1
|
Chile N, Bernal-Teran EG, Condori BJ, Clark T, Garcia HH, Gilman RH, Verastegui MR. Characterization of antigenic proteins of the Taenia solium postoncospheral form. Mol Biochem Parasitol 2024; 259:111621. [PMID: 38705360 PMCID: PMC11197303 DOI: 10.1016/j.molbiopara.2024.111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Neurocysticercosis is the leading cause for acquired epilepsy worldwide, and it is caused by the larval stage of the parasite Taenia solium. Several proteins of this stage have been characterized and studied to understand the parasite-host interaction, however, the proteins from the early cysticercus stages (the postoncospheral form) have not yet been characterized. The study of the postoncospheral form proteins is important to understand the host-parasite relationship in the early stages of infection. The aim of this work was to identify postoncospheral form antigenic proteins using sera from neurocysticercosis patients. T. solium activated oncospheres were cultured in HCT-8 cells to obtain the postoncospheral form. Soluble total and excretory/secretory proteins were obtained from the postoncospheral form and were incubated with both pool sera and individual serum of neurocysticercosis positive human patients. Immunoblotting showed target antigenic proteins with apparent molecular weights of 23 kDa and 46-48 kDa. The 46-48 kDa antigen bands present in soluble total and excretory/secretory postoncospheral form proteins were analyzed by LC-MS/MS; proteins identified were: nuclear elongation factor 1 alpha, enolase, unnamed protein product/antigen diagnostic GP50, calcium binding protein calreticulin precursor and annexin. The postoncospheral form expresses proteins related to interaction with the host, some of these proteins are predicted to be exosomal proteins. In conclusion, postoncospheral proteins are consistent targets of the humoral immune response in human and may serve as targets for diagnosis and vaccines.
Collapse
Affiliation(s)
- Nancy Chile
- Laboratorio de Investigación de Enfermedades Infecciosas. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Perú.
| | - Edson G Bernal-Teran
- Laboratorio de Investigación de Enfermedades Infecciosas. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Beth J Condori
- Laboratorio de Investigación de Enfermedades Infecciosas. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Taryn Clark
- Department of Emergency Medicine, SUNY Downstate Medical Center/Kings County Hospital Medical Center, Brooklyn, NY, USA; Department of International Health, Bloomberg School of Hygiene and Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Hector H Garcia
- Instituto Nacional de Ciencias Neurológicas. Unidad de Cisticercosis. Lima, Perú
| | - Robert H Gilman
- Department of International Health, Bloomberg School of Hygiene and Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Manuela R Verastegui
- Laboratorio de Investigación de Enfermedades Infecciosas. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
2
|
Zhong H, Hou L, Qin F, Ren Y, Dong B, Zhu D, Li H, Lu K, Fu Z, Liu J, Gu S, Jin Y. Molecular and functional characterization of Schistosoma japonicum annexin A13. Vet Res 2023; 54:116. [PMID: 38049816 PMCID: PMC10696758 DOI: 10.1186/s13567-023-01244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/23/2023] [Indexed: 12/06/2023] Open
Abstract
Schistosomiasis is a neglected tropical disease that affects humans and animals in tropical and subtropical regions worldwide. Schistosome eggs are responsible for the pathogenesis and transmission of schistosomiasis, thus reducing egg production is vital for prevention and control of schistosomiasis. However, the mechanisms underlying schistosome reproduction remain unclear. Annexin proteins (ANXs) are involved in the physiological and pathological functions of schistosomes, but the specific regulatory mechanisms and roles of ANX A13 in the development of Schistosoma japonicum and host-parasite interactions remain poorly understood. Therefore, in this study, the expression profiles of SjANX A13 at different life cycle stages of S. japonicum were assessed using quantitative PCR. In addition, the expression profiles of the homolog in S. mansoni were analyzed in reference to public datasets. The results of RNA interference showed that knockdown of SjANX A13 significantly affected the development and egg production of female worms in vivo. The results of an immune protection assay showed that recombinant SjANX A13 increased production of immunoglobulin G-specific antibodies. Finally, co-culture of S. japonicum exosomes with LX-2 cells using a transwell system demonstrated that SjANX A13 is involved in host-parasite interactions via exosomes. Collectively, these results will help to clarify the roles of SjANX A13 in the development of S. japonicum and host-parasite interactions as a potential vaccine candidate.
