Collapse
|
29
|
Sardar AH, Jardim A, Ghosh AK, Mandal A, Das S, Saini S, Abhishek K, Singh R, Verma S, Kumar A, Das P. Genetic Manipulation of Leishmania donovani to Explore the Involvement of Argininosuccinate Synthase in Oxidative Stress Management. PLoS Negl Trop Dis 2016; 10:e0004308. [PMID: 26939071 PMCID: PMC4777552 DOI: 10.1371/journal.pntd.0004308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/25/2015] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS and RNS) produced by the phagocytic cells are the most common arsenals used to kill the intracellular pathogens. However, Leishmania, an intracellular pathogen, has evolved mechanisms to survive by counterbalancing the toxic oxygen metabolites produced during infection. Polyamines, the major contributor in this anti-oxidant machinery, are largely dependent on the availability of L-arginine in the intracellular milieu. Argininosuccinate synthase (ASS) plays an important role as the rate-limiting step required for converting L-citrulline to argininosuccinate to provide arginine for an assortment of metabolic processes. Leishmania produce an active ASS enzyme, yet it has an incomplete urea cycle as it lacks an argininosuccinate lyase (ASL). There is no evidence for endogenous synthesis of L-arginine in Leishmania, which suggests that these parasites salvage L-arginine from extracellular milieu and makes the biological function of ASS and the production of argininosuccinate in Leishmania unclear. Our previous quantitative proteomic analysis of Leishmania promastigotes treated with sub-lethal doses of ROS, RNS, or a combination of both, led to the identification of several differentially expressed proteins which included ASS. To assess the involvement of ASS in stress management, a mutant cell line with greatly reduced ASS activity was created by a double-targeted gene replacement strategy in L. donovani promastigote. Interestingly, LdASS is encoded by three copies of allele, but Western blot analysis showed the third allele did not appear to express ASS. The free thiol levels in the mutant LdASS-/-/+ cell line were decreased. Furthermore, the cell viability in L-arginine depleted medium was greatly attenuated on exposure to different stress environments and was adversely impacted in its ability to infect mice. These findings suggest that ASS is important for Leishmania donovani to counterbalance the stressed environments encountered during infection and can be targeted for chemotherapeutic purpose to treat visceral leishmaniasis.
Collapse
Affiliation(s)
- Abul Hasan Sardar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Bihar, India
| | - Armando Jardim
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus, McGill University, Quebec, Canada
| | - Ayan Kumar Ghosh
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Bihar, India
| | - Abhishek Mandal
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Bihar, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Bihar, India
| | - Savita Saini
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Bihar, India
| | - Kumar Abhishek
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Bihar, India
| | - Ruby Singh
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Bihar, India
| | - Sudha Verma
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Bihar, India
| | - Ajay Kumar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Bihar, India
| | - Pradeep Das
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Bihar, India
- * E-mail:
| |
Collapse
|
30
|
2,6,9-Trisubstituted purines as CRK3 kinase inhibitors with antileishmanial activity in vitro. Bioorg Med Chem Lett 2015; 25:2298-301. [PMID: 25937014 DOI: 10.1016/j.bmcl.2015.04.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 11/23/2022]
Abstract
Here we describe the leishmanicidal activities of a library of 2,6,9-trisubstituted purines that were screened for interaction with Cdc2-related protein kinase 3 (CRK3) and subsequently for activity against parasitic Leishmania species. The most active compound inhibited recombinant CRK3 with an IC50 value of 162 nM and was active against Leishmania major and Leishmania donovani at low micromolar concentrations in vitro. Its mode of binding to CRK3 was investigated by molecular docking using a homology model.
