1
|
Chrestia JF, Turani O, Araujo NR, Hernando G, Esandi MDC, Bouzat C. Regulation of nicotinic acetylcholine receptors by post-translational modifications. Pharmacol Res 2023; 190:106712. [PMID: 36863428 DOI: 10.1016/j.phrs.2023.106712] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) comprise a family of pentameric ligand-gated ion channels widely distributed in the central and peripheric nervous system and in non-neuronal cells. nAChRs are involved in chemical synapses and are key actors in vital physiological processes throughout the animal kingdom. They mediate skeletal muscle contraction, autonomic responses, contribute to cognitive processes, and regulate behaviors. Dysregulation of nAChRs is associated with neurological, neurodegenerative, inflammatory and motor disorders. In spite of the great advances in the elucidation of nAChR structure and function, our knowledge about the impact of post-translational modifications (PTMs) on nAChR functional activity and cholinergic signaling has lagged behind. PTMs occur at different steps of protein life cycle, modulating in time and space protein folding, localization, function, and protein-protein interactions, and allow fine-tuned responses to changes in the environment. A large body of evidence demonstrates that PTMs regulate all levels of nAChR life cycle, with key roles in receptor expression, membrane stability and function. However, our knowledge is still limited, restricted to a few PTMs, and many important aspects remain largely unknown. There is thus a long way to go to decipher the association of aberrant PTMs with disorders of cholinergic signaling and to target PTM regulation for novel therapeutic interventions. In this review we provide a comprehensive overview of what is known about how different PTMs regulate nAChR.
Collapse
Affiliation(s)
- Juan Facundo Chrestia
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Ornella Turani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Noelia Rodriguez Araujo
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Guillermina Hernando
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - María Del Carmen Esandi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina.
| |
Collapse
|
2
|
Abstract
The soil-transmitted helminths (STHs), Ascaris lumbricoides, hookworm and Trichuris trichiura are common in areas with warm and moist climates with little access to adequate water, sanitation, and hygiene affecting the poorest populations. The current control strategy of the World Health Organization is preventive chemotherapy (PC), i.e., the administration of the two benzimidazoles (albendazole and mebendazole) using single, oral doses to at risk populations without prior diagnosis. The recent success of PC is threatened by anthelmintic drug resistance and the low efficacy of the drugs against hookworm (mebendazole) and T. trichiura (albendazole and mebendazole). Only a handful of alternative drugs with anthelmintic properties are available, however, none of the drugs show high efficacy against all three STHs. The combination of two drugs with different activity profiles presents an attractive alternative, which could prevent the development of drug resistance and increase the efficacy compared to monotherapy. In this review, we summarize the efficacy of current and alternative anthelmintics, coadministrations and triple drug therapies assessed by means of network meta-analysis including only randomized controlled trials. Our results highlight that coadministrations have improved efficacy over monotherapy and the necessity of adapting current STH control strategies for the successful continuation of PC programs.
Collapse
|
3
|
Fortes FS, Molento MB. Resistência anti-helmíntica em nematoides gastrintestinais de pequenos ruminantes: avanços e limitações para seu diagnóstico. PESQUISA VETERINARIA BRASILEIRA 2013. [DOI: 10.1590/s0100-736x2013001200001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A seleção e a crescente disseminação de nematoides resistentes aos anti-helmínticos mais comumente utilizados, benzimidazóis (BZs), imidazotiazóis e lactonas macrocíclicas (LMs), constituem um sério entrave na produção de pequenos ruminantes em todo o mundo. O uso de métodos eficientes e sensíveis para a detecção e o monitoramento da resistência anti-helmíntica no campo torna-se urgente, especialmente para os grupos de BZs e LMs, devido aos constantes relatos de resistência. A obtenção de um diagnóstico preciso e precoce da resistência é extremamente importante para auxiliar a tomada de decisão em programas de controle parasitário, com o objetivo de preservar a vida útil dos produtos e limitar o desenvolvimento da resistência nas populações de nematoides. Os testes in vivo e, mais recentemente, os testes in vitro têm sido desenvolvidos para a detecção de nematoides resistentes aos principais grupos de anti-helmínticos. No entanto, a disponibilidade de testes in vitro validados e o seu uso prático ainda são muito limitados. Embora o teste de redução na contagem de ovos nas fezes (TRCOF, in vivo - indireto) seja o principal método de escolha para a detecção de resistência no campo, vem recebendo críticas quanto à validade dos resultados, e passa por significativas modificações. Além disso, o desenvolvimento de técnicas moleculares a partir de alterações genômicas gerou avanços consideráveis nessa área de investigação, com o uso de mutações nos códons 167, 198 e 200 do gene da β-tubulina como principais SNPs (polimorfismos de nucleotídeo único; do inglês Single Nucleotide Polymorphisms) associados à resistência aos BZs. A presente revisão tem o objetivo de discutir os métodos de diagnóstico disponíveis para a detecção de resistência anti-helmíntica em nematoides de pequenos ruminantes, destacando progressos e obstáculos para seu uso na rotina laboratorial e no campo.
Collapse
|
4
|
Boulin T, Fauvin A, Charvet CL, Cortet J, Cabaret J, Bessereau JL, Neveu C. Functional reconstitution of Haemonchus contortus acetylcholine receptors in Xenopus oocytes provides mechanistic insights into levamisole resistance. Br J Pharmacol 2012; 164:1421-32. [PMID: 21486278 DOI: 10.1111/j.1476-5381.2011.01420.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE The cholinergic agonist levamisole is widely used to treat parasitic nematode infestations. This anthelmintic drug paralyses worms by activating a class of levamisole-sensitive acetylcholine receptors (L-AChRs) expressed in nematode muscle cells. However, levamisole efficacy has been compromised by the emergence of drug-resistant parasites, especially in gastrointestinal nematodes such as Haemonchus contortus. We report here the first functional reconstitution and pharmacological characterization of H. contortus L-AChRs in a heterologous expression system. EXPERIMENTAL APPROACH In the free-living nematode Caenorhabditis elegans, five AChR subunit and three ancillary protein genes are necessary in vivo and in vitro to synthesize L-AChRs. We have cloned the H. contortus orthologues of these genes and expressed them in Xenopus oocytes. We reconstituted two types of H. contortus L-AChRs with distinct pharmacologies by combining different receptor subunits. KEY RESULTS The Hco-ACR-8 subunit plays a pivotal role in selective sensitivity to levamisole. As observed with C. elegans L-AChRs, expression of H. contortus receptors requires the ancillary proteins Hco-RIC-3, Hco-UNC-50 and Hco-UNC-74. Using this experimental system, we demonstrated that a truncated Hco-UNC-63 L-AChR subunit, which was specifically detected in a levamisole-resistant H. contortus isolate, but not in levamisole-sensitive strains, hampers the normal function of L-AChRs, when co-expressed with its full-length counterpart. CONCLUSIONS AND IMPLICATIONS We provide the first functional evidence for a putative molecular mechanism involved in levamisole resistance in any parasitic nematode. This expression system will provide a means to analyse molecular polymorphisms associated with drug resistance at the electrophysiological level.
