1
|
Zheng Y, Young ND, Song J, Gasser RB. Genome-Wide Analysis of Haemonchus contortus Proteases and Protease Inhibitors Using Advanced Informatics Provides Insights into Parasite Biology and Host-Parasite Interactions. Int J Mol Sci 2023; 24:12320. [PMID: 37569696 PMCID: PMC10418638 DOI: 10.3390/ijms241512320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Biodiversity within the animal kingdom is associated with extensive molecular diversity. The expansion of genomic, transcriptomic and proteomic data sets for invertebrate groups and species with unique biological traits necessitates reliable in silico tools for the accurate identification and annotation of molecules and molecular groups. However, conventional tools are inadequate for lesser-known organismal groups, such as eukaryotic pathogens (parasites), so that improved approaches are urgently needed. Here, we established a combined sequence- and structure-based workflow system to harness well-curated publicly available data sets and resources to identify, classify and annotate proteases and protease inhibitors of a highly pathogenic parasitic roundworm (nematode) of global relevance, called Haemonchus contortus (barber's pole worm). This workflow performed markedly better than conventional, sequence-based classification and annotation alone and allowed the first genome-wide characterisation of protease and protease inhibitor genes and gene products in this worm. In total, we identified 790 genes encoding 860 proteases and protease inhibitors representing 83 gene families. The proteins inferred included 280 metallo-, 145 cysteine, 142 serine, 121 aspartic and 81 "mixed" proteases as well as 91 protease inhibitors, all of which had marked physicochemical diversity and inferred involvements in >400 biological processes or pathways. A detailed investigation revealed a remarkable expansion of some protease or inhibitor gene families, which are likely linked to parasitism (e.g., host-parasite interactions, immunomodulation and blood-feeding) and exhibit stage- or sex-specific transcription profiles. This investigation provides a solid foundation for detailed explorations of the structures and functions of proteases and protease inhibitors of H. contortus and related nematodes, and it could assist in the discovery of new drug or vaccine targets against infections or diseases.
Collapse
Affiliation(s)
- Yuanting Zheng
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Neil D. Young
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Jiangning Song
- Department of Data Science and AI, Faculty of IT, Monash University, Melbourne, VIC 3800, Australia;
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Robin B. Gasser
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
2
|
Ehsan M, Hu RS, Liang QL, Hou JL, Song X, Yan R, Zhu XQ, Li X. Advances in the Development of Anti- Haemonchus contortus Vaccines: Challenges, Opportunities, and Perspectives. Vaccines (Basel) 2020; 8:vaccines8030555. [PMID: 32971770 PMCID: PMC7565421 DOI: 10.3390/vaccines8030555] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal nematode parasite Haemonchus contortus (H. contortus) is a resident of tropical and subtropical regions worldwide that imposes significant production losses, economic losses, and animal health issues in the small ruminant industry, particularly sheep and goats. Considerable efforts have been made to understand how immunity is elicited against H. contortus infection. Various potential vaccine antigens have been tested by different methods and strategies applied in animal models, and significant progress has been made in the development of vaccines against H. contortus. This review highlighted and shared the knowledge about the current understanding of host immune responses to H. contortus and ongoing challenges in the development of a protective, effective, and long-lasting vaccine against H. contortus infection. We have also pinpointed some achievements and failures in the development and testing of vaccines, which will establish a road map for future research directions to explore new effective vaccine candidates for controlling and preventing H. contortus infection.
Collapse
Affiliation(s)
- Muhammad Ehsan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (M.E.); (R.-S.H.); (Q.-L.L.); (J.-L.H.)
| | - Rui-Si Hu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (M.E.); (R.-S.H.); (Q.-L.L.); (J.-L.H.)
| | - Qin-Li Liang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (M.E.); (R.-S.H.); (Q.-L.L.); (J.-L.H.)
| | - Jun-Ling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (M.E.); (R.-S.H.); (Q.-L.L.); (J.-L.H.)
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.S.); (R.Y.); (X.L.)
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.S.); (R.Y.); (X.L.)
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (M.E.); (R.-S.H.); (Q.-L.L.); (J.-L.H.)
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
- Correspondence: or ; Tel.: +86-354-628-8993
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.S.); (R.Y.); (X.L.)
| |
Collapse
|
3
|
Suttiprapa S, Sotillo J, Smout M, Suyapoh W, Chaiyadet S, Tripathi T, Laha T, Loukas A. Opisthorchis viverrini Proteome and Host-Parasite Interactions. ADVANCES IN PARASITOLOGY 2018; 102:45-72. [PMID: 30442310 DOI: 10.1016/bs.apar.2018.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The omics technologies have improved our understanding of the molecular events that underpin host-parasite interactions and the pathogenesis of parasitic diseases. In the last decade, proteomics and genomics in particular have been used to characterize the surface and secreted products of the carcinogenic liver fluke Opisthorchis viverrini and revealed important roles for proteins at the host-parasite interface to ensure that the flukes can migrate, feed and reproduce in a hostile environment. This review summarizes the advances made in this area, primarily focusing on discoveries enabled by the publication of the fluke secreted proteomes over the last decade. Protein families that will be covered include proteases, antioxidants, oncogenic proteins and the secretion of exosome-like extracellular vesicles. Roles of these proteins in host-parasite interactions and pathogenesis of fluke-induced hepatobiliary diseases, including cholangiocarcinogenesis, are discussed. Future directions for the application of this knowledge to control infection and disease will also be discussed.
Collapse
|
4
|
Abstract
Soil-transmitted helminths (STHs) collectively infect one fourth of all human beings, and the majority of livestock in the developing world. These gastrointestinal nematodes are the most important parasites on earth with regard to their prevalence in humans and livestock. Current anthelmintic drugs are losing their efficacies due to increasing drug resistance, particularly in STHs of livestock and drug treatment is often followed by rapid reinfection due to failure of the immune system to develop a protective response. Vaccines against STHs offer what drugs cannot accomplish alone. Because such vaccines would have to be produced on such a large scale, and be cost effective, recombinant subunit vaccines that include a minimum number of proteins produced in relatively simple and inexpensive expression systems are required. Here, we summarize all of the previous studies pertaining to recombinant subunit vaccines for STHs of humans and livestock with the goal of both informing the public of just how critical these parasites are, and to help guide future developments. We also discuss several key areas of vaccine development, which we believe to be critical for developing more potent recombinant subunit vaccines with broad-spectrum protection.
Collapse
|
5
|
Latchumikanthan A, Prasad A, Sankar M, Pavan Kumar P, Jithin MV, Aravind M. Polymerase chain reaction (PCR) based amplification of hmcp3 and hmcp6 cysteine protease genes of Haemonchus contortus from small ruminants. J Parasit Dis 2016; 40:1313-1316. [PMID: 27876938 DOI: 10.1007/s12639-015-0679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/10/2015] [Indexed: 11/27/2022] Open
Abstract
Haemonchus contortus is a haematophagous nematode in small ruminants population and causes anaemia, weakness and mortality especially in young animals. In the present study, hmcp3 partial gene of 836 bp and hmcp6 full length gene of 1041 bp were amplified from the cDNA of Bareilly isolate of adult male H. contortus by polymerase chain reaction. Further gene characterization and expression studies are warranted to know the immunoprophylactic potential of hmcp3 and hmcp6 proteins of H. contortus.
Collapse
Affiliation(s)
- A Latchumikanthan
- Division of Veterinary Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122 UP India
| | - A Prasad
- Division of Veterinary Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122 UP India
| | - M Sankar
- Division of Temperate Animal Husbandry, Indian Veterinary Research Institute, Mukteshwar, Nainital, 263 138 Uttarakhand India
| | - Pesingi Pavan Kumar
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122 UP India
| | - M V Jithin
- Division of Veterinary Medicine, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122 UP India
| | - M Aravind
- Division of Veterinary Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122 UP India
| |
Collapse
|
6
|
Gasser RB, Schwarz EM, Korhonen PK, Young ND. Understanding Haemonchus contortus Better Through Genomics and Transcriptomics. ADVANCES IN PARASITOLOGY 2016; 93:519-67. [PMID: 27238012 DOI: 10.1016/bs.apar.2016.02.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parasitic roundworms (nematodes) cause substantial mortality and morbidity in animals globally. The barber's pole worm, Haemonchus contortus, is one of the most economically significant parasitic nematodes of small ruminants worldwide. Although this and related nematodes can be controlled relatively well using anthelmintics, resistance against most drugs in common use has become a major problem. Until recently, almost nothing was known about the molecular biology of H. contortus on a global scale. This chapter gives a brief background on H. contortus and haemonchosis, immune responses, vaccine research, chemotherapeutics and current problems associated with drug resistance. It also describes progress in transcriptomics before the availability of H. contortus genomes and the challenges associated with such work. It then reviews major progress on the two draft genomes and developmental transcriptomes of H. contortus, and summarizes their implications for the molecular biology of this worm in both the free-living and the parasitic stages of its life cycle. The chapter concludes by considering how genomics and transcriptomics can accelerate research on Haemonchus and related parasites, and can enable the development of new interventions against haemonchosis.