Collapse
Affiliation(s)
- Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ling Hou
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, China
| | - Fanglin Qin
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yuqi Ren
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Bowen Dong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Danlin Zhu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hao Li
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ke Lu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhiqiang Fu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jinming Liu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shaopeng Gu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, China
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
3
|
Leow CY, Willis C, Leow CH, Hofmann A, Jones M. Molecular characterization of Schistosoma mansoni tegument annexins and comparative analysis of antibody responses following parasite infection. Mol Biochem Parasitol 2019; 234:111231. [PMID: 31628972 DOI: 10.1016/j.molbiopara.2019.111231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/16/2019] [Accepted: 10/08/2019] [Indexed: 01/05/2023]
Abstract
Schistosomes are parasitic blood flukes that infect approximately 250 million people worldwide. The disease known as schistosomiasis, is the second most significant tropical parasitic disease after malaria. Praziquantel is the only effective drug currently licensed for schistosomiasis and there are concerns about resistance to the drug. There has been much effort to develop vaccines against schistosomiasis to produce long-term protection in endemic regions. Surface-associated proteins, and in particular, those expressed in the body wall, or tegument, have been proposed as potential vaccine targets. Of these, annexins are thought to be of integral importance for the stability of this apical membrane system. Here, we present the structural and immunobiochemical characterization of four homologous annexins namely annexin B30, annexin B5a, annexin B7a and annexin B5b from S. mansoni. Bioinformatics analysis showed that there was no signal peptide predicted for any annexin in this study. Further analysis showed that each of all four annexin protein possesses a primary structure consisting of a short but variable N-terminal region and a long C-terminal core containing four homologous annexin repeats (I-IV), which contain five alpha-helices. The life cycle expression profile of each annexin was assessed using quantitative PCR. The results showed that the overall transcript levels of the each of four homologous annexins were relatively low in the egg stage, but increased gradually after the transition of cercariae (the invasive schistosome larvae) to schistosomula (the post-invasive larvae). Circular dichroism (CD) demonstrated that rAnnexin B30, rAnnexin B5a and rAnnexin 7a were folded, showing a secondary structure content rich in alpha-helices. The membrane binding affinity was enhanced when rAnnexin B30, rAnnexin B5a and rAnnexin 7a was incubated in the presence of Ca2+. All annexin members evaluated in this study were immunolocalized to the tegument, with immunoreactivity also occurring in cells and in muscle of adult parasites. All four recombinant annexins were immunoreactive and they were recognized by the sera of mice infected with S. mansoni. In conclusion, the overall results present the molecular characterization of annexin B30, annexin B5a, annexin B7a and annexin B5b from S. mansoni in host-parasite interactions and strongly suggest that the molecules could be useful candidates for vaccine or diagnostic development.
Collapse
Affiliation(s)
- Chiuan Yee Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Kelantan, Malaysia.