Collapse
Affiliation(s)
- T Boulin
- Institut de Biologie de l'École Normale Supérieure, Biology Department, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
5
|
Genetic diversity of levamisole receptor subunits in parasitic nematode species and abbreviated transcripts associated with resistance. Pharmacogenet Genomics 2010; 20:414-25. [DOI: 10.1097/fpc.0b013e328338ac8c] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Nematode parasite genes: what's in a name? Trends Parasitol 2010; 26:334-40. [DOI: 10.1016/j.pt.2010.04.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 11/23/2022]
|
7
|
Fauvin A, Charvet C, Issouf M, Cortet J, Cabaret J, Neveu C. cDNA-AFLP analysis in levamisole-resistant Haemonchus contortus reveals alternative splicing in a nicotinic acetylcholine receptor subunit. Mol Biochem Parasitol 2010; 170:105-7. [DOI: 10.1016/j.molbiopara.2009.11.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/13/2009] [Accepted: 11/16/2009] [Indexed: 11/16/2022]
|
8
|
Kopp SR, Kotze AC, McCarthy JS, Traub RJ, Coleman GT. Pyrantel in small animal medicine: 30 years on. Vet J 2008; 178:177-84. [PMID: 17720556 DOI: 10.1016/j.tvjl.2007.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 06/19/2007] [Accepted: 06/25/2007] [Indexed: 11/19/2022]
Abstract
Pyrantel, a tetrahydropyrimidine nicotinic agonist anthelmintic, has been used in companion animal medicine since the 1970s to control two important nematode groups, the hookworms and the roundworms. Given the zoonotic potential of these parasites, pyrantel has served a dual role in helping to protect the health of both companion animals and the public for more than 30 years. This review describes the history and mechanism of action of this drug, and collates evidence that resistance to pyrantel has developed in at least one canine nematode, the hookworm Ancylostoma caninum. The role of in vitro diagnosis tests in managing anthelmintic resistance in companion animal parasites is discussed, as are management practices that may reduce the rate at which resistance develops.
Collapse
Affiliation(s)
- Steven R Kopp
- School of Veterinary Science, University of Queensland, 4072 Queensland, Australia
| | | | | | | | | |
Collapse
|
9
|
Neveu C, Charvet C, Fauvin A, Cortet J, Castagnone-Sereno P, Cabaret J. Identification of levamisole resistance markers in the parasitic nematode Haemonchus contortus using a cDNA-AFLP approach. Parasitology 2007; 134:1105-10. [PMID: 17608970 DOI: 10.1017/s0031182007000030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
cDNA-AFLP (cDNA-Amplified Fragment Length Polymorphism)-based strategy has been used to identify levamisole (LEV) resistance markers in the nematode Haemonchus contortus. Transcript profiles of adult nematodes from two LEV-resistant and two susceptible isolates were compared. Among the 17 280 transcript-derived fragments (TDFs) amplified, 26 presented a polymorphic pattern between resistant and susceptible nematodes: 11 TDFs were present in both resistant isolates and absent from both susceptible isolates whereas 15 TDFs were present in both susceptible isolates and absent from both resistant isolates. 8 TDFs specifically present in resistant isolates were cloned and sequenced. Some of these TDFs could represent novel genes, as their sequences presented no homologies in databases. Interestingly, specific expression of one candidate (HA17) in resistant nematodes from different isolates was confirmed by RT-PCR experiments. The finding that HA17 expression correlates with LEV resistance in three H. contortus isolates vs five susceptible isolates strongly suggest that we identified a new potential marker of LEV resistance. This differential approach at the transcriptome level could be of great interest for the identification of the molecular mechanism involved in this phenotype.
Collapse
Affiliation(s)
- C Neveu
- INRA, IASP, 213, UR 1282, F-37380 Nouzilly, France.
| | | | | | | | | | | |
Collapse
|
10
|
Martin RJ, Verma S, Levandoski M, Clark CL, Qian H, Stewart M, Robertson AP. Drug resistance and neurotransmitter receptors of nematodes: recent studies on the mode of action of levamisole. Parasitology 2007; 131 Suppl:S71-84. [PMID: 16569294 DOI: 10.1017/s0031182005008668] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Here we review recent studies on the mode of action of the cholinergic anthelmintics (levamisole, pyrantel etc.). We also include material from studies on the free living nematode Caenorhabditis elegans. The initial notion that these drugs act on a single receptor population, while attractive, has proven to be an oversimplification. In both free living and parasitic nematodes there are multiple types of nicotinic acetylcholine receptor (nAChR) on the somatic musculature. Each type has different (sometimes subtly so) pharmacological properties. The implications of these findings are: (1) combinations of anthelmintic that preferentially activate a broad range of nAChR types would be predicted to be more effective; (2) in resistant isolates of parasite where a subtype has been lost, other cholinergic anthelmintics may remain effective. Not only are there multiple types of nAChR, but relatively recent research has shown these receptors can be modulated; it is possible to increase the response of a parasite to a fixed concentration of drug by altering the receptor properties (e.g. phosphorylation state). These findings offer a potential means of increasing efficacy of existing compounds as an alternative to the costly and time consuming development of new anthelmintic agents.
Collapse
Affiliation(s)
- R J Martin
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Martin RJ, Robertson AP. Mode of action of levamisole and pyrantel, anthelmintic resistance, E153 and Q57. Parasitology 2007; 134:1093-104. [PMID: 17608969 DOI: 10.1017/s0031182007000029] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SUMMARYHere we review molecular information related to resistance to the cholinergic anthelmintics in nematodes. The amount of molecular information available varies between the nematode species, with the best understood so far beingC. elegans. More information is becoming available for some other parasitic species. The cholinergic anthelmintics act on nematode nicotinic acetylcholine receptors located on somatic muscle cells. Recent findings demonstrate the presence of multiple types of the nicotinic receptors in several nematodes and the numerous genes required to form these multimeric proteins. Not only are the receptors the product of several genes but they are subject to modulation by several other proteins. Mutations altering these modulatory proteins could alter sensitivity to the cholinergic anthelmitics and thus lead to resistance. We also discuss the possibility that resistance to the cholinergic anthelmintics is not necessarily the result of a single mutation but may well be polygenic in nature. Additionally, the mutations resulting in resistance may vary between different species or between resistant isolates of the same species. A list of candidate genes to examine for SNPs is presented.
Collapse
Affiliation(s)
- R J Martin
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.
| | | |
Collapse
|
12
|
Jabbar A, Iqbal Z, Kerboeuf D, Muhammad G, Khan MN, Afaq M. Anthelmintic resistance: The state of play revisited. Life Sci 2006; 79:2413-31. [PMID: 16979192 DOI: 10.1016/j.lfs.2006.08.010] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 07/25/2006] [Accepted: 08/14/2006] [Indexed: 10/24/2022]
Abstract
Helminthosis is one of the major constraints in the successful wool and mutton industry throughout the world. Anthelmintic Resistance (AR) is said to have been established when previously effective drug ceases to kill exposed parasitic population at the therapeutically recommended dosages. Anthelmintic resistance is almost cosmopolitan in distribution and it has been reported in almost all species of domestic animals and even in some parasites of human beings. Some of the most important species of parasites of small ruminants in which AR has been reported include: Haemonchus spp., Trichostrongylus spp. Teladorsagia spp., Cooperia spp. Nematodirus spp., and Oesophagostomum spp. All the major groups of anthelmintics have been reported for development of variable degrees of resistance in different species of gastrointestinal nematodes. This paper describes the global scenario of prevalence and methods used for detection of AR in small ruminants. Different mechanisms and contributory factors for the development of AR are discussed. Various options and alternate strategies for the control and/or delay in the onset of AR are suggested in the light of available information.