Collapse
Affiliation(s)
- R B Gasser
- The University of Melbourne, Parkville, VIC, Australia
| | - E M Schwarz
- The University of Melbourne, Parkville, VIC, Australia; Cornell University, Ithaca, NY, United States
| | - P K Korhonen
- The University of Melbourne, Parkville, VIC, Australia
| | - N D Young
- The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Hunt VL, Tsai IJ, Coghlan A, Reid AJ, Holroyd N, Foth BJ, Tracey A, Cotton JA, Stanley EJ, Beasley H, Bennett HM, Brooks K, Harsha B, Kajitani R, Kulkarni A, Harbecke D, Nagayasu E, Nichol S, Ogura Y, Quail MA, Randle N, Xia D, Brattig NW, Soblik H, Ribeiro DM, Sanchez-Flores A, Hayashi T, Itoh T, Denver DR, Grant W, Stoltzfus JD, Lok JB, Murayama H, Wastling J, Streit A, Kikuchi T, Viney M, Berriman M. The genomic basis of parasitism in the Strongyloides clade of nematodes. Nat Genet 2016; 48:299-307. [PMID: 26829753 PMCID: PMC4948059 DOI: 10.1038/ng.3495] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/23/2015] [Indexed: 12/19/2022]
Abstract
Soil-transmitted nematodes, including the Strongyloides genus, cause one of the most prevalent neglected tropical diseases. Here we compare the genomes of four Strongyloides species, including the human pathogen Strongyloides stercoralis, and their close relatives that are facultatively parasitic (Parastrongyloides trichosuri) and free-living (Rhabditophanes sp. KR3021). A significant paralogous expansion of key gene families--families encoding astacin-like and SCP/TAPS proteins--is associated with the evolution of parasitism in this clade. Exploiting the unique Strongyloides life cycle, we compare the transcriptomes of the parasitic and free-living stages and find that these same gene families are upregulated in the parasitic stages, underscoring their role in nematode parasitism.
Collapse
Affiliation(s)
- Vicky L. Hunt
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Isheng J. Tsai
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Avril Coghlan
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Adam J. Reid
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Nancy Holroyd
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Bernardo J. Foth
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Alan Tracey
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - James A. Cotton
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Eleanor J. Stanley
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Helen Beasley
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Hayley M. Bennett
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Karen Brooks
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Bhavana Harsha
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Rei Kajitani
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Arpita Kulkarni
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Eiji Nagayasu
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Sarah Nichol
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Michael A. Quail
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Nadine Randle
- Department of Infection Biology, Institute of Infection and Global Health and School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - Dong Xia
- Department of Infection Biology, Institute of Infection and Global Health and School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - Norbert W. Brattig
- Department of Molecular Medicine, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hanns Soblik
- Department of Molecular Medicine, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Diogo M. Ribeiro
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Alejandro Sanchez-Flores
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Unidad de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México, 62210
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takehiko Itoh
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Dee R. Denver
- Department of Intergrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Warwick Grant
- Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Jonathan D. Stoltzfus
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia 19104, PA, USA
| | - James B. Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia 19104, PA, USA
| | - Haruhiko Murayama
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Jonathan Wastling
- Department of Infection Biology, Institute of Infection and Global Health and School of Veterinary Science, University of Liverpool, Liverpool, UK
- Faculty of Natural Sciences, University of Keele, Keele, Staffordshire, ST5 5BG, UK
| | - Adrian Streit
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Taisei Kikuchi
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Mark Viney
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| |
Collapse
|
8
|
Tak IR, Dar JS, Dar SA, Ganai BA, Chishti MZ, Ahmad F. A comparative analysis of various antigenic proteins found in Haemonchus contortus—a review. Mol Biol 2015. [DOI: 10.1134/s0026893315060217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Cornelio VE, Pedroso MM, Afonso AS, Fernandes JB, da Silva MG, Faria RC, Vieira PC. New approach for natural products screening by real-time monitoring of hemoglobin hydrolysis using quartz crystal microbalance. Anal Chim Acta 2015; 862:86-93. [DOI: 10.1016/j.aca.2015.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/04/2014] [Accepted: 01/02/2015] [Indexed: 11/26/2022]
|
10
|
An aspartic protease of the scabies mite Sarcoptes scabiei is involved in the digestion of host skin and blood macromolecules. PLoS Negl Trop Dis 2013; 7:e2525. [PMID: 24244770 PMCID: PMC3820722 DOI: 10.1371/journal.pntd.0002525] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/27/2013] [Indexed: 11/19/2022] Open
Abstract
Background Scabies is a disease of worldwide significance, causing considerable morbidity in both humans and other animals. The scabies mite Sarcoptes scabiei burrows into the skin of its host, obtaining nutrition from host skin and blood. Aspartic proteases mediate a range of diverse and essential physiological functions such as tissue invasion and migration, digestion, moulting and reproduction in a number of parasitic organisms. We investigated whether aspartic proteases may play role in scabies mite digestive processes. Methodology/Principle Findings We demonstrated the presence of aspartic protease activity in whole scabies mite extract. We then identified a scabies mite aspartic protease gene sequence and produced recombinant active enzyme. The recombinant scabies mite aspartic protease was capable of digesting human haemoglobin, serum albumin, fibrinogen and fibronectin, but not collagen III or laminin. This is consistent with the location of the scabies mites in the upper epidermis of human skin. Conclusions/Significance The development of novel therapeutics for scabies is of increasing importance given the evidence of emerging resistance to current treatments. We have shown that a scabies mite aspartic protease plays a role in the digestion of host skin and serum molecules, raising the possibility that interference with the function of the enzyme may impact on mite survival. Scabies is an infectious disease of the skin caused by infestation with the parasitic mite Sarcoptes scabiei. It is a disease that has a considerable impact on humans and other animals, including livestock, wildlife and companion animals. Scabies mites burrow into the skin of their host, consuming host skin and blood molecules. Aspartic proteases play a key role in invasion and digestion processes in many parasitic organisms. We have identified a scabies mite aspartic protease and have shown that it is capable of digesting human haemoglobin, serum albumin, fibrinogen and fibronectin in vitro, indicating that it plays a role in mite digestive processes. This raises the possibility that interfering with the function of this digestive enzyme may impact on mite survival.
Collapse
|
11
|
The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus. Genome Biol 2013; 14:R89. [PMID: 23985341 PMCID: PMC4053716 DOI: 10.1186/gb-2013-14-8-r89] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/28/2013] [Indexed: 01/23/2023] Open
Abstract
Background The barber's pole worm, Haemonchus contortus, is one of the most economically important parasites of small ruminants worldwide. Although this parasite can be controlled using anthelmintic drugs, resistance against most drugs in common use has become a widespread problem. We provide a draft of the genome and the transcriptomes of all key developmental stages of H. contortus to support biological and biotechnological research areas of this and related parasites. Results The draft genome of H. contortus is 320 Mb in size and encodes 23,610 protein-coding genes. On a fundamental level, we elucidate transcriptional alterations taking place throughout the life cycle, characterize the parasite's gene silencing machinery, and explore molecules involved in development, reproduction, host-parasite interactions, immunity, and disease. The secretome of H. contortus is particularly rich in peptidases linked to blood-feeding activity and interactions with host tissues, and a diverse array of molecules is involved in complex immune responses. On an applied level, we predict drug targets and identify vaccine molecules. Conclusions The draft genome and developmental transcriptome of H. contortus provide a major resource to the scientific community for a wide range of genomic, genetic, proteomic, metabolomic, evolutionary, biological, ecological, and epidemiological investigations, and a solid foundation for biotechnological outcomes, including new anthelmintics, vaccines and diagnostic tests. This first draft genome of any strongylid nematode paves the way for a rapid acceleration in our understanding of a wide range of socioeconomically important parasites of one of the largest nematode orders.