Collapse
|
31
|
Merritt C, Silva L, Tanner AL, Stuart K, Pollastri MP. Kinases as druggable targets in trypanosomatid protozoan parasites. Chem Rev 2014; 114:11280-304. [PMID: 26443079 PMCID: PMC4254031 DOI: 10.1021/cr500197d] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Christopher Merritt
- Seattle
Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, Washington 98109-5219, United States
| | - Lisseth
E. Silva
- Department
of Chemistry & Chemical Biology, Northeastern
University, 417 Egan
Research Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Angela L. Tanner
- Department
of Chemistry & Chemical Biology, Northeastern
University, 417 Egan
Research Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Kenneth Stuart
- Seattle
Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, Washington 98109-5219, United States
| | - Michael P. Pollastri
- Department
of Chemistry & Chemical Biology, Northeastern
University, 417 Egan
Research Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
32
|
Hussain H, Al-Harrasi A, Al-Rawahi A, Green IR, Gibbons S. Fruitful decade for antileishmanial compounds from 2002 to late 2011. Chem Rev 2014; 114:10369-428. [PMID: 25253511 DOI: 10.1021/cr400552x] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hidayat Hussain
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa , P.O. Box 33, Birkat Al Mauz, Nizwa 616, Sultanate of Oman
| | | | | | | | | |
Collapse
|
33
|
Dacher M, Morales MA, Pescher P, Leclercq O, Rachidi N, Prina E, Cayla M, Descoteaux A, Späth GF. Probing druggability and biological function of essential proteins inLeishmaniacombining facilitated null mutant and plasmid shuffle analyses. Mol Microbiol 2014; 93:146-66. [DOI: 10.1111/mmi.12648] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Mariko Dacher
- Institut Pasteur, CNRS URA 2581; Unité de Parasitologie moléculaire et Signalisation; Paris France
| | - Miguel A. Morales
- Institut Pasteur, CNRS URA 2581; Unité de Parasitologie moléculaire et Signalisation; Paris France
| | - Pascale Pescher
- Institut Pasteur, CNRS URA 2581; Unité de Parasitologie moléculaire et Signalisation; Paris France
| | - Olivier Leclercq
- Institut Pasteur, CNRS URA 2581; Unité de Parasitologie moléculaire et Signalisation; Paris France
| | - Najma Rachidi
- Institut Pasteur, CNRS URA 2581; Unité de Parasitologie moléculaire et Signalisation; Paris France
| | - Eric Prina
- Institut Pasteur, CNRS URA 2581; Unité de Parasitologie moléculaire et Signalisation; Paris France
| | - Mathieu Cayla
- Institut Pasteur, CNRS URA 2581; Unité de Parasitologie moléculaire et Signalisation; Paris France
| | - Albert Descoteaux
- INRS-Institut Armand-Frappier and Center for Host-Parasite Interactions; Laval Québec Canada
| | - Gerald F. Späth
- Institut Pasteur, CNRS URA 2581; Unité de Parasitologie moléculaire et Signalisation; Paris France
| |
Collapse
|
34
|
Efstathiou A, Gaboriaud-Kolar N, Smirlis D, Myrianthopoulos V, Vougogiannopoulou K, Alexandratos A, Kritsanida M, Mikros E, Soteriadou K, Skaltsounis AL. An inhibitor-driven study for enhancing the selectivity of indirubin derivatives towards leishmanial Glycogen Synthase Kinase-3 over leishmanial cdc2-related protein kinase 3. Parasit Vectors 2014; 7:234. [PMID: 24886176 PMCID: PMC4039064 DOI: 10.1186/1756-3305-7-234] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/03/2014] [Indexed: 11/15/2022] Open
Abstract
Background In search of new antiparasitic agents for overcoming the limitations of current leishmaniasis chemotherapy, we have previously shown that 6-bromoindirubin-3'-oxime (6BIO) and several other 6-substituted analogues of indirubin, a naturally occurring bis-indole present in mollusks and plants, displayed reverse selectivity from the respective mammalian kinases, targeting more potently the leishmanial Cyclin-Dependent Kinase-1 (CDK1) homologue [cdc2-related protein kinase 3 (LCRK3)] over leishmanial Glycogen Synthase Kinase-3 (LGSK-3). This reversal of selectivity in Leishmania parasites compared to mammalian cells makes the design of specific indirubin-based LGSK-3 inhibitors difficult. In this context, the identification of compounds bearing specific substitutions that shift indirubin inhibition towards LGSK-3, previously found to be a potential drug target, over LCRK3 is imperative for antileishmanial targeted drug discovery. Methods A new in-house indirubin library, composed of 35 compounds, initially designed to target mammalian kinases (CDKs, GSK-3), was