| | - Charlene Willis
- School of Environment and Science, Griffith University, Brisbane, Australia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Australia
| | - Malcolm Jones
- School of Veterinary Science, University of Queensland, Gatton, Australia
| |
Collapse
|
4
|
Rybczynska AA, Boersma HH, de Jong S, Gietema JA, Noordzij W, Dierckx RAJO, Elsinga PH, van Waarde A. Avenues to molecular imaging of dying cells: Focus on cancer. Med Res Rev 2018. [PMID: 29528513 PMCID: PMC6220832 DOI: 10.1002/med.21495] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Successful treatment of cancer patients requires balancing of the dose, timing, and type of therapeutic regimen. Detection of increased cell death may serve as a predictor of the eventual therapeutic success. Imaging of cell death may thus lead to early identification of treatment responders and nonresponders, and to “patient‐tailored therapy.” Cell death in organs and tissues of the human body can be visualized, using positron emission tomography or single‐photon emission computed tomography, although unsolved problems remain concerning target selection, tracer pharmacokinetics, target‐to‐nontarget ratio, and spatial and temporal resolution of the scans. Phosphatidylserine exposure by dying cells has been the most extensively studied imaging target. However, visualization of this process with radiolabeled Annexin A5 has not become routine in the clinical setting. Classification of death modes is no longer based only on cell morphology but also on biochemistry, and apoptosis is no longer found to be the preponderant mechanism of cell death after antitumor therapy, as was earlier believed. These conceptual changes have affected radiochemical efforts. Novel probes targeting changes in membrane permeability, cytoplasmic pH, mitochondrial membrane potential, or caspase activation have recently been explored. In this review, we discuss molecular changes in tumors which can be targeted to visualize cell death and we propose promising biomarkers for future exploration.
Collapse
Affiliation(s)
- Anna A Rybczynska
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Genetics, University of Groningen, Groningen, the Netherlands
| | - Hendrikus H Boersma
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy & Pharmacology, University of Groningen, Groningen, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Jourik A Gietema
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Walter Noordzij
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Philip H Elsinga
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aren van Waarde
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
5
|
Leow CY, Willis C, Hofmann A, Jones MK. Structure-function analysis of apical membrane-associated molecules of the tegument of schistosome parasites of humans: prospects for identification of novel targets for parasite control. Br J Pharmacol 2015; 172:1653-63. [PMID: 25176442 PMCID: PMC4376446 DOI: 10.1111/bph.12898] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 06/12/2014] [Accepted: 08/26/2014] [Indexed: 02/02/2023] Open
Abstract
Neglected tropical diseases are a group of some 17 diseases that afflict poor and predominantly rural people in developing nations. One significant disease that contributes to substantial morbidity in endemic areas is schistosomiasis, caused by infection with one of five species of blood fluke belonging to the trematode genus Schistosoma. Although there is one drug available for treatment of affected individuals in clinics, or for mass administration in endemic regions, there is a need for new therapies. A prominent target organ of schistosomes, either for drug or vaccine development, is the peculiar epithelial syncytium that forms the body wall (tegument) of this parasite. This dynamic layer is maintained and organized by concerted activity of a range of proteins, among which are the abundant tegumentary annexins. In this review, we will outline advances in structure-function analyses of these annexins, as a means to understanding tegument cell biology in host-parasite interaction and their potential exploitation as targets for anti-schistosomiasis therapies.
Collapse
Affiliation(s)
- Chiuan Yee Leow
- School of Veterinary Science, The University of QueenslandGatton, Queensland, Australia
- Infectious Diseases, QIMR Berghofer Medical Research InstituteHerston, Queensland, Australia
- Institute for Research in Molecular Medicine, Universiti Sains MalaysiaPenang, Malaysia
| | - Charlene Willis
- Infectious Diseases, QIMR Berghofer Medical Research InstituteHerston, Queensland, Australia
- Structural Chemistry Program, Eskitis Institute, Griffith UniversityBrisbane, Queensland, Australia
| | - Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute, Griffith UniversityBrisbane, Queensland, Australia
- Faculty of Veterinary Science, The University of MelbourneParkville, Victoria, Australia
| | - Malcolm K Jones