Collapse
|
12
|
Ansell BRE, Schnyder M, Deplazes P, Korhonen PK, Young ND, Hall RS, Mangiola S, Boag PR, Hofmann A, Sternberg PW, Jex AR, Gasser RB. Insights into the immuno-molecular biology of Angiostrongylus vasorum through transcriptomics--prospects for new interventions. Biotechnol Adv 2013; 31:1486-500. [PMID: 23895945 DOI: 10.1016/j.biotechadv.2013.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/28/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
Abstract
Angiostrongylus vasorum is a metastrongyloid nematode of dogs and other canids of major clinical importance in many countries. In order to gain first insights into the molecular biology of this worm, we conducted the first large-scale exploration of its transcriptome, and predicted essential molecules linked to metabolic and biological processes as well as host immune responses. We also predicted and prioritized drug targets and drug candidates. Following Illumina sequencing (RNA-seq), 52.3 million sequence reads representing adult A. vasorum were assembled and annotated. The assembly yielded 20,033 contigs, which encoded proteins with 11,505 homologues in Caenorhabditis elegans, and additional 2252 homologues in various other parasitic helminths for which curated data sets were publicly available. Functional annotation was achieved for 11,752 (58.6%) proteins predicted for A. vasorum, including peptidases (4.5%) and peptidase inhibitors (1.6%), protein kinases (1.7%), G protein-coupled receptors (GPCRs) (1.5%) and phosphatases (1.2%). Contigs encoding excretory/secretory and immuno-modulatory proteins represented some of the most highly transcribed molecules, and encoded enzymes that digest haemoglobin were conserved between A. vasorum and other blood-feeding nematodes. Using an essentiality-based approach, drug targets, including neurotransmitter receptors, an important chemosensory ion channel and cysteine proteinase-3 were predicted in A. vasorum, as were associated small molecular inhibitors/activators. Future transcriptomic analyses of all developmental stages of A. vasorum should facilitate deep explorations of the molecular biology of this important parasitic nematode and support the sequencing of its genome. These advances will provide a foundation for exploring immuno-molecular aspects of angiostrongylosis and have the potential to underpin the discovery of new methods of intervention.
Collapse
Affiliation(s)
- Brendan R E Ansell
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cloning and molecular analysis of the aspartic protease Sc-ASP110 gene transcript in Steinernema carpocapsae. Parasitology 2013; 140:1158-67. [PMID: 23731543 DOI: 10.1017/s0031182013000577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Many protease genes have previously been shown to be involved in parasitism and in the development of Steinernema carpocapsae, including a gene predicted to encode an aspartic protease, Sc-ASP110, which was cloned and was analysed in this study. A cDNA encoding Sc-ASP110 was cloned based on an expressed sequence tag (EST) fragment from our EST library. The full-length cDNA of Sc-ASP110 consists of 1112 nucleotides with a catalytic aspartic domain (aa18-337). The putative 341 amino acid residues have a calculated molecular mass of 37·1 kDa and a theoretical pI of 4·7. BLASTp analysis of the Sc-ASP110 amino acid sequence showed 45-77% amino acid sequence identity to parasitic and non-parasitic nematode aspartic proteases. An expression analysis showed that the sc-asp110 gene was upregulated during the late parasitic stage, L4, and 24 h after induction of in vitro nematodes. A sequence comparison revealed that Sc-ASP110 was a member of an aspartic protease family; additionally, a phylogenetic analysis indicated that Sc-ASP110 was clustered with the closely related nematode Steinernema feltiae. In situ hybridization showed that sc-asp110 was expressed in the body walls of dorsal cells. The upregulated Sc-ASP110 expression revealed that this protease could play a role in the late parasitic process. In this study, we have cloned and analysed the gene transcript of Sc-ASP110 in S. carpocapsae.
Collapse
|
14
|
Rebello KM, Siqueira CRD, Ribeiro EL, Valente RH, Mota EM, Perales J, Neves-Ferreira AGDC, Lenzi HL. Proteolytic activity in the adult and larval stages of the human roundworm parasite Angiostrongylus costaricensis. Mem Inst Oswaldo Cruz 2013; 107:752-9. [PMID: 22990964 DOI: 10.1590/s0074-02762012000600008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 05/09/2012] [Indexed: 11/21/2022] Open
Abstract
Angiostrongylus costaricensis is a nematode that causes abdominal angiostrongyliasis, a widespread human parasitism in Latin America. This study aimed to characterize the protease profiles of different developmental stages of this helminth. First-stage larvae (L1) were obtained from the faeces of infected Sigmodon hispidus rodents and third-stage larvae (L3) were collected from mollusks Biomphalaria glabrata previously infected with L1. Adult worms were recovered from rodent mesenteric arteries. Protein extraction was performed after repeated freeze-thaw cycles followed by maceration of the nematodes in 40 mM Tris base. Proteolysis of gelatin was observed by zymography and found only in the larval stages. In L3, the gelatinolytic activity was effectively inhibited by orthophenanthroline, indicating the involvement of metalloproteases. The mechanistic class of the gelatinases from L1 could not be precisely determined using traditional class-specific inhibitors. Adult worm extracts were able to hydrolyze haemoglobin in solution, although no activity was observed by zymography. This haemoglobinolytic activity was ascribed to aspartic proteases following its effective inhibition by pepstatin, which also inhibited the haemoglobinolytic activity of L1 and L3 extracts. The characterization of protease expression throughout the A. costaricensis life cycle may reveal key factors influencing the process of parasitic infection and thus foster our understanding of the disease pathogenesis.
Collapse
|
15
|
Balasubramanian N, Nascimento G, Ferreira R, Martinez M, Simões N. Pepsin-like aspartic protease (Sc-ASP155) cloning, molecular characterization and gene expression analysis in developmental stages of nematode Steinernema carpocapsae. Gene 2012; 500:164-71. [PMID: 22503896 DOI: 10.1016/j.gene.2012.03.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 11/17/2022]
Abstract
Steinernema carpocapsae is an insect parasitic nematode associated with the bacterium Xenorhabdus nematophila. These symbiotic complexes are virulent against the insect host. Many protease genes were shown previously to be induced during parasitism, including one predicted to encode an aspartic protease, which was cloned and analyzed in this study. A cDNA encoding Sc-ASP155 was cloned based on the EST fragment. The full-length cDNA of Sc-ASP155 consists of 955 nucleotides with multiple domains, including a signal peptide (aa1-15), a pro-peptide region (aa16-45), and a typical catalytic aspartic domain (aa71-230). The putative 230 amino acid residues have a calculated molecular mass of 23,812Da and a theoretical pI of 5.01. Sc-ASP155 blastp analysis showed 40-62% amino acid sequence identity to aspartic proteases from parasitic and free-living nematodes. Expression analysis showed that the sc-asp155 gene was up-regulated during the initial parasitic stage, especially in L3 gut and 6h induced nematodes. Sequence comparison revealed that Sc-ASP155 was a member of an aspartic protease family and phylogenetic analysis indicated that Sc-ASP155 was clustered with Sc-ASP113. In situ hybridization showed that sc-asp155 was expressed in subventral cells. Additionally, we determined that sc-asp155 is a single-copy gene in S. carpocapsae. Homology modeling showed that Sc-ASP155 adopts a typical aspartic protease structure. The up-regulated Sc-ASP155 expression revealed that this protease could play a role in the parasitic process. In this study, we have cloned the gene and determined the expression of the pepsin-like aspartic protease Sc-ASP155 in S. carpocapsae.
Collapse
Affiliation(s)
- Natesan Balasubramanian
- CIRN and Department of Biology, University of Azores, 9501-855 Ponta Delgada, Azores, Portugal.
| | | | | | | | | |
Collapse
|
16
|
Assessment of cathepsin D and L-like proteinases of poultry red mite, Dermanyssus gallinae (De Geer), as potential vaccine antigens. Parasitology 2012; 139:755-65. [PMID: 22310226 DOI: 10.1017/s0031182011002356] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vaccination is a feasible strategy for controlling the haematophagous poultry red mite Dermanyssus gallinae. A cDNA library enriched for genes upregulated after feeding was created to identify potential vaccine antigens. From this library, a gene (Dg-CatD-1) encoding a 383 amino acid protein (Dg-CatD-1) with homology to cathepsin D lysosomal aspartyl proteinases was identified as a potential vaccine candidate. A second gene (Dg-CatL-1) encoding a 341 amino acid protein (Dg-CatL-1) with homology to cathepsin L cysteine proteinases was also selected for further study. IgY obtained from naturally infested hens failed to detect Dg-CatD-1 suggesting that it is a concealed antigen. Conversely, Dg-CatL-1 was detected by IgY derived from natural-infestation, indicating that infested hens are exposed to Dg-CatL-1. Mortality rates 120 h after mites had been fed anti-Dg-CatD-1 were significantly higher than those fed control IgY (PF<0·01). In a survival analysis, fitting a proportional hazards model to the time of death of mites, anti-Dg-CatD-1 and anti-Dg-CatL-1 IgY had 4·42 and 2·13 times higher risks of dying compared with controls (PF<0·05). Dg-CatD-1 and L-1 both have potential as vaccine antigens as part of a multi-component vaccine and have the potential to be improved as vaccine antigens using alternative expression systems.