tested against Leishmania donovani promastigotes and intracellular amastigotes using the Alamar blue assay. Indirubins with antileishmanial activity were tested against LGSK-3 and LCRK3 kinases, purified from homologous expression systems. Flow cytometry (FACS) was used to measure the DNA content for cell-cycle analysis and the mode of cell death. Comparative structural analysis of the involved kinases was then performed using the Szmap algorithm. Results We have identified 7 new indirubin analogues that are selective inhibitors of LGSK-3 over LCRK3. These new inhibitors were also found to display potent antileishmanial activity with GI50 values of <1.5 μΜ. Surprisingly, all the compounds that displayed enhanced selectivity towards LGSK-3, were 6BIO analogues bearing an additional 3'-bulky amino substitution, namely a piperazine or pyrrolidine ring. A comparative structural analysis of the two aforementioned leishmanial kinases was subsequently undertaken to explain and rationalize the selectivity trend determined by the in vitro binding assays. Interestingly, the latter analysis showed that selectivity could be correlated with differences in kinase solvation thermo dynamics induced by minor sequence variations of the otherwise highly similar ATP binding pockets. Conclusions In conclusion, 3'-bulky amino substituted 6-BIO derivatives, which demonstrate enhanced specificity towards LGSK-3, represent a new scaffold for targeted drug development to treat leishmaniasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Alexios-Leandros Skaltsounis
- Laboratories of Pharmacognosy and Pharmaceutical Chemistry, Department of Pharmacy, University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece.
| |
Collapse
|
35
|
Smirlis D, Soares MBP. Selection of molecular targets for drug development against trypanosomatids. Subcell Biochem 2014; 74:43-76. [PMID: 24264240 DOI: 10.1007/978-94-007-7305-9_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Trypanosomatid parasites are a group of flagellated protozoa that includes the genera Leishmania and Trypanosoma, which are the causative agents of diseases (leishmaniases, sleeping sickness and Chagas disease) that cause considerable morbidity and mortality, affecting more than 27 million people worldwide. Today no effective vaccines for the prevention of these diseases exist, whereas current chemotherapy is ineffective, mainly due to toxic side effects of current drugs and to the emergence of drug resistance and lack of cost effectiveness. For these reasons, rational drug design and the search of good candidate drug targets is of prime importance. The search for drug targets requires a multidisciplinary approach. To this end, the completion of the genome project of many trypanosomatid species gives a vast amount of new information that can be exploited for the identification of good drug candidates with a prediction of "druggability" and divergence from mammalian host proteins. In addition, an important aspect in the search for good drug targets is the "target identification" and evaluation in a biological pathway, as well as the essentiality of the gene in the mammalian stage of the parasite, which is provided by basic research and genetic and proteomic approaches. In this chapter we will discuss how these bioinformatic tools and experimental evaluations can be integrated for the selection of candidate drug targets, and give examples of metabolic and signaling pathways in the parasitic protozoa that can be exploited for rational drug design.
Collapse
|
36
|
A colorful history: the evolution of indigoids. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2014; 99:69-145. [PMID: 25296438 DOI: 10.1007/978-3-319-04900-7_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Gilbert IH. Drug discovery for neglected diseases: molecular target-based and phenotypic approaches. J Med Chem 2013; 56:7719-26. [PMID: 24015767 PMCID: PMC3954685 DOI: 10.1021/jm400362b] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Drug
discovery for neglected tropical diseases is carried out using
both target-based and phenotypic approaches. In this paper, target-based
approaches are discussed, with a particular focus on human African
trypanosomiasis. Target-based drug discovery can be successful, but
careful selection of targets is required. There are still very few
fully validated drug targets in neglected diseases, and there is a
high attrition rate in target-based drug discovery for these diseases.