Collapse
Affiliation(s)
- Abdul Jabbar
- Chemotherapy Laboratory, Department of Veterinary Parasitology, University of Agriculture, Faisalabad-38040, Pakistan.
| | | | | | | | | | | |
Collapse
|
13
|
Qian H, Martin RJ, Robertson AP. Pharmacology of N-, L-, and B-subtypes of nematode nAChR resolved at the single-channel level in Ascaris suum. FASEB J 2006; 20:2606-8. [PMID: 17056760 DOI: 10.1096/fj.06-6264fje] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pharmacological experiments on Ascaris suum have demonstrated the presence of three (N-, L-, and B-) subtypes of cholinergic receptor mediating contraction of body wall muscle in parasitic nematodes. In the present study, these ionotropic acetylcholine (ACh) receptors (nAChRs) were activated by levamisole and bephenium under patch-clamp conditions and competitively antagonized by paraherquamide and 2-desoxoparaherquamide. A number of recordings exhibited three separate current amplitude levels, indicating the presence of small, intermediate, and large conductance subtypes of receptor. The mean conductance of the small conductance subtype, G25, was 22 +/- 1 pS; the intermediate conductance channel, G35, was 33 +/- 1 pS; and the large conductance channel, G45, was 45 +/- 1 pS. The small channel was not antagonized significantly by paraherquamide and was identified as the N-subtype. The intermediate channel was preferentially activated by levamisole rather than bephenium and antagonized by paraherquamide: the intermediate channel was identified as the L-subtype. The large conductance channel was preferentially activated by bephenium, antagonized more by 2-desoxoparaherquamde than by paraherquamide and was identified as the B-subtype. These observations reveal that the three channel subtypes have different selectivity for cholinergic anthelmintics. The different selectivity of these compounds should be considered when dealing with drug resistant infections.
Collapse
Affiliation(s)
- Hai Qian
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011-1250, USA
| | | | | |
Collapse
|
14
|
Sangster NC, Song J, Demeler J. Resistance as a tool for discovering and understanding targets in parasite neuromusculature. Parasitology 2006; 131 Suppl:S179-90. [PMID: 16569289 DOI: 10.1017/s0031182005008656] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The problem of anthelmintic resistance prevents efficient control of parasites of livestock and may soon compromise human parasite control. Research into the mechanisms of resistance and the quest for diagnostic tools to aid control has required research that focuses on field resistance. On the other hand, resistant worms, including those kept in the laboratory, provide useful tools for studying drug action, especially at neuromuscular targets in worms. While the needs and directions of these research aims overlap, this review concentrates on research on drug targets. In this context, resistance is a useful tool for site of action confirmation. For example, correlations between molecular expression studies and resistance assays conducted on whole worms can strengthen claims for sites of anthelmintic action. Model systems such as Caenorhabditis elegans have been very useful in understanding targets but give a limited picture as it is now clear that resistance mechanisms in this worm are different from those in parasites. Accordingly, research on parasites themselves must also be performed. Resistant isolates of the sheep nematode parasite Haemonchus contortus are the most widely used for this purpose as in vivo, in vitro, physiological and molecular studies can be performed with this species. Neuromuscular target sites for the anthelmintics levamisole and ivermectin are the best studied and have benefited most from the use of resistant worm isolates. Resistance to praziquantel and the newer chemical groups should provide new tools to explore targets in the future.
Collapse
Affiliation(s)
- N C Sangster
- Faculty of Veterinary Science, University of Sydney, 2006, Australia.
| | | | | |
Collapse
|
15
|
Brown LA, Jones AK, Buckingham SD, Mee CJ, Sattelle DB. Contributions from Caenorhabditis elegans functional genetics to antiparasitic drug target identification and validation: nicotinic acetylcholine receptors, a case study. Int J Parasitol 2006; 36:617-24. [PMID: 16620825 DOI: 10.1016/j.ijpara.2006.01.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 01/16/2006] [Accepted: 01/30/2006] [Indexed: 10/24/2022]
Abstract
Following the complete sequencing of the genome of the free-living nematode, Caenorhabditis elegans, in 1998, rapid advances have been made in assigning functions to many genes. Forward and reverse genetics have been used to identify novel components of synaptic transmission as well as determine the key components of antiparasitic drug targets. The nicotinic acetylcholine receptors (nAChRs) are prototypical ligand-gated ion channels. The functions of these transmembrane proteins and the roles of the different members of their extensive subunit families are increasingly well characterised. The simple nervous system of C. elegans possesses one of the largest nicotinic acetylcholine receptor gene families known for any organism and a combination of genetic, microarray, physiological and reporter gene expression studies have added greatly to our understanding of the components of nematode muscle and neuronal nAChR subtypes. Chemistry-to-gene screens have identified five subunits that are components of nAChRs sensitive to the antiparasitic drug, levamisole. A novel, validated target acting downstream of the levamisole-sensitive nAChR has also been identified in such screens. Physiology and molecular biology studies on nAChRs of parasitic nematodes have also identified levamisole-sensitive and insensitive subtypes and further subdivisions are under investigation.
Collapse
Affiliation(s)
- L A Brown
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | | | | | |
Collapse
|
16
|
von Samson-Himmelstjerna G, Blackhall W. Will technology provide solutions for drug resistance in veterinary helminths? Vet Parasitol 2005; 132:223-39. [PMID: 16118040 DOI: 10.1016/j.vetpar.2005.07.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drug resistance in veterinary helminths affects a growing number of livestock producers on a global basis. The parasites infecting the major species of livestock are presently showing resistance in varying degrees to the commonly used classes of anthelmintics. The degree and extent of this problem especially with respect to multidrug resistance (MDR) in nematode populations is likely to increase. Finding solutions to the spread of resistance requires knowledge of the drugs' modes of action and mechanisms of resistance. This knowledge can then be applied to detect and monitor the state of resistance. Here we present a brief overview of resistance mechanisms and some of the technologies being used to study them. We also discuss some of the strategies for slowing the spread of resistance. The issue of reversal of drug resistance is analysed under consideration of recent progress in the field of MDR reversal in non-infectious diseases. Finally, we propose an application of currently available technologies that could assist in the detection and monitoring of anthelmintic resistance. Taking into account the significant complexity of the genetic mechanism of anthelmintic resistance in and between the various species, we suggest to undertake a co-ordinated effort to systematically identify anthelmintic-related single nucleotide polymorphisms (SNPs) in the most important helminth parasites. Monitoring the state of resistance in field populations could be achieved with a SNP-based protocol for genotyping the many genes known or suspected to contribute to the modes of action or mechanisms of resistance to the various classes of anthelmintics. If significant associations between genotypes and phenotypes exist within a species, then a single test with sufficient SNPs could potentially have universal applicability. These could then be explored for the development of new molecular diagnostic procedures. New classes of anthelmintics are needed, but until they are developed and available to the producers, technology can assist to achieve the goal of better sustainability in anthelmintic usage.