Collapse
|
17
|
Fischer K, Holt D, Currie B, Kemp D. Scabies: important clinical consequences explained by new molecular studies. ADVANCES IN PARASITOLOGY 2012; 79:339-73. [PMID: 22726646 DOI: 10.1016/b978-0-12-398457-9.00005-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In 2004, we reviewed the status of disease caused by the scabies mite Sarcoptes scabiei at the time and pointed out that very little basic research had ever been done. The reason for this was largely the lack of availability of mites for experimental purposes and, to a degree, a consequent lack of understanding of its importance, resulting in the trivial name 'itch mite'. Scabies is responsible for major morbidity in disadvantaged communities and immunocompromised patients worldwide. In addition to the physical discomfort caused by the disease, scabies infestations facilitate infection by bacterial pathogens such as Streptococcus pyogenes and Staphylococcus aureus via skin lesions, resulting in severe downstream disease such as in a high prevalence of rheumatic fever/heart disease in affected communities. We now have further evidence that in disadvantaged populations living in tropical climates, scabies rather than 'Strep throat' is an important source of S. pyogenes causing rheumatic fever and eventually rheumatic heart disease. In addition, our work has resulted in two fundamental research tools that facilitate much of the current biomedical research efforts on scabies, namely a public database containing ~45,000 scabies mite expressed sequence tags and a porcine in vivo model. Here we will discuss novel and unexpected proteins encountered in the database that appear crucial to mite survival with regard to digestion and evasion of host defence. The mode(s) of action of some of these have been at least partially revealed. Further, newly discovered molecules that may well have a similar role, such as a family of inactivated cysteine proteases, are yet to be investigated. Hence, there are now whole families of potential targets for chemical inhibitors of S. scabiei. These efforts put today's scabies research in a unique position to design and test small molecules that may specifically interfere with mite-derived molecules, such as digestive proteases and mite complement inhibitors. The porcine scabies model will be available to trial in vivo treatment with potential inhibitors. New therapies for scabies may be developed from these studies and may contribute to reduce the spread of scabies and the subsequent prevalence of bacterial skin infections and their devastating sequelae in the community.
Collapse
Affiliation(s)
- Katja Fischer
- Queensland Institute of Medical Research, Herston, Austraria
| | | | | | | |
Collapse
|
18
|
Balasubramanian N, Toubarro D, Nascimento G, Ferreira R, Simões N. Purification, molecular characterization and gene expression analysis of an aspartic protease (Sc-ASP113) from the nematode Steinernema carpocapsae during the parasitic stage. Mol Biochem Parasitol 2011; 182:37-44. [PMID: 22178695 DOI: 10.1016/j.molbiopara.2011.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/04/2011] [Accepted: 12/01/2011] [Indexed: 10/14/2022]
Abstract
Steinernema carpocapsae is an insect parasitic nematode associated with the bacterium Xenorhabdus nematophila. During invasion, this nematode is able to express many proteases, including aspartic proteases. Genes encoding these aspartic proteases have been identified in the EST, and aspartic protease has been found in excretory-secretory products. The total protease was shown to digest blood hemoglobin in a zymogram gel. When the protein was partially purified by pepstatin affinity chromatography, it was observed to have high activity against both hemoglobin and the synthetic substrate Phe-Ala-Ala-Phe-(4NO(2))-Phe-Val-Leu (4-pyridylmethyl) ester. The protein was confirmed by mass spectrometry and was found to be encoded by the gene sc-asp113. A cDNA encoding aspartic protease was cloned based on the EST fragment, which was constructed in our lab. The full-length cDNA of Sc-ASP113 consists of 1257 nucleotides encoding a protein with multiple domains, including a signal peptide (aa 1-15), a propeptide region (aa 16-45), and a typical catalytic aspartic domain (aa 68-416). The cleavage site of the signal peptide is predicted to be between Ala15 and Ala16. The putative 418 amino acid residues have a calculated molecular mass of 44,742Da and a theoretical pI of 5.14. BLAST analysis showed 33-56% amino acid sequence identity to aspartic proteases from parasitic and free living nematodes. Expression analysis showed that the sc-asp113 gene was up-regulated during the initial parasitic stage, especially during L3 inside the gut. In vitro, we showed that treatment with insect homogenate for 6h is sufficient to induce the expression of this protease in treated infective juveniles. Sequence comparison and evolutionary analysis revealed that Sc-ASP113 is a member of the aspartic protease family with the potential for tissue degradation. Phylogenetic analysis indicates that Sc-ASP113 branched between Haemonchus contortus and Steinernema feltiae proteases. Homology modeling showed that Sc-ASP113 adopts a typical aspartic protease structure. The up-regulation of Sc-ASP113 expression indicates that this protease could play a role in the parasitic process. To facilitate the exploration of this protease as a virulence factor, here we describe the purification of the protease and its molecular characterization in S. carpocapsae.
Collapse
Affiliation(s)
- Natesan Balasubramanian
- CIRN and Department of Biology, University of Azores, 9501-855 Ponta Delgada, Azores, Portugal.
| | | | | | | | | |
Collapse
|
19
|
Knox D. Proteases in blood-feeding nematodes and their potential as vaccine candidates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:155-76. [PMID: 21660664 DOI: 10.1007/978-1-4419-8414-2_10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Parasitic nematodes express and secrete a variety of proteases which they use for many purposes including the penetration of host tissues, digestion of host protein for nutrients, evasion of host immune responses and for internal processes such as tissue catabolism and apoptosis. For these broad reasons they have been examined as possible parasite control targets. Blood-feeding nematodes such as the barber-pole worm Haemonchus contortus that infect sheep and goats and the hookworms, Ancylostoma spp. and Necator americanus, affecting man, use an array of endo- and exopeptidases to digest the blood meal. Haemoglobin digestion occurs by an ordered and partly conserved proteolytic cascade. These proteases are accessible to host immune responses which can block enzyme function and lead to parasite expulsion and/or death. Thus they are receiving attention as components of vaccines against several parasitic nematodes of social and economic importance.
Collapse
Affiliation(s)
- David Knox
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, Scotland, UK.
| |
Collapse
|
20
|
Pearson MS, Ranjit N, Loukas A. Blunting the knife: development of vaccines targeting digestive proteases of blood-feeding helminth parasites. Biol Chem 2010; 391:901-11. [DOI: 10.1515/bc.2010.074] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractProteases are pivotal to parasitism, mediating biological processes crucial to worm survival including larval migration through tissue, immune evasion/modulation and nutrient acquisition by the adult parasite. In haematophagous parasites, many of these proteolytic enzymes are secreted from the intestine (nematodes) or gastrodermis (trematodes) where they act to degrade host haemoglobin and serum proteins as part of the feeding process. These proteases are exposed to components of the immune system of the host when the worms ingest blood, and therefore present targets for the development of anti-helminth vaccines. The protective effects of current vaccine antigens against nematodes that infect humans (hookworm) and livestock (barber's pole worm) are based on haemoglobin-degrading intestinal proteases and act largely as a result of the neutralisation of these proteases by antibodies that are ingested with the blood-meal. In this review, we survey the current status of helminth proteases that show promise as vaccines and describe their vital contribution to a parasitic existence.
Collapse
|
21
|
EKOJA SE, SMITH WD. Antibodies from sheep immunized against Haemonchus contortus with H-gal-GP inhibit the haemoglobinase activity of this protease complex. Parasite Immunol 2010; 32:731-8. [DOI: 10.1111/j.1365-3024.2010.01242.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Alterations in the expression level of a putative aspartic protease in the development of Angiostrongylus cantonensis. Acta Trop 2010; 113:289-94. [PMID: 19945419 DOI: 10.1016/j.actatropica.2009.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 11/19/2009] [Accepted: 11/20/2009] [Indexed: 11/22/2022]
Abstract
Aspartic proteases are a family of proteinases with catalytic aspartate residues in the active site. These enzymes have been reported to initialize the degradation of host hemoglobin in blood-feeding helminths. After identifying an expressed sequence tag representing an aspartic protease from an Angiostrongylus cantonensis young adult dataset, this sequence was found to encode a protein with a predicted molecular mass of 46 kDa. It also showed good homologies to aspartic proteases from Caenorhabditis elegans (50.7% identity), Haemonchus contortus (43.0% identity), Necator americanus (41.5% identity), Strongyloides stercoralis (35.9% identity), and Burgia malayi (29.6% identity). This putative aspartic protease was determined to be expressed in the infective larvae, young adults, and adult worms of A. cantonensis by quantitative real-time PCR. Among male worms, the expression level was determined to increase by 223.0 + or - 24.2 fold in young adults relative to the infective larvae and then decreased to 7.1 + or - 0.2 fold in adult worms. In female worms, the expression level was observed to increase by 118.5 + or - 10.1 fold in young adults and by 277.5 + or - 29.2 fold in the adults, when compared with infective larvae. These findings not only indicate that the expression level of aspartic protease gene in A. cantonensis changes with development but also has a sexual difference in individual developmental stages in the final host.