Phenotypic screening is a powerful method in both neglected and non-neglected
diseases and has been very successfully used. Identification of molecular
targets from phenotypic approaches can be a way to identify potential
new drug targets.
Collapse
Affiliation(s)
- Ian H Gilbert
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee , Dundee DD1 5EH, U.K
| |
Collapse
|
38
|
Homology modeling of LmxMPK4 of Leishmania mexicana and virtual screening of potent inhibitors against it. Interdiscip Sci 2013; 5:136-44. [DOI: 10.1007/s12539-013-0164-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 01/11/2013] [Accepted: 02/17/2013] [Indexed: 10/26/2022]
|
39
|
Apoptotic marker expression in the absence of cell death in staurosporine-treated Leishmania donovani. Antimicrob Agents Chemother 2012; 57:1252-61. [PMID: 23263009 DOI: 10.1128/aac.01983-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The protozoan parasite Leishmania donovani undergoes several developmental transitions in its insect and vertebrate hosts that are induced by environmental changes. The roles of protein kinases in these adaptive differentiation steps and their potential as targets for antiparasitic intervention are only poorly characterized. Here, we used the generic protein kinase inhibitor staurosporine to gain insight into how interference with phosphotransferase activities affects the viability, growth, and motility of L. donovani promastigotes in vitro. Unlike the nonkinase drugs miltefosine and amphotericin B, staurosporine strongly reduced parasite biosynthetic activity and had a cytostatic rather than a cytotoxic effect. Despite the induction of a number of classical apoptotic markers, including caspase-like activity and surface binding of annexin V, we determined that, on the basis of cellular integrity, staurosporine did not cause cell death but caused cell cycle arrest and abrogated parasite motility. In contrast, targeted inhibition of the parasite casein kinase 1 (CK1) protein family by use of the CK1-specific inhibitor D4476 resulted in cell death. Thus, pleiotropic inhibition of L. donovani protein kinases and possibly other ATP-binding proteins by staurosporine dissociates apoptotic marker expression from cell death, which underscores the relevance of specific rather than broad kinase inhibitors for antiparasitic drug development.
Collapse
|
40
|
Developments in diagnosis and antileishmanial drugs. Interdiscip Perspect Infect Dis 2012; 2012:626838. [PMID: 23118748 PMCID: PMC3483814 DOI: 10.1155/2012/626838] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/07/2012] [Accepted: 09/11/2012] [Indexed: 01/19/2023] Open
Abstract
Leishmaniasis ranks the third in disease burden in disability-adjusted life years caused by neglected tropical diseases and is the second cause of parasite-related deaths after malaria; but for a variety of reasons, it is not receiving the attention that would be justified seeing its importance. Leishmaniasis is a diverse group of clinical syndromes caused by protozoan parasites of the genus Leishmania. It is estimated that 350 million people are at risk in 88 countries, with a global incidence of 1–1.5 million cases of cutaneous and 500,000 cases of visceral leishmaniasis. Improvements in diagnostic methods for early case detection and latest combitorial chemotherapeutic methods have given a new hope for combating this deadly disease. The cell biology of Leishmania and mammalian cells differs considerably and this distinctness extends to the biochemical level. This provides the promise that many of the parasite's proteins should be sufficiently different from hosts and can be successfully exploited as drug targets. This paper gives a brief overview of recent developments in the diagnosis and approaches in antileishmanial drug discovery and development.
Collapse
|
41
|
Singh B, Sundar S. Leishmaniasis: vaccine candidates and perspectives. Vaccine 2012; 30:3834-42. [PMID: 22475861 DOI: 10.1016/j.vaccine.2012.03.068] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/12/2012] [Accepted: 03/20/2012] [Indexed: 11/28/2022]
Abstract
Leishmania is a protozoan parasite and a causative agent of the various clinical forms of leishmaniasis. High cost, resistance and toxic side effects of traditional drugs entail identification and development of therapeutic alternatives. The sound understanding of parasite biology is key for identifying novel drug targets, that can induce the cell mediated immunity (mainly CD4+ and CD8+ IFN-gamma mediated responses) polarized towards a Th1 response. These aspects are important in designing a new vaccine along with the consideration of the candidates with respect to their ability to raise memory response in order to improve the vaccine performance. This review is an effort to identify molecules according to their homology with the host and their ability to be used as potent vaccine candidates.