Collapse
|
17
|
Levandoski MM, Robertson AP, Kuiper S, Qian H, Martin RJ. Single-channel properties of N- and L-subtypes of acetylcholine receptor in Ascaris suum. Int J Parasitol 2005; 35:925-34. [PMID: 15950977 DOI: 10.1016/j.ijpara.2005.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Revised: 03/04/2005] [Accepted: 03/08/2005] [Indexed: 11/30/2022]
Abstract
We are interested in the properties of the target site of cholinergic anti-nematodal drugs for therapeutic reasons. The target receptors are ligand-gated ion channels that have different subtypes, and each subtype may have a different pharmacology. In a contraction assay using the parasitic nematode Ascaris suum, our laboratory has identified several subtypes, including an N-subtype, preferentially activated by nicotine, and an L-subtype, preferentially activated by levamisole. Here we use patch-clamp recordings to test the hypothesis that the single-channel selectivities of nicotine and levamisole are different. Unitary currents evoked by nicotine in this preparation were characterised for the first time. In some patches, both nicotine and levamisole activated small- and large-conductance channels. In other patches, the agonists activated just one channel amplitude. Discriminant analysis allowed classification of the one-conductance patch channels into the small or large categories, based on sets defined by the two-conductance patch data. The small channels had a conductance of 26.1+/-1.5 pS, n=18 (mean+/-SEM); the large conductance channels had a conductance of 38.8+/-1.2 pS, n=23 (mean+/-SEM). Analysis of amplitude histograms of the two-conductance patches showed that nicotine preferentially activated the small-conductance channels and levamisole preferentially activated the large-conductance channels. Our observations suggest that the N-subtype receptor channel has a conductance of 26 pS channel and the L-subtype receptor channel has a conductance of 39 pS.
Collapse
|
18
|
Martin RJ, Clark CL, Trailovic SM, Robertson AP. Oxantel is an N-type (methyridine and nicotine) agonist not an L-type (levamisole and pyrantel) agonist: classification of cholinergic anthelmintics in Ascaris. Int J Parasitol 2004; 34:1083-90. [PMID: 15313135 DOI: 10.1016/j.ijpara.2004.04.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 04/16/2004] [Accepted: 04/25/2004] [Indexed: 11/30/2022]
Abstract
Three pharmacological subtypes of cholinergic receptors have been distinguished in Ascaris suum using a muscle contraction assay and classical pharmacological techniques. The receptor subtypes are: a B-subtype (sensitive to bephenium); an L-subtype (sensitive to levamisole and pyrantel); and an N-subtype (sensitive to nicotine and methyridine). Oxantel is a cholinergic anthelmintic that was first introduced for the treatment of whipworm, Trichuris, infections in children. Here, we compare the subtype selectivity of oxantel with thenium and other cholinergic anthelmintics. We used the A. suum assay to derive pA(2) values for the agonists: oxantel, thenium, bephenium, levamisole, pyrantel, nicotine and methyridine with the antagonists: paraherquamide, 2-desoxyparaherquamide and methyllycaconitine. pA(2) values, rather than pK(B) values, were determined for all agonists when it was found that Schild slopes for some agonists were significantly less than 1.0. The pA(2) of oxantel was 6.58+/-0.25 for paraherquamide; 5.39+/-0.28 for 2-desoxyparaherquamide; 7.01+/-0.19 for methyllycaconitine. Comparison of pA(2) values using cluster analysis showed that oxantel was grouped with nicotine and methyridine, the N-subtype agonists. Thenium had pA(2)s of 7.84+/-0.41 for paraherquamide; 5.52+/-0.50 for 2-desoxyparaherquamide; 6.33+/-0.19 for methyllycaconitine. Cluster analysis placed thenium between the L-subtype agonists and the B-subtype agonist. The therapeutic significance of classification of cholinergic anthelmintics is discussed. Combination of oxantel and pyrantel would have therapeutic advantages, covering N- and L-subtypes, and so increasing spectrum of action and reducing the potential for development of resistance. Our results predict that oxantel may remain effective in some nematode isolates that have become levamisole- and pyrantel-resistant.
Collapse
Affiliation(s)
- Richard J Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA.
| | | | | | | |
Collapse
|
19
|
Rayes D, De Rosa MJ, Bartos M, Bouzat C. Molecular Basis of the Differential Sensitivity of Nematode and Mammalian Muscle to the Anthelmintic Agent Levamisole. J Biol Chem 2004; 279:36372-81. [PMID: 15201284 DOI: 10.1074/jbc.m403096200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Levamisole is an anthelmintic agent that exerts its therapeutic effect by acting as a full agonist of the nicotinic receptor (AChR) of nematode muscle. Its action at the mammalian muscle AChR has not been elucidated to date despite its wide use as an anthelmintic in humans and cattle. By single channel and macroscopic current recordings, we investigated the interaction of levamisole with the mammalian muscle AChR. Levamisole activates mammalian AChRs. However, single channel openings are briefer than those activated by acetylcholine (ACh) and do not appear in clusters at high concentrations. The peak current induced by levamisole is about 3% that activated by ACh. Thus, the anthelmintic acts as a weak agonist of the mammalian AChR. Levamisole also produces open channel blockade of the AChR. The apparent affinity for block (190 microm at -70 mV) is similar to that of the nematode AChR, suggesting that differences in channel activation kinetics govern the different sensitivity of nematode and mammalian muscle to anthelmintics. To identify the structural basis of this different sensitivity, we performed mutagenesis targeting residues in the alpha subunit that differ between vertebrates and nematodes. The replacement of the conserved alphaGly-153 with the homologous glutamic acid of nematode AChR significantly increases the efficacy of levamisole to activate channels. Channel activity takes place in clusters having two different kinetic modes. The kinetics of the high open probability mode are almost identical when the agonist is ACh or levamisole. It is concluded that alphaGly-153 is involved in the low efficacy of levamisole to activate mammalian muscle AChRs.
Collapse
Affiliation(s)
- Diego Rayes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, UNS-CONICET, Camino La Carrindanga, Km 7B-8000FWB Bahía Blanca, Argentina
| | | | | | | |
Collapse
|
20
|
Blackhall WJ, Prichard RK, Beech RN. Selection at a γ-aminobutyric acid receptor gene in Haemonchus contortus resistant to avermectins/milbemycins. Mol Biochem Parasitol 2003; 131:137-45. [PMID: 14511812 DOI: 10.1016/s0166-6851(03)00201-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gamma-aminobutyric acid (GABA) Type A receptors are inhibitory chloride channels in membranes of vertebrate and invertebrate neuromuscular cells. Gating of the channels by GABA leads to an influx of chloride ions into, and hyperpolarisation of, the cell. GABA receptors are believed to form channels by the association of five protein molecules of varying subunit types, with the second transmembrane (M2) domain of each protein molecule forming a central pore through which chloride ions can pass. We have analysed by single-strand conformation polymorphism the genetic variation of a GABA-receptor gene, HG1, from two sets of unselected and anthelmintic-selected strains of the parasitic nematode Haemonchus contortus. Significant differences in allele frequencies were detected between one unselected strain and its derived ivermectin-selected strain and between the other unselected strain and its derived ivermectin- and moxidectin-selected strains. In each set of strains, one allele increased substantially in frequency in the drug-selected strains relative to their respective unselected strains. The selected allele, however, differed between the two sets of strains. Similar analyses were performed on a phosphoenolpyruvate carboxykinase gene and a nicotinic acetylcholine receptor subunit gene. No significant differences were found in allele frequencies between the unselected and their derived anthelmintic-selected strains. These results indicate the GABA receptor as a possible site of action for avermectins and milbemycins, and suggest its involvement in resistance to these anthelmintics.