- School of Veterinary Science, The University of QueenslandGatton, Queensland, Australia
| |
Collapse
|
6
|
He L, Ren M, Chen X, Wang X, Li S, Lin J, Liang C, Liang P, Hu Y, Lei H, Bian M, Huang Y, Wu Z, Li X, Yu X. Biochemical and immunological characterization of annexin B30 from Clonorchis sinensis excretory/secretory products. Parasitol Res 2014; 113:2743-55. [PMID: 24861011 DOI: 10.1007/s00436-014-3935-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/30/2014] [Indexed: 12/30/2022]
Abstract
Clonorchis sinensis has been classified as group I biological carcinogen for cholangiocarcinoma by the World Health Organization. Biological studies on excretory/secretory products (ESPs) enabled us to understand the pathogenesis mechanism of C. sinensis and develop new strategies for the prevention of clonorchiasis. In this study, sequence analysis showed that annexin B30 from C. sinensis (CsANXB30) is composed of four annexin repeats which were characterized by type II and III Ca(2+)-binding sites or KGD motif with the capability of Ca(2+)-binding. In addition, immunoblot assay revealed that recombinant CsANXB30 (rCsANXB30) could be recognized by the sera from rats infected with C. sinensis and the sera from rats immunized by CsESPs. Real-time PCR showed that its transcriptional level was the highest at the stage of metacercaria. Immunofluorescence assay was employed to confirm that CsANXB30 was distributed in the tegument, intestine, and egg of adult worms, as well as the tegument and vitellarium of metacercaria. rCsANXB30 was able to bind phospholipid in a Ca(2+)-dependent manner and human plasminogen in a dose-dependent manner. Moreover, cytokine and antibody measurements indicated that rats subcutaneously immunized with rCsANXB30 developed a strong IL-10 production in spleen cells and a high level of IgG1 isotype, indicating that rCsANXB30 could trigger specific humoral and cellular immune response in rats. The present results implied that CsANXB30 might be involved in a host-parasite interaction and affected the immune response of the host during C. sinensis infection.
Collapse
Affiliation(s)
- Lei He
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Diaz-Masmela Y, Fragoso G, Ambrosio JR, Mendoza-Hernández G, Rosas G, Estrada K, Carrero JC, Sciutto E, Laclette JP, Bobes RJ. Immunodiagnosis of porcine cysticercosis: identification of candidate antigens through immunoproteomics. Vet J 2013; 198:656-60. [PMID: 24161749 DOI: 10.1016/j.tvjl.2013.09.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 09/19/2013] [Accepted: 09/20/2013] [Indexed: 01/12/2023]
Abstract
Cysticercosis, caused by the larval stage of Taenia solium, is a zoonotic disease affecting pigs and humans that is endemic to developing countries in Latin America, Africa and South East Asia. The prevalence of infection in pigs, the intermediate host for T. solium, has been used as an indicator for monitoring disease transmission in endemic areas. However, accurate and specific diagnostic tools for porcine cysticercosis remain to be established. Using proteomic approaches and the T. solium genome sequence, seven antigens were identified as specific for porcine cysticercosis, namely, tropomyosin 2, alpha-1 tubulin, beta-tubulin 2, annexin B1, small heat-shock protein, 14-3-3 protein, and cAMP-dependent protein kinase. None of these proteins were cross-reactive when tested with sera from pigs infected with Ascaris spp., Cysticercus tenuicollis and hydatid cysts of Echinococcus spp. or with serum from a Taenia saginata-infected cow. Comparison with orthologues, indicated that the amino acid sequences of annexin B1 and cAMP-dependent protein kinase possessed highly specific regions, which might make them suitable candidates for development of a specific diagnostic assay for porcine cysticercosis.
Collapse
Affiliation(s)
- Yuliet Diaz-Masmela
- Immunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, DF 04510, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zheng Y. Strategies of Echinococcus species responses to immune attacks: implications for therapeutic tool development. Int Immunopharmacol 2013; 17:495-501. [PMID: 23973651 DOI: 10.1016/j.intimp.2013.07.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/26/2013] [Accepted: 07/30/2013] [Indexed: 01/27/2023]
Abstract
Echinococcus species have been studied as a model to investigate parasite-host interactions. Echinococcus spp. can actively communicate dynamically with a host to facilitate infection, growth and proliferation partially via secretion of molecules, especially in terms of harmonization of host immune attacks. This review systematically outlines our current knowledge of how the Echinococcus species have evolved to adapt to their host's microenvironment. This understanding of parasite-host interplay has implications in profound appreciation of parasite plasticity and is informative in designing novel and effective tools including vaccines and drugs for the treatment of echinococcosis and other diseases.