Collapse
Affiliation(s)
- Bhawana Singh
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221 005, UP, India
| | | |
Collapse
|
42
|
Rogers MB, Hilley JD, Dickens NJ, Wilkes J, Bates PA, Depledge DP, Harris D, Her Y, Herzyk P, Imamura H, Otto TD, Sanders M, Seeger K, Dujardin JC, Berriman M, Smith DF, Hertz-Fowler C, Mottram JC. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res 2011; 21:2129-42. [PMID: 22038252 PMCID: PMC3227102 DOI: 10.1101/gr.122945.111] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 08/23/2011] [Indexed: 11/24/2022]
Abstract
Leishmania parasites cause a spectrum of clinical pathology in humans ranging from disfiguring cutaneous lesions to fatal visceral leishmaniasis. We have generated a reference genome for Leishmania mexicana and refined the reference genomes for Leishmania major, Leishmania infantum, and Leishmania braziliensis. This has allowed the identification of a remarkably low number of genes or paralog groups (2, 14, 19, and 67, respectively) unique to one species. These were found to be conserved in additional isolates of the same species. We have predicted allelic variation and find that in these isolates, L. major and L. infantum have a surprisingly low number of predicted heterozygous SNPs compared with L. braziliensis and L. mexicana. We used short read coverage to infer ploidy and gene copy numbers, identifying large copy number variations between species, with 200 tandem gene arrays in L. major and 132 in L. mexicana. Chromosome copy number also varied significantly between species, with nine supernumerary chromosomes in L. infantum, four in L. mexicana, two in L. braziliensis, and one in L. major. A significant bias against gene arrays on supernumerary chromosomes was shown to exist, indicating that duplication events occur more frequently on disomic chromosomes. Taken together, our data demonstrate that there is little variation in unique gene content across Leishmania species, but large-scale genetic heterogeneity can result through gene amplification on disomic chromosomes and variation in chromosome number. Increased gene copy number due to chromosome amplification may contribute to alterations in gene expression in response to environmental conditions in the host, providing a genetic basis for disease tropism.
Collapse
Affiliation(s)
- Matthew B. Rogers
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom
- Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - James D. Hilley
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Nicholas J. Dickens
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Jon Wilkes
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Paul A. Bates
- Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Daniel P. Depledge
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom
- Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - David Harris
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom
| | - Yerim Her
- Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Pawel Herzyk
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Hideo Imamura
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom
- Unit of Molecular Parasitology, Department of Parasitology, Institute of Tropical Medicine, B-2000 Antwerp, Belgium
| | - Thomas D. Otto
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom
| | - Kathy Seeger
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom
| | - Jean-Claude Dujardin
- Unit of Molecular Parasitology, Department of Parasitology, Institute of Tropical Medicine, B-2000 Antwerp, Belgium
- Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, B-2020 Antwerp, Belgium
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom
| | - Deborah F. Smith
- Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Christiane Hertz-Fowler
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom
| | - Jeremy C. Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| |
Collapse
|
43
|
Cleghorn LAT, Woodland A, Collie IT, Torrie LS, Norcross N, Luksch T, Mpamhanga C, Walker RG, Mottram JC, Brenk R, Frearson JA, Gilbert IH, Wyatt PG. Identification of inhibitors of the Leishmania cdc2-related protein kinase CRK3. ChemMedChem 2011; 6:2214-24. [PMID: 21913331 PMCID: PMC3272345 DOI: 10.1002/cmdc.201100344] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/16/2011] [Indexed: 12/03/2022]
Abstract
New drugs are urgently needed for the treatment of tropical parasitic diseases such as leishmaniasis and human African trypanosomiasis (HAT). This work involved a high-throughput screen of a focussed kinase set of ∼3400 compounds to identify potent and parasite-selective inhibitors of an enzymatic Leishmania CRK3–cyclin 6 complex. The aim of this study is to provide chemical validation that Leishmania CRK3–CYC6 is a drug target. Eight hit series were identified, of which four were followed up. The optimisation of these series using classical SAR studies afforded low-nanomolar CRK3 inhibitors with significant selectivity over the closely related human cyclin dependent kinase CDK2.