Collapse
Affiliation(s)
- William J Blackhall
- Institute of Parasitology, McGill University, Ste.-Anne-de-Bellevue, Que., Canada H9X 3V4.
| | | | | |
Collapse
|
21
|
Trailovic SM, Robertson AP, Clark CL, Martin RJ. Levamisole receptor phosphorylation: effects of kinase antagonists on membrane potential responses in Ascaris suum suggest that CaM kinase and tyrosine kinase regulate sensitivity to levamisole. J Exp Biol 2002; 205:3979-88. [PMID: 12432019 DOI: 10.1242/jeb.205.24.3979] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
A two-micropipette current-clamp technique was used to record electrophysiological responses from the somatic muscle of Ascaris suum. Levamisole and acetylcholine were applied to the bag region of the muscle using a microperfusion system. Depolarizations produced by 10 s applications of 10 μmol l-1 levamisole or 20 s applications of 10 μmol l-1 acetylcholine were recorded. The effect on the peak membrane potential change of the kinase antagonists H-7, staurosporine, KN-93 and genistein was observed. H-7 (30 μmol l-1), a non-selective antagonist of protein kinases A, C and G but which has little effect on Ca2+/calmodulin-dependent kinase II (CaM kinase II), did not produce a significant effect on the peak response to levamisole or acetylcholine. Staurosporine (1 μmol l-1), a non-selective kinase antagonist that has effects on protein kinases A, C and G, CaM kinase and tyrosine kinase, reduced the mean peak membrane potential response to levamisole from 6.8 mV to 3.9 mV (P<0.0001) and the mean response to acetylcholine from 5.5 mV to 2.8 mV (P=0.0016). The difference between the effects of H-7 and staurosporine suggested the involvement of CaM kinase II and/or tyrosine kinase. KN-93, a selective CaM kinase II antagonist,reduced the mean peak response to levamisole from 6.2 mV to 2.7 mV(P=0.035) and the mean peak response of acetylcholine from 4.7 mV to 2.0 mV (P=0.0004). The effects indicated the involvement of CaM kinase II in the phosphorylation of levamisole and acetylcholine receptors. The effect of extracellular Ca2+ on the response to levamisole was assessed by comparing responses to levamisole in normal and in low-Ca2+ bathing solutions. The response to levamisole was greater in the presence of Ca2+, an effect that may be explained by stimulation of CaM kinase II. Genistein (90 μmol l-1), a selective tyrosine kinase antagonist, reduced peak membrane potential responses to levamisole from a mean of 6.4 mV to 3.3 mV (P=0.001). This effect indicated the involvement of tyrosine kinase in maintaining the receptor.
Collapse
Affiliation(s)
- Sasa M Trailovic
- Department of Biomedical Sciences, Iowa State University, Ames 50011, USA
| | | | | | | |
Collapse
|
22
|
Robertson AP, Clark CL, Burns TA, Thompson DP, Geary TG, Trailovic SM, Martin RJ. Paraherquamide and 2-deoxy-paraherquamide distinguish cholinergic receptor subtypes in Ascaris muscle. J Pharmacol Exp Ther 2002; 302:853-60. [PMID: 12183640 DOI: 10.1124/jpet.102.034272] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Paraherquamide is a novel natural anthelmintic product with a mode of action that is incompletely characterized. Nicotine and cholinergic-anthelmintic agonists of different chemical classes were used to produce contraction in Ascaris muscle strips. Paraherquamide and a semisynthetic derivative, 2-deoxy-paraherquamide, antagonized these responses. Analysis of the actions of the antagonists was made using the simple competitive model and nonlinear regression to estimate the pK(B) values of the antagonists. The analysis was tested using Clark plots. The pK(B) values for paraherquamide were: nicotine, 5.86 +/- 0.14; levamisole, 6.61 +/- 0.19; pyrantel, 6.50 +/- 0.11; and bephenium, 6.75 +/- 0.15. The pK(B) of nicotine was significantly different from the pK(B) values for levamisole, pyrantel, and bephenium, showing that paraherquamide can distinguish a subtype of cholinergic receptors sensitive to nicotine and a subtype of cholinergic receptors sensitive to levamisole, pyrantel, and bephenium. The pK(B) values for 2-deoxy-paraherquamide were: levamisole, 5.31 +/- 0.13; pyrantel, 5.63 +/- 0.10; and bephenium, 6.07 +/- 0.13. The Clark plots of the antagonism illustrated the degree of fit to the competitive model for 2-deoxy-paraherquamide. 2-Deoxy-paraherquamide selectively antagonized the effects of bephenium; the pK(B) values of levamisole and pyrantel were significantly different from the pK(B) of bephenium. Paraherquamide and 2-deoxy-paraherquamide are selective competitive cholinergic antagonists that distinguish subtypes of cholinergic receptor in Ascaris muscle corresponding to nicotine-, levamisole-, and bephenium-sensitive receptors.
Collapse
Affiliation(s)
- Alan P Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The development of species and populations of parasitic helminths with resistance to one or more anthelmintics is an increasing problem world-wide. The majority of currently available anthelmintics used to control parasitic nematodes of cattle and sheep belong to only three main groups, the benzimidazoles, imidazothiazoles and the avermectins/milbemycins. The successful implementation of helminth control programmes designed to limit the development of resistance in nematode populations depends to some degree on the availability of effective and sensitive methods for its detection and monitoring. A variety of in vivo and in vitro tests have been developed for the detection of nematode populations resistant to the main anthelmintic groups, but each suffers to some degree from reliability, reproducibility, sensitivity and ease of interpretation. This review covers those tests that have been reported and described and highlights some of their strengths and weaknesses.