Collapse
|
23
|
Mello LV, O'Meara H, Rigden DJ, Paterson S. Identification of novel aspartic proteases from Strongyloides ratti and characterisation of their evolutionary relationships, stage-specific expression and molecular structure. BMC Genomics 2009; 10:611. [PMID: 20015380 PMCID: PMC2805697 DOI: 10.1186/1471-2164-10-611] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 12/16/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aspartic proteases are known to play an important role in the biology of nematode parasitism. This role is best characterised in blood-feeding nematodes, where they digest haemoglobin, but they are also likely to play important roles in the biology of nematode parasites that do not feed on blood. In the present work, we investigate the evolution and expression of aspartic proteases in Strongyloides ratti, which permits a unique comparison between parasitic and free-living adult forms within its life-cycle. RESULTS We identified eight transcribed aspartic protease sequences and a further two genomic sequences and compared these to homologues in Caenorhabditis elegans and other nematode species. Phylogenetic analysis demonstrated a complex pattern of gene evolution, such that some S. ratti sequences had a one-to-one correspondence with orthologues of C. elegans but that lineage-specific expansions have occurred for other aspartic proteases in these two nematodes. These gene duplication events may have contributed to the adaptation of the two species to their different lifestyles. Among the set of S. ratti aspartic proteases were two closely-related isoforms that showed differential expression during different life stages: ASP-2A is highly expressed in parasitic females while ASP-2B is predominantly found in free-living adults. Molecular modelling of the ASP-2 isoforms reveals that their substrate specificities are likely to be very similar, but that ASP-2B is more electrostatically negative over its entire molecular surface than ASP-2A. This characteristic may be related to different pH values of the environments in which these two isoforms operate. CONCLUSIONS We have demonstrated that S. ratti provides a powerful model to explore the genetic adaptations associated with parasitic versus free-living life-styles. We have discovered gene duplication of aspartic protease genes in Strongyloides and identified a pair of paralogues differentially expressed in either the parasitic or the free-living phase of the nematode life-cycle, consistent with an adaptive role for aspartic proteases in the evolution of nematode parasitism.
Collapse
Affiliation(s)
- Luciane V Mello
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Helen O'Meara
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
- Department of Pharmacology and Therapeutics, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Daniel J Rigden
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Steve Paterson
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
24
|
Hao YJ, Montiel R, Abubucker S, Mitreva M, Simões N. Transcripts analysis of the entomopathogenic nematode Steinernema carpocapsae induced in vitro with insect haemolymph. Mol Biochem Parasitol 2009; 169:79-86. [PMID: 19836423 DOI: 10.1016/j.molbiopara.2009.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 08/31/2009] [Accepted: 10/07/2009] [Indexed: 01/24/2023]
Abstract
Steinernema carpocapsae is an insect parasitic nematode widely used in pest control programs. The efficacy of this nematode in controlling insects has been found to be related to the pathogenicity of the infective stage. In order to study the parasitic mechanisms exhibited by this parasite, a cDNA library of the induced S. carpocapsae parasitic phase was generated. A total of 2500 clones were sequenced and 2180 high-quality ESTs were obtained from this library. Cluster analysis generated a total of 1592 unique sequences including 1393 singletons. About 63% of the unique sequences had significant hits (e</=1e-05) to the non-redundant protein database. The remaining sequences most likely represent putative novel protein coding genes. Comparative analysis identified 377 homologs in C. elegans, 431 in C. briggsae and 75 in other nematodes. Classification of the predicted proteins revealed involvement in diverse cellular, metabolic and extracellular functions. One hundred and nineteen clusters were predicted to encode putative secreted proteins such as proteases, proteases inhibitors, lectins, saposin-like proteins, acetylcholinesterase, anti-oxidants, and heat-shock proteins, which can possibly have host interactions. This dataset provides a basis for genomic studies towards a better understanding of the events that occur in the parasitic process of this entomopathogenic nematode, including invasion of the insect haemocoelium, adaptations to insect innate immunity and stress responses, and production of virulence factors. The identification of key genes in the parasitic process provides useful tools for the improvement of S. carpocapsae as a biological agent.
Collapse
Affiliation(s)
- You-Jin Hao
- CIRN and Department of Biology, University of Azores, 9501-801 Ponta Delgada, Azores, Portugal.
| | | | | | | | | |
Collapse
|
25
|
Expression and characterization of aspartic protease gene in eggs and larvae stage of Ancylostoma caninum. Parasitol Res 2009; 104:1327-33. [DOI: 10.1007/s00436-009-1332-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 01/05/2009] [Indexed: 10/21/2022]
|
26
|
Suttiprapa S, Mulvenna J, Huong NT, Pearson MS, Brindley PJ, Laha T, Wongkham S, Kaewkes S, Sripa B, Loukas A. Ov-APR-1, an aspartic protease from the carcinogenic liver fluke, Opisthorchis viverrini: functional expression, immunolocalization and subsite specificity. Int J Biochem Cell Biol 2008; 41:1148-56. [PMID: 18996218 DOI: 10.1016/j.biocel.2008.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/13/2008] [Accepted: 10/13/2008] [Indexed: 11/19/2022]
Abstract
The human liver fluke Opisthorchis viverrini is endemic in Thailand, Laos and Cambodia where long standing infection is associated with cancer of the bile ducts, cholangiocarcinoma. Here we describe a cathepsin D-like aspartic protease from the gut and other tissues in O. viverrini. Phylogenetic analysis indicated that Ov-APR-1 is cathepsin D-like, conforming with Clan AA, Family A1 of the MEROPS classification. Ov-APR-1 is expressed in the gut of the mature hermaphroditic parasite, in the reproductive tissues including the testis and immature spermatids, and the developing miracidium within the eggshell. The enzyme was also detected in the excretory/secretory products of cultured adult flukes, indicating a role in host-parasite relationships. A recombinant form of the enzyme expressed in Escherichia coli and refolded from denatured inclusion bodies underwent autocatalytic activation and demonstrated hydrolytic activity against the peptide substrate 7-methoxycoumarin-4-acetyl-GKPILFFRLK(DNP)-D-Arg-amide with a k(cat)/K(m)=1.7 x 10(4)M(-1)s(-1) and a pH optimum around pH 2.5-3.0. The recombinant enzyme digested hemoglobin and bovine serum albumin. Forty-six serum albumin peptides were detected after digestion with recombinant Ov-APR-1 and sequenced. Like many other aspartic proteases, Ov-APR-1 displayed promiscuous preferences for residues accommodated at the key subsites of the binding pocket although hydrophobic (Leu, Ala, Ile), positively charged (Lys) and bulky aromatic (Phe) residues, in that order, were preferred at P1. Similar residues were accommodated at P1' although even less selectivity was exerted at this position.
Collapse
Affiliation(s)
- Sutas Suttiprapa
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fragoso RDR, Lourenço IT, Batista JAN, Oliveira-Neto OB, Silva MCM, Rocha TL, Coutinho MV, Grossi-de-Sa MF. Meloidogyne incognita: molecular cloning and characterization of a cDNA encoding a cathepsin D-like aspartic proteinase. Exp Parasitol 2008; 121:115-23. [PMID: 18952081 DOI: 10.1016/j.exppara.2008.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 09/29/2008] [Accepted: 09/30/2008] [Indexed: 11/19/2022]
Abstract
Herein we describe the cloning and characterization of a cDNA encoding an aspartic proteinase from the root-knot nematode Meloidogyne incognita. Using PCR techniques, a 1471-bp cDNA fragment encoding a cathepsin D-like (Mi-asp1) transcript was isolated from second-stage larvae mRNA. Its predicted amino acid sequence comprises a pro-region of 71 amino acid residues and a mature protease of 378 amino acid residues with a predicted molecular mass of 41.502kDa. Protein sequence comparisons of Mi-asp1 with GenBank (DQ360827) sequences showed 59-71% identity with nematode-specific cathepsin D-like aspartic proteinases. Southern blot analysis, RT-PCR amplification and EST mining suggest the existence of a developmentally expressed gene family encoding aspartic proteinases in M. incognita. Mi-asp1 may represent a potential target for molecular intervention for the purposes of plant-parasitic nematode control.