Collapse
Affiliation(s)
- Laura A T Cleghorn
- Drug Discovery Unit, College of Life Sciences, James Black Centre, University of Dundee, Dundee, DD1 5EH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jorda R, Sacerdoti-Sierra N, Voller J, Havlíček L, Kráčalíková K, Nowicki MW, Nasereddin A, Kryštof V, Strnad M, Walkinshaw MD, Jaffe CL. Anti-leishmanial activity of disubstituted purines and related pyrazolo[4,3-d]pyrimidines. Bioorg Med Chem Lett 2011; 21:4233-7. [DOI: 10.1016/j.bmcl.2011.05.076] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/19/2011] [Accepted: 05/20/2011] [Indexed: 12/25/2022]
|
45
|
Walker RG, Thomson G, Malone K, Nowicki MW, Brown E, Blake DG, Turner NJ, Walkinshaw MD, Grant KM, Mottram JC. High throughput screens yield small molecule inhibitors of Leishmania CRK3:CYC6 cyclin-dependent kinase. PLoS Negl Trop Dis 2011; 5:e1033. [PMID: 21483720 PMCID: PMC3071374 DOI: 10.1371/journal.pntd.0001033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 03/10/2011] [Indexed: 11/19/2022] Open
Abstract
Background Leishmania species are parasitic protozoa that have a tightly controlled cell cycle, regulated by cyclin-dependent kinases (CDKs). Cdc2-related kinase 3 (CRK3), an essential CDK in Leishmania and functional orthologue of human CDK1, can form an active protein kinase complex with Leishmania cyclins CYCA and CYC6. Here we describe the identification and synthesis of specific small molecule inhibitors of bacterially expressed Leishmania CRK3:CYC6 using a high throughput screening assay and iterative chemistry. We also describe the biological activity of the molecules against Leishmania parasites. Methodology/Principal Findings In order to obtain an active Leishmania CRK3:CYC6 protein kinase complex, we developed a co-expression and co-purification system for Leishmania CRK3 and CYC6 proteins. This active enzyme was used in a high throughput screening (HTS) platform, utilising an IMAP fluorescence polarisation assay. We carried out two chemical library screens and identified specific inhibitors of CRK3:CYC6 that were inactive against the human cyclin-dependent kinase CDK2:CycA. Subsequently, the best inhibitors were tested against 11 other mammalian protein kinases. Twelve of the most potent hits had an azapurine core with structure activity relationship (SAR) analysis identifying the functional groups on the 2 and 9 positions as essential for CRK3:CYC6 inhibition and specificity against CDK2:CycA. Iterative chemistry allowed synthesis of a number of azapurine derivatives with one, compound 17, demonstrating anti-parasitic activity against both promastigote and amastigote forms of L. major. Following the second HTS, 11 compounds with a thiazole core (active towards CRK3:CYC6 and inactive against CDK2:CycA) were tested. Ten of these hits demonstrated anti-parasitic activity against promastigote L. major. Conclusions/Significance The pharmacophores identified from the high throughput screens, and the derivatives synthesised, selectively target the parasite enzyme and represent compounds for future hit-to-lead synthesis programs to develop therapeutics against Leishmania species. Challenges remain in identifying specific CDK inhibitors with both target selectivity and potency against the parasite. CRK3, a cdc2-related serine/threonine protein kinase of the CDK family, is essential for transition through the G2-M phase checkpoint of the Leishmania cell cycle. An expression and purification system has been developed to produce active L. major CRK3 in complex with a cyclin partner, CYC6. CRK3:CYC6 was used to develop an assay suitable for high throughput screening (HTS) using IMAP fluorescence polarization technology. Two compound chemical libraries were screened against CRK3:CYC6 and counter screened against a human cyclin-dependent kinase complex CDK2:CycA. Two main chemical families of inhibitors were identified that specifically inhibited the leishmanial cyclin-dependent kinase, the azapurines and the thiazoles. Structure activity relationship (SAR) analysis of the hits identified the chemical groups attached to the azapurine scaffold that are essential for the inhibition of CRK3:CYC6 protein kinase activity. The CRK3:CYC6 hits were subsequently tested against a panel of 11 mammalian kinases including human CDK1:CYCB, human CDK2:CYCA and human CDK4:CYCD1 to determine their selectivity. Compounds selective to CRK3:CYC6 were tested against Leishmania. Progress towards synthesising potent and selective derivatives of the HTS hits are discussed, with the view to evaluating their potential for the development of novel therapeutics against leishmaniasis.