Collapse
Affiliation(s)
- M A Taylor
- Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK.
| | | | | |
Collapse
|
24
|
Dent JA. What canCaenorhabditis elegans tell us about nematocides and parasites? BIOTECHNOL BIOPROC E 2001. [DOI: 10.1007/bf02931986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Walker J, Hoekstra R, Roos MH, Wiley LJ, Weiss AS, Sangster NC, Tait A. Cloning and structural analysis of partial acetylcholine receptor subunit genes from the parasitic nematode Teladorsagia circumcincta. Vet Parasitol 2001; 97:329-35. [PMID: 11390086 DOI: 10.1016/s0304-4017(01)00416-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nematode nicotinic acetylcholine receptors (nAChRs) are the sites of action for the anthelmintic drug levamisole. Recent findings indicate that the molecular mechanism of levamisole resistance may involve changes in the number and/or functions of target nAChRs. Accordingly, we have used an RT-PCR approach to isolate and characterise partial cDNA clones (tca-1 and tca-2) encoding putative nAChR subunits from the economically important trichostrongyloid, Teladorsagia circumcincta. The predicted tca-1 gene product is a 248 aa fragment (TCA-1) which contains structural motifs typical of ligand-binding (alpha-) subunits, and which shows very high sequence similarities (98.8 and 97.2% amino acid identities) to the alpha-subunits encoded by tar-1 and hca-1 from Trichostrongylus colubriformis and Haemonchus contortus, respectively. Sequence analyses of partial tca-1 cDNAs from one levamisole-resistant and two susceptible populations of T. circumcincta revealed polymorphism at the predicted amino acid level, but there was no apparent association of any particular tca-1 allele with resistance. tca-2 encodes a 67 aa fragment (TCA-2) containing the TM4 transmembrane domain and carboxyl terminus of a putative nAChR structural (non-alpha) subunit. The deduced amino acid sequence of TCA-2 shows highest similarity (75% amino acid identity) to ACR-2, a structural subunit involved in forming levamisole-gated ion channels in Caenorhabditis elegans, but low similarity (43% identity) to the corresponding regions of TAR-1 and HCA-1. tca-2 is the first nAChR subunit gene of this type to be isolated from parasitic nematodes, and it provides a basis for further characterisation of structural subunits in trichostrongyloids.
Collapse
Affiliation(s)
- J Walker
- Department of Veterinary Parasitology, University of Glasgow, Bearsden Road, G61 1QH, Glasgow, UK.
| | | | | | | | | | | | | |
Collapse
|
26
|
Hoekstra R, Visser A, Otsen M, Tibben J, Lenstra JA, Roos MH. EST sequencing of the parasitic nematode Haemonchus contortus suggests a shift in gene expression during transition to the parasitic stages. Mol Biochem Parasitol 2000; 110:53-68. [PMID: 10989145 DOI: 10.1016/s0166-6851(00)00255-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Expressed sequence tags from the parasitic nematode Haemonchus contortus were generated in order to identify anchor loci for comparative mapping between nematode genomes and candidate targets for future control measures. In total, 370 SL1 trans-spliced cDNAs from different developmental stages representing 195 different genes were partially sequenced. From these expressed sequence tags 50% were similar to genes with a known or predicted function and 19% were similar to nematode sequences with no ascribed function. From the first, free-living L1 and L3 stages relatively many cDNAs matched to housekeeping genes, and 11% (L1) or 23% (L3) of the encoded proteins were predicted to contain signal peptides. In contrast, no function could be ascribed to most of the cDNAs from the early L5 and adult parasitic stages, but for 30% (L5) or 55% (adult) of the encoded proteins a signal sequence was predicted. This limited analysis suggests that during the transition from the free-living to parasitic stages gene expression shifts towards the synthesis of less conserved extracellular proteins. These proteins offer the best perspectives for vaccine development and the development of anthelmintic drugs. In contrast, cDNAs from the first larval stages may be most suitable for comparative mapping with the free-living nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- R Hoekstra
- Department of Molecular Recognition, Institute for Animal Science and Health (ID-Lelystad), Lelystad, The Netherlands.
| | | | | | | | | | | |
Collapse
|
27
|
Drug resistance in human helminths: current situation and lessons from livestock. Clin Microbiol Rev 2000. [PMID: 10755998 DOI: 10.1128/cmr.13.2.207-222.2000] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this review the available reports on drug resistance in human helminths, particularly hookworms and schistosomes, are critically analyzed. The experiences with helminths of livestock are then reviewed, in particular the factors contributing to the development of anthelmintic resistance, the mechanisms and genetics of resistance to various anthelmintic classes, and the methods available for detection. These experiences appear to be worryingly similar and relevant to the potential development of drug resistance in human helminths. Recommendations to reduce its risks are suggested.
Collapse
|
28
|
Gasser RB, Newton SE. Genomic and genetic research on bursate nematodes: significance, implications and prospects. Int J Parasitol 2000; 30:509-34. [PMID: 10731573 DOI: 10.1016/s0020-7519(00)00021-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular genetic research on parasitic nematodes (order Strongylida) is of major significance for many fundamental and applied areas of medical and veterinary parasitology. The advent of gene technology has led to some progress for this group of nematodes, particularly in studying parasite systematics, drug resistance and population genetics, and in the development of diagnostic assays and the characterisation of potential vaccine and drug targets. This paper gives an account of the molecular biology and genetics of strongylid nematodes, mainly of veterinary socio-economic importance, indicates the implications of such research and gives a perspective on genome research for this important parasite group, in light of recent technological advances and knowledge of the genomes of other metazoan organisms.
Collapse
Affiliation(s)
- R B Gasser
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria, Australia.
| | | |
Collapse
|
29
|
Robertson AP, Bjørn HE, Martin RJ. Pyrantel resistance alters nematode nicotinic acetylcholine receptor single-channel properties. Eur J Pharmacol 2000; 394:1-8. [PMID: 10771027 DOI: 10.1016/s0014-2999(00)00135-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Resistance to the anthelmintics pyrantel ((E)-1,4,5, 6-tetrahydro-1-methyl-2-[2-(2thienyl)ethenyl]pyrimidine) and levamisole ((S)-2,3,5,6-tetrahydro-6-phenylimidazo[2,1-b]thiazole) is an increasingly widespread problem in gastro-intestinal nematode infestations. Both compounds act on the nicotinic acetylcholine receptors on the surface of nematode somatic muscle. The patch-clamp technique was used to measure nematode nicotinic acetylcholine receptor properties at 75, 50, -50 and -75 mV in a pyrantel-resistant isolate of Oesophagostomum dentatum. Patch pipettes contained 30 microM levamisole as agonist. We found that 28. 1% of membrane patches contained active receptors. At -50 mV, the single-channel conductance was 36.2+/-1.4 pS, the mean open-time (tau) was 1.45+/-0.14 ms and the mean probability of opening (P(o)) was 0.004+/-0.002. We compared these results with previous work on an anthelmintic sensitive isolate and a levamisole-resistant isolate [Robertson, A.P., Bjorn, H.E., Martin, R.J., 1999. Levamisole resistance resolved at the single-channel level. FASEB J. 13, 749-760.]. We found that pyrantel-resistant parasites had a reduced percentage of active patches and a reduced P(o) value when compared to anthelmintic sensitive worms. We concluded that pyrantel resistance is associated with a modification of the target nicotinic receptor properties.
Collapse
Affiliation(s)
- A P Robertson
- Department of Preclinical Veterinary Sciences, R.(D.)S.V.S., Summerhall Square, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
30
|
Geerts S, Gryseels B. Drug resistance in human helminths: current situation and lessons from livestock. Clin Microbiol Rev 2000; 13:207-22. [PMID: 10755998 PMCID: PMC100151 DOI: 10.1128/cmr.13.2.207] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this review the available reports on drug resistance in human helminths, particularly hookworms and schistosomes, are critically analyzed. The experiences with helminths of livestock are then reviewed, in particular the factors contributing to the development of anthelmintic resistance, the mechanisms and genetics of resistance to various anthelmintic classes, and the methods available for detection. These experiences appear to be worryingly similar and relevant to the potential development of drug resistance in human helminths. Recommendations to reduce its risks are suggested.