Collapse
|
28
|
Advances in the sequencing of the genome of the adenophorean nematode Trichinella spiralis. Parasitology 2008; 135:869-80. [PMID: 18598573 DOI: 10.1017/s0031182008004472] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The adenophorean nematodes are evolutionarily distant from other species in the phylum Nematoda. Interspecific comparisons of predicted proteins have supported such an ancient divergence. Accordingly, Trichinella spiralis represents a basal nematode representative for genome sequencing focused on gaining a deeper insight into the evolutionary biology of nematodes. In addition, molecular characteristics that are conserved across the phylum could be of great value for control strategies with broad application. In this review, we describe and summarize progress that has been made on the sequencing and analysis of the T. spiralis genome. The genome sequence was used in preliminary analyses for the investigation of specific questions relating to the biology of T. spiralis and, more generally, to parasitic nematodes. For instance, we evaluated an unusually large DNase II-like protein family, predicted proteins of prospective interest in the parasite-host muscle cell interaction, anthelmintic targets and prospective intestinal genes, the encoded proteins (potentially) linked to immunological control against other nematodes. The results are discussed in relation to characteristics that are broadly conserved among evolutionary distant nematodes. The results lead to expectations that this genome sequence will contribute to advances in research on T. spiralis and other parasitic nematodes.
Collapse
|
29
|
Vaccination against Haemonchus contortus: performance of native parasite gut membrane glycoproteins in Merino lambs grazing contaminated pasture. Vet Parasitol 2008; 153:302-12. [PMID: 18337013 DOI: 10.1016/j.vetpar.2008.01.032] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 01/18/2008] [Accepted: 01/22/2008] [Indexed: 11/20/2022]
Abstract
In a replicated trial, parasitological and antibody responses of grazing weaner Merino sheep were assessed following vaccination with gut membrane proteins prepared from adult worms of the gastrointestinal nematode, Haemonchus contortus. Each vaccinated animal received 100 microg native H11 and 100 microg native H-gal-GP combined together in 5mg Quil A administered intramuscularly on days 0, 34, 80 and 127. Control animals received 5mg Quil A alone on the same days. Vaccinated and unvaccinated control animals grazed pastures contaminated with the parasite from day 34 of the trial, and levels of parasitism were monitored by worm-egg counts (WECs) in faeces and packed cell volumes (PCVs) in blood. The level of larval contamination on pasture was estimated from the worm counts of tracer sheep introduced monthly to the paddocks. WECs and anaemia were significantly reduced in vaccinated animals, and, in contrast to vaccinates, all control sheep required salvage treatment with anthelmintic. By the last 2 months of the trial, pastures grazed by vaccinated animals had significantly lower contamination with H. contortus larvae. Vaccinated animals had high levels of vaccine antigen-specific IgG1 and IgG2 antibodies in plasma, whereas those responses in the control sheep were very low. IgG1 titres in the vaccinated group, but not IgG2 titres, were inversely correlated with worm-egg counts. The levels of systemic IgA and IgE remained low but increased in both groups towards the end of the experiment most probably from exposure to the natural infection from pasture. The results showed that H11 and H-gal-GP behaved like "hidden" antigens producing high levels of protection that were probably mediated through mechanisms involving antibodies, and in particular, IgG1. It was concluded that if similar protective effects could be obtained with recombinant versions of the proteins present in either H11 or H-gal-GP, then the prospects for a commercial Haemonchus vaccine were real.
Collapse
|
30
|
Transcriptional changes in the hookworm, Ancylostoma caninum, during the transition from a free-living to a parasitic larva. PLoS Negl Trop Dis 2008; 2:e130. [PMID: 18235850 PMCID: PMC2217673 DOI: 10.1371/journal.pntd.0000130] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 10/26/2007] [Indexed: 11/23/2022] Open
Abstract
Background Third-stage larvae (L3) of the canine hookworm, Ancylostoma caninum, undergo arrested development preceding transmission to a host. Many of the mRNAs up-regulated at this stage are likely to encode proteins that facilitate the transition from a free-living to a parasitic larva. The initial phase of mammalian host invasion by A. caninum L3 (herein termed “activation”) can be mimicked in vitro by culturing L3 in serum-containing medium. Methodology/Principal Findings The mRNAs differentially transcribed between activated and non-activated L3 were identified by suppression subtractive hybridisation (SSH). The analysis of these mRNAs on a custom oligonucleotide microarray printed with the SSH expressed sequence tags (ESTs) and publicly available A. caninum ESTs (non-subtracted) yielded 602 differentially expressed mRNAs, of which the most highly represented sequences encoded members of the pathogenesis-related protein (PRP) superfamily and proteases. Comparison of these A. caninum mRNAs with those of Caenorhabditis elegans larvae exiting from developmental (dauer) arrest demonstrated unexpectedly large differences in gene ontology profiles. C. elegans dauer exiting L3 up-regulated expression of mostly intracellular molecules involved in growth and development. Such mRNAs are virtually absent from activated hookworm larvae, and instead are over-represented by mRNAs encoding extracellular proteins with putative roles in host-parasite interactions. Conclusions/Significance Although this should not invalidate C. elegans dauer exit as a model for hookworm activation, it highlights the limitations of this free-living nematode as a model organism for the transition of nematode larvae from a free-living to a parasitic state. Hookworms are soil-transmitted nematodes that parasitize hundreds of millions of people in developing countries. Here we describe the genes expressed when hookworm larvae make the transition from a developmentally arrested free-living form to a tissue-penetrating parasitic stage. Ancylostoma caninum can be “tricked” into thinking it has penetrated host skin by incubating free-living larvae in host serum – this is called “activation”. To comprehensively identify genes involved in activation, we used suppressive subtractive hybridization to clone genes that were up- or down-regulated in activated larvae, with a particular focus on up-regulated genes. The subtracted genes, as well as randomly sequenced (non-subtracted) genes from public databases were then printed on a microarray to further explore differential expression. We compared predicted gene functions between activated hookworms and the free-living nematode, Caenorhabditis elegans, exiting developmental arrest (dauer), and found enormous differences in the types of genes expressed. Genes encoding secreted proteins involved in parasitism were over-represented in activated hookworms whereas genes involved in growth and development dominated in C. elegans exiting dauer. Our data implies that C. elegans dauer exit is not a reliable model for exit from developmental arrest of hookworm larvae. Many of these genes likely play critical roles in host-parasite interactions, and are therefore worthy of pursuit for vaccine and drug development.
Collapse
|
31
|
Nisbet AJ, Redmond DL, Matthews JB, Watkins C, Yaga R, Jones JT, Nath M, Knox DP. Stage-specific gene expression in Teladorsagia circumcincta (Nematoda: Strongylida) infective larvae and early parasitic stages. Int J Parasitol 2007; 38:829-38. [PMID: 18062971 DOI: 10.1016/j.ijpara.2007.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 10/10/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
Abstract
Suppression subtractive hybridisation was used to enrich genes expressed in a stage-specific manner in infective, exsheathed L3s (xL3) versus early L4s of the ovine nematode, Teladorsagia circumcincta prior to gene expression profiling by microarray. The 769 cDNA sequences obtained from the xL3-enriched library contained 361 unique sequences, with 292 expressed sequence tags (ESTs) being represented once ("singletons") and 69 sequences which were represented more than once (overlapping and non-overlapping "contigs"). The L4-enriched EST dataset contained 472 unique sequences, with 314 singletons and 158 contigs. Of these 833 sequences, 85% of the xL3 sequences and 86% of the L4 sequences exhibited homology to known genes or ESTs derived from other species of nematode. Quantitative differential expression (P<0.05) was demonstrated for 563 (68%) of the ESTs by microarray. Within the L3-specific dataset, more than 30% of the transcripts represented the enzyme, guanosine-5'-triphosphate (GTP)-cyclohydrolase, which is the first and rate-limiting enzyme of the tetrahydrobiopterin synthesis pathway and may be involved in critical elements of larval development. In L4s, proteolytic enzymes were highly up-regulated, as were collagens and a number of previously characterised secretory proteins, reflecting the rapid growth of these larvae in abomasal glands. Nucleotide sequence data reported in this paper are available in the EMBL, GenBank and DDJB databases under accession numbers AM 743198-AM 744942.