Collapse
Affiliation(s)
- Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, China; Key Lab of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry, Pharmaceutical Sciences, CAAS, Lanzhou, Gansu, China; Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry, Pharmaceutical Sciences, CAAS, Lanzhou, Gansu, China.
| |
Collapse
|
9
|
Hofmann A, Osman A, Leow CY, Driguez P, McManus DP, Jones MK. Parasite annexins--new molecules with potential for drug and vaccine development. Bioessays 2011; 32:967-76. [PMID: 21105292 DOI: 10.1002/bies.200900195] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the last few years, annexins have been discovered in several nematodes and other parasites, and distinct differences between the parasite annexins and those of the hosts make them potentially attractive targets for anti-parasite therapeutics. Annexins are ubiquitous proteins found in almost all organisms across all kingdoms.Here, we present an overview of novel annexins from parasitic organisms, and summarize their phylogenetic and biochemical properties, with a view to using them as drug or vaccine targets. Building on structural and biological information that has been accumulated for mammalian and plant annexins, we describe a predicted additional secondary structure element found in many parasite annexins that may confer unique functional properties, and present a specific antigenic epitope for use as a vaccine.
Collapse
Affiliation(s)
- Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
10
|
Tararam CA, Farias LP, Wilson RA, Leite LCDC. Schistosoma mansoni Annexin 2: molecular characterization and immunolocalization. Exp Parasitol 2010; 126:146-55. [PMID: 20417203 DOI: 10.1016/j.exppara.2010.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 03/19/2010] [Accepted: 04/16/2010] [Indexed: 11/18/2022]
Abstract
We here describe the cloning and characterization of the Schistosoma mansoni Annexin 2, previously identified in the tegument by proteomic studies, and as an up-regulated gene in schistosomulum stage by microarray data. In silico analysis predicts a conserved core containing four repeat domains of Annexin (ANX) and a variable N-terminal region similar to that described for mammalian isoforms. Real-time RT-PCR and Western blot analysis determined that S. mansoni Annexin 2 is significantly up-regulated in the transition from free-living cercaria to schistosomulum and adult worm parasitic stages. Immunolocalization experiments and tegument membrane preparations confirmed Annexin 2 as a protein mainly localized in the tegument of schistosomula and adult worms. Furthermore, it binds to the tegument surface membranes in a calcium-dependent manner. These results suggest that S. mansoni Annexin 2 is closely associated to the tegument arrangement, being a potential target for immune intervention.
Collapse
|
11
|
Expression, purification, and characterization of a novel Ca(2+)- and phospholipid-binding protein annexin B2. Mol Biol Rep 2009; 37:1591-6. [PMID: 19455404 PMCID: PMC2815297 DOI: 10.1007/s11033-009-9568-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 05/01/2009] [Indexed: 11/16/2022]
Abstract
Annexin B2 (AnxB2) is a novel member of the annexin family of Ca2+- and phospholipid-binding proteins from Cysticercus cellulosae. To obtain highly pure AnxB2 with an easy and inexpensive purification approach, its cDNA was cloned into the prokaryotic expression vector pJLA503 and the translation initiation codon was immediately under the control of the inducible bacteriophage λ promoters PR and PL. After induction by shifting temperature, large amounts of non-fusion protein were produced in Escherichia coli in a soluble form. Then a novel purification method based on Ca2+-dependent phosphatidylserine (PS)-binding activity was established, whereby the purity of AnxB2 was increased to 98.7%. Western blot analysis showed that recombinant AnxB2 was specifically recognized by serum of pigs infected with cysticercosis. In vitro test showed that, the recombinant AnxB2 had anticoagulant activity and platelet binding activity. The expression, purification, and initial characterization of AnxB2 set an important stage for further characterization of the protein.