Collapse
Affiliation(s)
- S Geerts
- Institute of Tropical Medicine, B-2000 Antwerp, Belgium.
| | | |
Collapse
|
31
|
Abstract
Levamisole is commonly used to treat nematode parasite infections but therapy is limited by resistance. The purpose of this study was to determine the mechanism of resistance to this selective nicotinic drug. Levamisole receptor channel currents in muscle patches from levamisole-sensitive and levamisole-resistant isolates of the parasitic nematode Oesophagostomum dentatum were compared. The number of channels present in patches of sensitive and resistant isolates was similar at 10 microM levamisole, but at 30 microM and 100 microM the resistant isolate contained fewer active patches, suggesting desensitization. Mean Po and open times were reduced in resistant isolates. The distribution of conductances of channels in the sensitive isolate revealed a heterogeneous receptor population and the presence of G25, G35, G40, and G45 subtypes. A G35 subtype was missing in the resistant isolate. Resistance to levamisole was produced by changes in the averaged properties of the levamisole receptor population, with some receptors from sensitive and resistant isolates having indistinguishable characteristics.
Collapse
Affiliation(s)
- A P Robertson
- Department of Preclinical Veterinary Sciences, R.(D.)S.V.S., Summerhall, University of Edinburgh, Edinburgh EH9 1QH, U.K.
| | | | | |
Collapse
|
32
|
Abstract
Anthelmintic resistance has grown from a curiosity to an important economic problem in several animal industries and is now set to threaten the control of human parasites. The pharmacology of anthelmintics and anthelmintic resistance has been studied most extensively in the nematode parasites of sheep. Here, Nick Sangster and Jenny Gill discuss this veterinary experience, summarizing the progress made in understanding anthelmintic resistance and highlighting the tools available for research.
Collapse
Affiliation(s)
- N C Sangster
- Department of Veterinary Anatomy and Pathology, University of Sydney, Australia.
| | | |
Collapse
|
33
|
Sangster NC, Bannan SC, Weiss AS, Nulf SC, Klein RD, Geary TG. Haemonchus contortus: sequence heterogeneity of internucleotide binding domains from P-glycoproteins. Exp Parasitol 1999; 91:250-7. [PMID: 10072327 DOI: 10.1006/expr.1998.4373] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
P-Glycoproteins are transmembrane proteins associated with acquired multidrug resistance in mammalian cells and some protozoan parasites by a process of active drug export. P-glycoproteins contain two nucleotide binding domains which couple ATP to the drug transport process. The region between the nucleotide binding domains of P-glycoproteins, termed the internucleotide binding domain (IBD), was PCR-amplified from adult and larval cDNA libraries using degenerate primers. The 11 clones isolated by this method fall into several distinct groups, with one group of alleles displaying between 82 and 99% identity at the nucleotide level. This sets a baseline for sequence variation of transcribed alleles from a parasitic nematode. Northern blotting showed that P-glycoprotein genes are transcribed in a developmentally regulated fashion in Haemonchus contortus. Southern blots of H. contortus drug-resistant isolates with an IBD probe revealed a pattern consistent with the involvement of P-glycoprotein in resistance to avermectin/milbemycin anthelmintics.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/chemistry
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Amino Acid Sequence
- Animals
- Anthelmintics/pharmacology
- Anti-Bacterial Agents
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Cloning, Molecular
- DNA Primers/chemistry
- DNA Probes/chemistry
- DNA, Helminth/chemistry
- Drug Resistance, Multiple/genetics
- Genetic Variation
- Haemonchus/chemistry
- Haemonchus/drug effects
- Haemonchus/genetics
- Helminth Proteins/chemistry
- Helminth Proteins/genetics
- Ivermectin/analogs & derivatives
- Ivermectin/pharmacology
- Macrolides/pharmacology
- Molecular Sequence Data
- Polymerase Chain Reaction
- RNA, Helminth/chemistry
- Sequence Alignment
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Sheep
Collapse
Affiliation(s)
- N C Sangster
- Department of Veterinary Anatomy and Pathology, University of Sydney, Sydney, 2006, Australia.
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Anthelmintic resistance continues to increase in geographic range, in the number of species affected and the range of drugs involved. Several aspects of resistance have emerged as important issues. They include lack of genetic reversion, presence of side resistance and lack of universality. Furthermore, resistant isolates recovered from the field may have different characteristics to those selected in pen passage. Research into anthelmintic resistance has not progressed far beyond the stage of descriptive research. Some progress has been made in developing control strategies and in diagnosing resistance, especially in the development and adoption of in-vitro tests. However, these still need improvements in their ability to detect resistance to closantel and avermectin/milbemycin anthelmintics. Less progress into understanding the basis of resistance has occurred. Research priorities include improvement of diagnostic tests and the development of molecular tests, particularly for resistance to levamisole and the avermectin/milbemycins. Resistance itself, as a selectable marker for genetic transfection in parasites, is a potential tool for investigating parasite biology.
Collapse
Affiliation(s)
- N C Sangster
- Department of Veterinary Anatomy and Pathology, University of Sydney, NSW, Australia.
| |
Collapse
|
35
|
Abstract
Nematodes include both free-living species such as Caenorhabditis elegans and major parasites of humans, livestock and plants. The apparent simplicity and uniformity of their nervous system belies a rich diversity of putative signalling molecules, particularly neuropeptides. This new appreciation stems largely from the genome-sequencing project with C. elegans, which is due to be completed by the end of 1998. The project has provided additional insights into other aspects of nematode neurobiology, as have studies on the mechanism of action of anthelmintics. Here, progress on the identification, localization, synthesis and physiological actions of transmitters identified in nematodes is explored.
Collapse
Affiliation(s)
- D J Brownlee
- School of Biological Sciences, University of Southampton, UK
| | | |
Collapse
|
36
|
Roos MH, Hoekstra R, Plas ME, Otsen M, Lenstra JA. Polymorphic DNA markers in the genome of parasitic nematodes. J Helminthol 1998; 72:291-4. [PMID: 9858623 DOI: 10.1017/s0022149x0001662x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Polymorphic molecular markers are being identified to characterize the genomes of parasitic nematodes. The aim is to construct a map with markers evenly spread over the six chromosomes. With such a map, regions can be identified that are under selection pressure when attempts are being made to eradicate worms, be it by drugs, vaccines or genetic resistance in the sheep. Several types of markers have been developed, microsatellites, transposon-associated markers, amplified fragment length polymorphism (AFLP) and expressed sequence tag (EST) markers. Linkage groups can be constructed using several genetic crosses between inbred and drug resistant strains. EST markers will be especially important for comparative mapping with the genome of Caenorhabditis elegans, and therefore localization of the linkage group on a chromosome. It will then be possible to identify functional genes close to markers that have changed allele frequencies under selection pressure and identify the mechanisms of resistance to parasite control.