Collapse
Affiliation(s)
- Roderick G. Walker
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Kirk Malone
- Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, United Kingdom
| | - Matthew W. Nowicki
- Institute of Structural and Molecular Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Elaine Brown
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Nicholas J. Turner
- Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, United Kingdom
| | - Malcolm D. Walkinshaw
- Institute of Structural and Molecular Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Karen M. Grant
- School of Health & Medicine, Division of Medicine, Lancaster University, Lancaster, United Kingdom
| | - Jeremy C. Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
46
|
Listovsky T, Brandeis M, Zilberstein D. Leishmania express a functional Cdc20 homologue. Biochem Biophys Res Commun 2011; 408:71-7. [PMID: 21458414 DOI: 10.1016/j.bbrc.2011.03.118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 03/26/2011] [Indexed: 11/15/2022]
Abstract
Our knowledge concerning the mechanisms of cell cycle regulation in organisms belonging to the Trypanosometidae family is limited. Leishmania donovani are parasitic protozoa that cause kala azar, a fatal form of visceral leishmaniasis in humans. Here we provide evidence that the L. donovani genome contains a Cdc20 homologue. Cdc20 is a regulator of the Anaphase Promoting Complex/Cyclosome (APC/C) that mediates ubiquitin-dependent proteasomal degradation of key cell cycle regulators in eukaryotes. We show that L. donovani Cdc20 protein (LdCdc20p) can complement a lack of yeast Cdc20 protein in Saccharomyces cerevisiae cells, validating the functionality of LdCdc20p. Furthermore, we demonstrate cyclic expression of LdCdc20p and that it contains an active RXXL destruction motif, a distinctive feature of proteins targeted for proteasomal degradation by APC/C. Finally, in line with the proteasome mediating LdCdc20p degradation, promastigotes exposed to proteasome inhibitor display elevated LdCdc20p levels. Taken together our data indicate that Leishmania regulate their cell cycle by ubiquitin-dependent proteasomal degradation mediated by the APC/C.