Collapse
Affiliation(s)
- Alasdair J Nisbet
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Campbell BE, Nagaraj SH, Hu M, Zhong W, Sternberg PW, Ong EK, Loukas A, Ranganathan S, Beveridge I, McInnes RL, Hutchinson GW, Gasser RB. Gender-enriched transcripts in Haemonchus contortus--predicted functions and genetic interactions based on comparative analyses with Caenorhabditis elegans. Int J Parasitol 2007; 38:65-83. [PMID: 17707841 DOI: 10.1016/j.ijpara.2007.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 06/27/2007] [Accepted: 07/03/2007] [Indexed: 02/05/2023]
Abstract
In the present study, a bioinformatic-microarray approach was employed for the analysis of selected expressed sequence tags (ESTs) from Haemonchus contortus, a key parasitic nematode of small ruminants. Following a bioinformatic analysis of EST data using a semiautomated pipeline, 1885 representative ESTs (rESTs) were selected, to which oligonucleotides (three per EST) were designed and spotted on to a microarray. This microarray was hybridized with cyanine-dye labelled cRNA probes synthesized from RNA from female or male adults of H. contortus. Differential hybridisation was displayed for 301 of the 1885 rESTs ( approximately 16%). Of these, 165 (55%) had significantly greater signal intensities for female cRNA and 136 (45%) for male cRNA. Of these, 113 with increased signals in female or male H. contortus had homologues in Caenorhabditis elegans, predicted to function in metabolism, information storage and processing, cellular processes and signalling, and embryonic and/or larval development. Of the rESTs with no known homologues in C. elegans, 24 ( approximately 40%) had homologues in other nematodes, four had homologues in various other organisms and 30 (52%) had no homology to any sequence in current gene databases. A genetic interaction network was predicted for the C. elegans orthologues of the gender-enriched H. contortus genes, and a focused analysis of a subset revealed a tight network of molecules involved in amino acid, carbohydrate or lipid transport and metabolism, energy production and conversion, translation, ribosomal structure and biogenesis and, importantly, those associated with meiosis and/or mitosis in the germline during oogenesis or spermatogenesis. This study provides a foundation for the molecular, biochemical and functional exploration of selected molecules with differential transcription profiles in H. contortus, for further microarray analyses of transcription in different developmental stages of H. contortus, and for an extended functional analysis once the full genome sequence of this nematode is known.
Collapse
Affiliation(s)
- Bronwyn E Campbell
- Department of Veterinary Science, The University of Melbourne, Werribee, Vic. 3030, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bethony JM, Loukas A, Hotez PJ, Knox DP. Vaccines against blood-feeding nematodes of humans and livestock. Parasitology 2007; 133 Suppl:S63-79. [PMID: 17274849 DOI: 10.1017/s0031182006001818] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This paper summarises the progress towards vaccine development against the major blood-feeding nematodes of man and livestock, the hookworms and Haemonchus contortus, respectively. The impact of the diseases and the drivers for vaccine development are summarized as well as the anticipated impact of the host immune response on vaccine design. The performance requirements are discussed and progress towards these objectives using defined larval and adult antigens, many of these being shared between species. Specific examples include the Ancylostoma secreted proteins and homologues in Haemonchus as well as proteases used for digestion of the blood meal. This discussion shows that many of the major vaccine candidates are shared between these blood-feeding species, not only those from the blood-feeding stages but also those expressed by infective L3s in the early stages of infection. Challenges for the future include: exploiting the expanding genome information for antigen discovery, use of different recombinant protein expression systems, formulation with new adjuvants, and novel methods of field testing vaccine efficacy.
Collapse
Affiliation(s)
- J M Bethony
- Centro de Pesquisas René Rachou/CPqRR, A FIOCRUZ em Minas Gerais. Rene Rachou Research Center/CPqRR, The Oswaldo Cruz Foundation, Minas Gerais, Brazil.
| | | | | | | |
Collapse
|
34
|
Delcroix M, Sajid M, Caffrey CR, Lim KC, Dvorák J, Hsieh I, Bahgat M, Dissous C, McKerrow JH. A Multienzyme Network Functions in Intestinal Protein Digestion by a Platyhelminth Parasite. J Biol Chem 2006; 281:39316-29. [PMID: 17028179 DOI: 10.1074/jbc.m607128200] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteases frequently function not only as individual enzymes but also in cascades or networks. A notable evolutionary switch occurred in one such protease network that is involved in protein digestion in the intestine. In vertebrates, this is largely the work of trypsin family serine proteases, whereas in invertebrates, cysteine proteases of the papain family and aspartic proteases assume the role. Utilizing a combination of protease class-specific inhibitors and RNA interference, we deconvoluted such a network of major endopeptidases functioning in invertebrate intestinal protein digestion, using the parasitic helminth, Schistosoma mansoni as an experimental model. We show that initial degradation of host blood proteins is ordered, occasionally redundant, and substrate-specific. Although inhibition of parasite cathepsin D had a greater effect on primary cleavage of hemoglobin, inhibition of cathepsin B predominated in albumin degradation. Nevertheless, in both cases, inhibitor combinations were synergistic. An asparaginyl endopeptidase (legumain) also synergized with cathepsin B and L in protein digestion, either by zymogen activation or facilitating substrate cleavage. This protease network operates optimally in acidic pH compartments either in the gut lumen or in vacuoles of the intestinal lining cells. Defining the role of each of these major enzymes now provides a clearer understanding of the function of a complex protease network that is conserved throughout invertebrate evolution. It also provides insights into which of these proteases are logical targets for development of chemotherapy for schistosomiasis, a major global health problem.
Collapse
Affiliation(s)
- Melaine Delcroix
- Department of Pathology, Tropical Disease Research Unit and Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, California 94158, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Choi JH, Lee JH, Yu HS, Jeong HJ, Kim J, Hong YC, Kong HH, Chung DI. Molecular and biochemical characterization of hemoglobinase, a cysteine proteinase, in Paragonimus westermani. THE KOREAN JOURNAL OF PARASITOLOGY 2006; 44:187-96. [PMID: 16969056 PMCID: PMC2532661 DOI: 10.3347/kjp.2006.44.3.187] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The mammalian trematode Paragonimus westermani is a typical digenetic parasite, which can cause paragonimiasis in humans. Host tissues and blood cells are important sources of nutrients for development, growth and reproduction of P. westermani. In this study, a cDNA clone encoding a 47 kDa hemoglobinase of P. westermani was characterized by sequencing analysis, and its localization was investigated immunohistochemically. The phylogenetic tree prepared based on the hemoglobinase gene showed high homology with hemoglobinases of Fasciola hepatica and Schistosoma spp. Moreover, recombinant P. westermani hemoglobinase degradaded human hemoglobin at acidic pH (from 3.0 to 5.5) and its activity was almost completely inhibited by E-64, a cysteine proteinase inhibitor. Immunohistochemical studies showed that P. westermani hemoglobinase was localized in the epithelium of the adult worm intestine implying that the protein has a specific function. These observations suggest that hemoglobinase may act as a digestive enzyme for acquisition of nutrients from host hemoglobin. Further investigations may provide insights into hemoglobin catabolism in P. westermani.
Collapse
Affiliation(s)
- Joon-Hyuck Choi
- Department of Parasitology, Kyungpook National University School of Medicine, Daegu, Korea
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The increasing prevalence of anthelmintic resistance has provided a spur for research into 'alternative/novel' approaches to the control of helminthoses that are intended to reduce our reliance upon using chemoprophylaxis. The different approaches either target the parasite population in the host or on pasture, but the goal of all of them is to restrict host parasite contact to levels which minimise the impact of helminths on host welfare and/or performance. Infrapopulation regulation can be achieved through methods that enhance immunity such as optimised nutrition (immunonutrition), genetic selection and vaccination, or by an 'anthelmintic' route using bioactive forages, copper oxide wire particles, or use of targeted selective treatment strategies such as FAMACHA, which reduce the selection pressure for the development of resistance by maintaining a population in refugia. Suprapopulation control can be achieved through grazing management, or by using predacious fungi such as Duddingtonia flagrans. All of these approaches have been developed beyond the proof of concept stage and some are capable of being employed currently. However, some still require knowledge transfer, or commercialisation before they can be tested and widely applied in the field. All of the different approaches present unique challenges to the researchers engaged in developing them, and in comparison to simple prescriptive anthelmintic treatments, their use appears complex and requires some expertise on behalf of the advisor and/or end user. At present, most of our data are derived from trials using single approaches, but it is apparent that we need to move towards integrating some of these technologies which again represents a further challenge to the extension/advisory services. Progress in establishing different approaches requires not only the funding to support their scientific development but also to support the development of computer based models which can be used to highlight deficiencies in our understanding of the control mechanisms and to identify impediments to their introduction. It is inevitable that some of the approaches currently under investigation will fail to become widely applied for a variety of reasons that are not solely financial. These include issues concerned with practicability/applicability, affordability/appropriateness, availability/deliverability and above all, the failure to provide a consistent, reliable effect when used under commercial farming conditions.