Collapse
|
12
|
Calcium-dependent proapoptotic effect of Taenia solium metacestodes annexin B1 on human eosinophils: A novel strategy to prevent host immune response. Int J Biochem Cell Biol 2008; 40:2151-63. [DOI: 10.1016/j.biocel.2008.02.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2007] [Revised: 01/30/2008] [Accepted: 02/18/2008] [Indexed: 01/22/2023]
|
13
|
Translocation of annexin B1 in response to the stimulation of PMA and ionomycin in cervical cancer cells. Cell Biol Int 2007; 32:121-7. [PMID: 17936648 DOI: 10.1016/j.cellbi.2007.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Revised: 06/28/2007] [Accepted: 08/27/2007] [Indexed: 11/21/2022]
Abstract
Annexin B1 is a novel member of the annexin superfamily which was isolated from a Cysticercus cellulosae cDNA library. To investigate the physiological roles of annexin B1, we firstly performed immunohistochemical analysis on frozen Cysticercus cellulosae sections and found that annexin B1 was present not only in the tegument of the bladder wall, but also in the host-derived inflammatory layer; In addition, ELISA analysis revealed that annexin B1 could be detected in the cystic fluid of Cysticercus cellulosae and the sera of pigs with cysticercosis. These findings indicated that annexin B1 might be a secretary protein. We further constructed a pEGFP-annexin B1 plasmid and transfected it into SiHa cells. We found that GFP-annexin B1 was stimulated to translocate to the plasma membrane by phorbol 12-myristate 13-acetate (PMA). By contrast, it was induced to distribute at the plasma and nuclear membranes by treatment with calcium ionophore ionomycin. PMA increased annexin B1 membrane binding, which might facilitate exocytosis. Moreover, translocation of the protein to the plasma and nuclear membranes after stimulated by ionomycin, was predicted to be related to an additional function.
Collapse
|
14
|
Gao YJ, Yan HL, Ding FX, Lu YM, Sun SH. Annexin B1 at the host-parasite interface of the Taenia solium cysticercus: Secreted and associated with inflammatory reaction. Acta Trop 2007; 101:192-9. [PMID: 17349964 DOI: 10.1016/j.actatropica.2006.10.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 10/25/2006] [Accepted: 10/26/2006] [Indexed: 11/29/2022]
Abstract
Annexin B1 is a novel member of annexin family firstly cloned by immunological screening a Taenia solium cysticercus library. To investigate the histological distribution and physiological role(s) of this protein, we first prepared a specific monoclonal antibody against annexin B1. Western blot analysis indicated that annexin B1 could be detected in cystic fluid of T. solium cysticercus and sera of pigs/humans with cysticercosis. Thus, annexin B1 might belong to the secreted members of annexins. Immunohistochemical analysis revealed that annexin B1 was mainly present in the tegument of bladders, but not in the scolex and neck; it was also detected in the surrounding host-derived layer with granulomatous infiltration. Together with previous, the presented data suggested that the protein inhibited mammalian PLA2 in vitro, and might down regulate host inflammatory responses.
Collapse
Affiliation(s)
- Yuan-Jian Gao
- Department of Medical Genetics, The Second Military Medical University, Xiangyin Road 800, Shanghai 200433, China
| | | | | | | | | |
Collapse
|
15
|
Wang K, Guo Y, Li K, Lu Y, Zhang Y, Sun S, Yan H, Zhang S. Molecular characterization and anticoagulant activity of a novel annexin derived from the Taenia solium. Acta Trop 2006; 99:165-72. [PMID: 16982028 DOI: 10.1016/j.actatropica.2006.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 07/24/2006] [Accepted: 07/31/2006] [Indexed: 10/24/2022]
Abstract
A novel annexin gene was isolated from the Taenia solium cDNA library by degenerate PCR. The purified protein was generated by hydrolysis with thrombin in glutathione S-transferase (GST) affinity chromatography following expression in GST tagged pGEX-5T vector. It shares the common structural features of the annexin family and specially possesses two unique fragments between repeating domains II and III which do not exist in other annexin family members revealed by aligning and homology modeling, hence it was designated as Tso ANXB2 according to the new nomenclature of annexins. According to the parasitic behaviors of the origin, a series of coagulation assays was performed, indicating that Tso ANXB2 inhibits extrinsic blood coagulation pathway and platelet aggregation also has platelet binding activity. Nevertheless, the mutant protein deleting the consensus coagulation-related KGD motif of Tso ANXB2 showed significant decreasing platelet binding and anticoagulation activity.