Collapse
Affiliation(s)
- Tamar Listovsky
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | |
Collapse
|
47
|
The challenge of Chagas’ disease: Has the human pathogen, Trypanosoma cruzi, learned how to modulate signaling events to subvert host cells? N Biotechnol 2010; 27:837-43. [DOI: 10.1016/j.nbt.2010.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 02/14/2010] [Indexed: 12/20/2022]
|
48
|
Engels K, Beyer C, Suárez Fernández ML, Bender F, Gassel M, Unden G, Marhöfer RJ, Mottram JC, Selzer PM. Inhibition of Eimeria tenella CDK-related kinase 2: From target identification to lead compounds. ChemMedChem 2010; 5:1259-71. [PMID: 20575139 DOI: 10.1002/cmdc.201000157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Apicomplexan parasites encompass several human- and animal-pathogenic protozoans such as Plasmodium falciparum, Toxoplasma gondii, and Eimeria tenella. E. tenella causes coccidiosis, a disease that afflicts chickens, leading to tremendous economic losses to the global poultry industry. The considerable increase in drug resistance makes it necessary to develop new therapeutic strategies against this parasite. Cyclin-dependent kinases (CDKs) are key molecules in cell-cycle regulation and are therefore prominent target proteins in parasitic diseases. Bioinformatics analysis revealed four potential CDK-like proteins, of which one-E. tenella CDK-related kinase 2 (EtCRK2)-has already been characterized by gene cloning and expression.1 By using the CDK-specific inhibitor flavopiridol in EtCRK2 enzyme assays and schizont maturation assays (SMA), we could chemically validate CDK-like proteins as potential drug targets. An X-ray crystal structure of human CDK2 (HsCDK2) served as a template to build protein models of EtCRK2 by comparative homology modeling. Structural differences in the ATP binding site between EtCRK2 and HsCDK2, as well as chicken CDK3, were addressed for the optimization of selective ATP-competitive inhibitors. Virtual screening and "wet-bench" high-throughput screening campaigns on large compound libraries resulted in an initial set of hit compounds. These compounds were further analyzed and characterized, leading to a set of four promising lead compounds for development as EtCRK2 inhibitors.
Collapse
Affiliation(s)
- Kristin Engels
- Intervet Innovation GmbH, Drug Discovery, Zur Propstei, Schwabenheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chawla B, Madhubala R. Drug targets in Leishmania. J Parasit Dis 2010; 34:1-13. [PMID: 21526026 DOI: 10.1007/s12639-010-0006-3] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 06/22/2010] [Indexed: 02/03/2023] Open
Abstract
Leishmaniasis is a major public health problem and till date there are no effective vaccines available. The control strategy relies solely on chemotherapy of the infected people. However, the present repertoire of drugs is limited and increasing resistance towards them has posed a major concern. The first step in drug discovery is to identify a suitable drug target. The genome sequences of Leishmania major and Leishmania infantum has revealed immense amount of information and has given the opportunity to identify novel drug targets that are unique to these parasites. Utilization of this information in order to come up with a candidate drug molecule requires combining all the technology and using a multi-disciplinary approach, right from characterizing the target protein to high throughput screening of compounds. Leishmania belonging to the order kinetoplastidae emerges from the ancient eukaryotic lineages. They are quite diverse from their mammalian hosts and there are several cellular processes that we are getting to know of, which exist distinctly in these parasites. In this review, we discuss some of the metabolic pathways that are essential and could be used as potential drug targets in Leishmania.
Collapse
Affiliation(s)
- Bhavna Chawla
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | | |
Collapse
|
50
|
Ali NOM, Ibrahim ME, Grant KM, Mottram JC. Molecular cloning, characterization and overexpression of a novel cyclin from Leishmania mexicana. Pak J Biol Sci 2010; 13:775-84. [PMID: 21850927 DOI: 10.3923/pjbs.2010.775.784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We are reporting here, the cloning and characterization of the first cyclin from Leishmania mexicana. We have identified a cyclin-like motif from the L. major genome sequencing project. A cyclin homologue was cloned and sequenced from L. mexicana genome and it showed 96.1% amino acid identity with the putative L. major cyclin. It has also sequence identity to mitotic cyclins from other organisms. Southern analysis showed that it is present as a single copy gene. CYCa has been over-expressed in E. coli as a histidine fusion and western blot has confirmed the immunoreactive property of the recombinant cyclin, which then used to reconstitute active recombinant L. mexicana CRK3. No phosphorylation of histone HI was detected by both wild type and mutated CRK3 on the activation assays suggesting that phosphorylation status and cyclin binding are important for reconstituting protein kinase activity. The results confirm that we have isolated a cyclin molecule from L. mexicana (LmCYCa) which may play an important role in the regulation of the parasite cell cycle.
Collapse
Affiliation(s)
- Nahla O M Ali
- Wellcome Centre for Molecular Parasitology, Anderson College, University of Glasgow, Scotland, UK
| | | | | | | |
Collapse
|