Collapse
Affiliation(s)
- M H Roos
- Department of Molecular Recognition, Institute for Animal Science and Health (ID-DLO), PO Box 65, 8200 AB Lelystad, The Netherlands.
| | | | | | | | | |
Collapse
|
37
|
Delany NS, Laughton DL, Wolstenholme AJ. Cloning and localisation of an avermectin receptor-related subunit from Haemonchus contortus. Mol Biochem Parasitol 1998; 97:177-87. [PMID: 9879896 DOI: 10.1016/s0166-6851(98)00148-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ivermectin is believed to exert its anthelminthic effects by binding to glutamate-gated chloride channels (Glu-Cl) and several cDNAs encoding subunits of Glu-Cl have been cloned from Caenorhabditis elegans. We report the cloning of cDNAs encoding a putative Glu-Cl subunit (HG4) from the parasite Haemonchus contortus. The HG4 cDNAs were isolated using RT-PCR and the sequence of the predicted polypeptide has 82% amino-acid identity with the C. elegans Glu-Cl beta subunit. Individual HG4 cDNAs showed up to 4% sequence variation at the nucleotide level, but the vast majority of these polymorphisms were translationally silent. A synthetic peptide corresponding to sequence near the N-terminus of the mature polypeptide was used to raise an antiserum that recognised the N-terminal domain of HG4 expressed in E. coli. Affinity purified antibodies reacted with motor neuron commissures in immuno-localisation studies: these commissures were limited to the anterior portion of the worms, from a region level with the nerve ring to just anterior of the vulva. Some possible nerve cord staining was also observed, but no expression of HG4 on pharyngeal muscle could be detected.
Collapse
Affiliation(s)
- N S Delany
- Department of Biology and Biochemistry, University of Bath, UK
| | | | | |
Collapse
|
38
|
Anderson TJ, Blouin MS, Beech RN. Population biology of parasitic nematodes: applications of genetic markers. ADVANCES IN PARASITOLOGY 1998; 41:219-83. [PMID: 9734295 DOI: 10.1016/s0065-308x(08)60425-x] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- T J Anderson
- Wellcome Trust Centre for Epidemiology of Infectious Disease, Department of Zoology, Oxford, UK
| | | | | |
Collapse
|
39
|
|
40
|
Martin RJ, Murray I, Robertson AP, Bjorn H, Sangster N. Anthelmintics and ion-channels: after a puncture, use a patch. Int J Parasitol 1998; 28:849-62. [PMID: 9673865 DOI: 10.1016/s0020-7519(98)00048-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Two of three major types of anthelminitic, the avermectins and the nicotinic agonists, exert their therapeutic effect by an action on ligand-gated membrane ion-channels of nematodes. The avermectins, such as ivermectin, open glutamategated chloride channels which have so far been found only in invertebrate preparations; nicotinic anthelmintics, like levamisole, selectively gate nematode nicotinic acetylcholine receptors. We describe recent advances in the knowledge of the molecular structure of these ion-channel receptors in nematodes. Because opening of the ion-channels by these two groups of anthelmintic generates currents across cell membranes of nematodes, we can use electrophysiological methods to examine properties of the channels, the mode of action of the anthelmintics, and changes in the receptors associated with anthelmintic resistance. We illustrate some of our observations on these receptors using a two micro-electrode current-clamp technique to monitor membrane resistance (the puncture); and then some observations using The patch-clamp technique to monitor currents through individual ion-channels (the patch). The receptors for the two major groups of anthelmintics may not be homogeneous. Even in a single membrane patch from one muscle cell, nematode nicotinic acetylcholine receptors show evidence of heterogeneity and the avermectins may have multiple sites-of-action. If separate independent recessive genes are involved in production of different receptor subtypes, and if each subtype has to change to allow the development of resistance by the whole nematode, then the probability of resistance developing would be smaller than for anthelminitics with a single site-of-action. The MISER (multiple independent sites-of-action evading resistance) concept favours the development and use of anthelminitics with more than one site-of-action.
Collapse
Affiliation(s)
- R J Martin
- Department of Preclinical Veterinary Sciences, University of Edinburgh, U.K.
| | | | | | | | | |
Collapse
|
41
|
Sangster NC, Riley FL, Wiley LJ. Binding of [3H]m-aminolevamisole to receptors in levamisole-susceptible and -resistant Haemonchus contortus. Int J Parasitol 1998; 28:707-17. [PMID: 9650050 DOI: 10.1016/s0020-7519(98)00033-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
M-aminolevamisole, a potent analogue of the commercial anthelmintic levamisole, was used to investigate ligand-binding properties of homogenates of larval and parasitic stages of the nematode parasite of sheep, Haemonchus contortus. Kinetics of the binding of [3H]m-aminolevamisole to homogenates was measured in a drug-susceptible isolate and compared with a levamisole-resistant isolate. Equilibrium binding studies and kinetic studies revealed a high affinity binding component with a KD of 3 nM. A low affinity component (KD = 2.4 microM) was also apparent in equilibrium studies. High affinity [3H]m-aminolevamisole binding was displaced in a concentration-dependent manner by levamisole analogues and cholinergic agonists. Compared with the susceptible isolate, binding in a levamisole-resistant isolate of the parasite, was quantitatively similar over a range of developmental stages and binding conditions. However, under the conditions of binding there was a reduced affinity (larger KD) and more binding sites (larger Bmax) at the low affinity site in the resistant compared with the susceptible isolate. It was concluded that the ligand was binding to acetylcholine receptor populations of the nematode and that resistance may be associated with alterations in the low affinity site of this receptor.
Collapse
Affiliation(s)
- N C Sangster
- Department of Veterinary Anatomy and Pathology, University of Sydney, N.S.W., Australia.
| | | | | |
Collapse
|
42
|
Wiley LJ, Ferrara DR, Sangster NC, Weiss AS. The nicotinic acetylcholine alpha-subunit gene tar-1 is located on the X chromosome but its coding sequence is not involved in levamisole resistance in an isolate of Trichostrongylus colubriformis. Mol Biochem Parasitol 1997; 90:415-22. [PMID: 9476789 DOI: 10.1016/s0166-6851(97)00179-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The polymerase chain reaction was used to amplify fragments comprising the known reading frame of the nematode nicotinic acetylcholine alpha-subunit gene tar-1. Sequences were derived from DNA prepared from bulk collections of worms and from individual male and female Trichostrongylus colubriformis. In each case a levamisole-resistant (BCk) and a drug susceptible population were examined. Although several nucleotide transitions were detected no amino acid sequence variations were found between the isolates and between individual worms, indicating that the coding sequence of this gene is not responsible for levamisole-resistance in the isolate tested. However, an intronic allelic T/C variation at position 4955 was observed in both populations. It has been reported that levamisole-resistance in the BCk isolate of T. colubriformis is due to a sex-linked recessive gene or gene complex. A restriction fragment length polymorphism formed by the allelic variation was found and was detectable by digestion with the restriction endonuclease NlaIII. Statistical comparison of allele frequencies from individual male and female worms was consistent with sex-linkage of tar-1 (P < 0.05) but showed no correlation with levamisole resistance status. The polymorphism described will provide a useful X-chromosome marker and represents the first mapped genetic locus in this species.
Collapse
Affiliation(s)
- L J Wiley
- Department of Veterinary Anatomy and Pathology, University of Sydney, NSW, Australia
| | | | | | | |
Collapse
|