Collapse
Affiliation(s)
- KaiHui Wang
- Department of Medical Genetics, The Second Military Medical University, Xiang Yin Road 800, Shanghai 200433, PR China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Winter A, Yusof AM, Gao E, Yan HL, Sun SH, Hofmann A. Biochemical characterization of annexin B1 from Cysticercus cellulosae. FEBS J 2006; 273:3238-47. [PMID: 16857011 DOI: 10.1111/j.1742-4658.2006.05332.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Annexin B1 from Cysticercus cellulosae has recently been identified using immunological screening in an attempt to find novel antigens for vaccine development against cysticercosis. The protein possesses anticoagulant activity and carries significant therapeutic potential due to its thrombus-targeting and thrombolytic properties. We investigated the biochemical properties of annexin B1 using liposome and heparin Sepharose copelleting assays, as well as CD spectroscopy. The calcium-dependent binding to acidic phospholipid membranes is reminiscent of other mammalian annexins with a clear preference for high phosphatidylserine content. A unique property of annexin B1 is its ability to bind to liposomes with high phosphatidylserine content in the absence of calcium, which might be due to the presence of several basic residues on the convex protein surface that harbours the membrane-binding loops. Annexin B1 demonstrates lectin properties and binds to heparin Sepharose in a cooperative, calcium-dependent manner. Although this binding is reversible to a large extent, a small fraction of the protein remains bound to the glycosaminoglycan even in the presence of high concentrations of EDTA. Analogous to annexin A5, we propose a model of heparin wrapped around the protein thereby engaging in calcium-dependent and calcium-independent interactions. Although the calcium-independent heparin-binding sites identified in annexin A5 are not conserved, we hypothesize three possible sites in annexin B1. Results from CD spectroscopy and thermal denaturation indicate that, in solution, the protein binds calcium with a low affinity that leads to a slight increase in folding stability.
Collapse
Affiliation(s)
- Anja Winter
- Institute of Structural & Molecular Biology, School of Biological Sciences, University of Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
17
|
Zhang Y, Guo YJ, Sun SH, Yan HL, He Y. Non-fusion expression in Escherichia coli, purification, and characterization of a novel Ca2+- and phospholipid-binding protein annexin B1. Protein Expr Purif 2004; 34:68-74. [PMID: 14766301 DOI: 10.1016/j.pep.2003.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2003] [Revised: 11/12/2003] [Indexed: 10/26/2022]
Abstract
Annexin B1 is a novel member of the annexin family of Ca2+- and phospholipid-binding proteins from Cysticercus cellulosae. To obtain high quality annexin B1 for biochemical and biophysical analyses, its cDNA was cloned into the prokaryotic expression vector pJLA503 and the translation initiation codon was immediately under the control of the inducible bacteriophage lambda promoters P(R) and P(L). After induction by shifting temperature, large amounts of non-fusion protein were produced in Escherichia coli in a soluble form. The recombinant protein was purified to homogeneity by means of two subsequent ion-exchange chromatographic steps. The final yield was about 25 mg/L bacterial culture. Western blot analysis showed that recombinant annexin B1 was specifically recognized by serum of pigs infected with cysticercosis. Secondary structure predictions from circular dichroism spectroscopy indicated that alpha-helix is the main secondary structure of the protein. In anticoagulant assays, the recombinant non-fusion protein exhibited dose-dependent effects in modified kaolin partial thromboplastin time (KPTT) prolongation and doubled the clotting time of control human plasma at 60 microg/ml. The expression, purification, and initial characterization of annexin B1 set an important stage for further characterization of the protein.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Medical Genetics, The Second Military Medical University, Xiang Yin Road 800, Shanghai 200433, PR China
| | | | | | | | | |
Collapse
|