Collapse
Affiliation(s)
- Frank Jackson
- Moredun Research Institute, Department of Parasitology, Bush Loan, Pentland Science Park, Edinburgh, Scotland, UK.
| | | |
Collapse
|
37
|
Newlands GFJ, Skuce PJ, Nisbet AJ, Redmond DL, Smith SK, Pettit D, Smith WD. Molecular characterization of a family of metalloendopeptidases from the intestinal brush border of Haemonchus contortus. Parasitology 2006; 133:357-68. [PMID: 16740178 DOI: 10.1017/s0031182006000217] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 02/27/2006] [Accepted: 02/27/2006] [Indexed: 11/07/2022]
Abstract
Substantial protection against the economically important parasitic nematode Haemonchus contortus has been achieved by immunizing sheep with a glycoprotein fraction isolated from the intestinal membranes of the worm (H-gal-GP). Previous studies showed that one of the major components of H-gal-GP is a family of at least 4 zinc metalloendopeptidases, designated MEPs 1–4. This paper describes aspects of the molecular architecture of this protease family, including the proteomic analysis of the MEP fraction of the H-gal-GP complex. These enzymes belong to the M13 zinc metalloendopeptidase family (EC 3.4.24.11), also known as neutral endopeptidases or neprilysins. The sequences of MEPs 1 and 3 suggested a typical Type II integral membrane protein structure, whilst MEPs 2 and 4 had putative cleavable signal peptides, typical of secreted proteins. Proteomic analysis of H-gal-GP indicated that the extracellular domain of all 4 MEPs had been cleaved close to the transmembrane region/signal peptide with additional cleavage sites mid-way along the polypeptide. MEP3 was present as a homo-dimer in H-gal-GP, whereas MEP1 or MEP2 formed hetero-dimers with MEP4. It was found that expression of MEP3 was confined to developing 4th-stage larvae and to adult worms, the stages of Haemonchus which feed on blood. MEP-like activity was detected in the H-gal-GP complex over a broad pH range (5–9). Since all 4 MEPs must share a similar microenvironment in the complex, this suggests that each might have a different substrate specificity.
Collapse
Affiliation(s)
- G F J Newlands
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 OPZ, Scotland.
| | | | | | | | | | | | | |
Collapse
|
38
|
Boldbaatar D, Sikalizyo Sikasunge C, Battsetseg B, Xuan X, Fujisaki K. Molecular cloning and functional characterization of an aspartic protease from the hard tick Haemaphysalis longicornis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2006; 36:25-36. [PMID: 16360947 DOI: 10.1016/j.ibmb.2005.10.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 10/07/2005] [Accepted: 10/13/2005] [Indexed: 05/05/2023]
Abstract
Haemaphysalis longicornis cDNA encoding an aspartic protease (longepsin) was identified from a midgut cDNA library. The longepsin cDNA contains 1176bp that code for 392 amino acid residues with a predictable molecular weight of 39.3kDa. The cDNA has a signal peptide sequence associated with the N-terminal domains and domain structure analysis revealed that the deduced protein has two aspartic acid residues that are characteristic of a single active site for aspartic proteases. This novel longepsin cDNA exhibits 57% identity to the lysosomal aspartic protease of Aedes aegypti, 52% to Bombyx mori cathepsin D, 38% to Ancylostoma caninum, 44% to Schistosoma mansoni and 28% to Boophilus microplus aspartic proteases. The DNA fragment coding for longepsin was cloned into a pGEX-4T-3 vector and expressed in Escherichia coli. The recombinant longepsin, once activated was able to hydrolyze casein substrate as well as hemoglobin (Hb) under acidic conditions (pH 3.5). RT-PCR analysis showed that the longepsin mRNA transcripts were expressed in salivary glands and midgut and not in the ovary. Northern blot analysis revealed that longepsin (1.5kb) was expressed in unfed and partially fed ticks and expression levels increased during feeding. The finding that longepsin is expressed in the midgut and salivary glands, proteolytic activity occurs under acidic conditions and longepsin can be gene silenced of longepsin provides compelling support for the hypothesis that longepsin plays an integral role in the proteolysis of erythrocyte Hb obtained from a host blood meal.
Collapse
Affiliation(s)
- Damdinsuren Boldbaatar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | |
Collapse
|
39
|
Fragoso RDR, Batista JAN, Neto OBO, Grossi de Sá MF. Isolation and characterization of a cDNA encoding a serine proteinase from the root-knot nematode Meloidogyne incognita. Exp Parasitol 2005; 110:123-33. [PMID: 15888294 DOI: 10.1016/j.exppara.2005.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 02/14/2005] [Accepted: 02/16/2005] [Indexed: 11/18/2022]
Abstract
This report describes the first serine proteinase gene isolated from the sedentary nematode Meloidogyne incognita. Using degenerate primers, a 1372bp cDNA encoding a chymotrypsin-like serine proteinase (Mi-ser1) was amplified from total RNA of adult females by RT-PCR and 5' and 3' rapid amplification of cDNA ends. The deduced amino acid sequence of Mi-ser1 encoded a putative signal peptide and a prodomain of 22 and 33 amino acids, respectively, and a mature proteinase of 341 amino acids with a predicted molecular mass of 37,680Da. Sequence identity with the top serine proteinases matches from the databases ranged from 23 to 27%, including sequences from insects, mammals, and other nematodes. Southern blot analysis suggested that Mi-ser1 is encoded by a single or few gene copies. The pattern of developmental expression analyzed by Northern blot and RT-PCR indicated that Mi-ser1 was transcribed mainly in females. The domain architecture composed of a single chymotrypsin-like catalytic domain and the detection of a putative signal peptide suggested a digestive role for Mi-ser1.
Collapse
|
40
|
Redmond DL, Windham R. Characterization of proteinases in different isolates of adult Haemonchus contortus. Parasitology 2004; 130:429-35. [PMID: 15830817 DOI: 10.1017/s0031182004006687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A high degree of intra- and inter-geographical variation has been demonstrated previously in the excretory/secretory proteinases released by adult Haemonchus contortus. Proteinase activity has also been associated with host-protective ‘hidden’ antigens isolated from the gut of adult H. contortus. If similar geographical strain variation also exists within the gut-associated proteinases, this will have important implications for the development of a globally effective vaccine. The proteinases active in integral-membrane protein extracts from 3 different strains of adult H. contortus were characterized on the basis of their pH optima and molecular size. Although enzyme activity was detected over a wide pH range, the majority of proteinase activity was detected at acidic pH. Differences in specific activity and size of enzymes were observed between the 3 different parasite strains at different pH values. A high degree of conservation in reactive peptides was observed when protein extracts were probed with antisera raised to the protective hidden gut-antigen complexes isolated from the Moredun strain of H. contortus, or to bacterially expressed subcomponents thereof. Therefore, despite the observed differences in membrane-bound proteinase profiles, the similarity of the immunogenic response against these hidden antigens may be sufficient to prove protective against different geographical isolates of H. contortus.
Collapse
Affiliation(s)
- D L Redmond
- Moredun Research Institute, International Research Centre, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, Scotland, UK.
| | | |
Collapse
|
41
|
Jolodar A, Fischer P, Büttner DW, Miller DJ, Schmetz C, Brattig NW. Onchocerca volvulus: expression and immunolocalization of a nematode cathepsin D-like lysosomal aspartic protease. Exp Parasitol 2004; 107:145-56. [PMID: 15363940 DOI: 10.1016/j.exppara.2004.06.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 05/03/2004] [Accepted: 06/24/2004] [Indexed: 11/18/2022]
Abstract
The N-terminal region of the cathepsin D-like aspartic protease from the human filarial parasite Onchocerca volvulus was expressed as His-tag fusion protein. Light and electron microscopic immunohistology using antibodies against the recombinant protein showed labeling of lysosomes in the hypodermis and epithelia of the intestine and the reproductive organs of Onchocerca. While developing oocytes were negative, mature oocytes and early morulae showed strong labeling. In older embryos and mature microfilariae, stained lysosomes were only found in a few cells. Cell death in degenerating microfilariae of patients untreated and treated with microfilaricidal drugs was associated with strong expression of aspartic protease. IgG1, IgG4, and IgE antibodies reactive with the recombinant protein were demonstrated in sera from onchocerciasis patients indicating exposure and recognition of the enzyme by the host's defence system. The aspartic protease of O. volvulus appears to function in intestinal digestion and tissue degradation of the filaria.
Collapse
Affiliation(s)
- Abbas Jolodar
- Tropical Medicine Section, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse, 74, 20359 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Morales ME, Kalinna BH, Heyers O, Mann VH, Schulmeister A, Copeland CS, Loukas A, Brindley PJ. Genomic organization of the Schistosoma mansoni aspartic protease gene, a platyhelminth orthologue of mammalian lysosomal cathepsin D. Gene 2004; 338:99-109. [PMID: 15302411 DOI: 10.1016/j.gene.2004.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 05/06/2004] [Accepted: 05/17/2004] [Indexed: 10/26/2022]
Abstract
Schistosomes are considered the most important of the helminth parasites of humans in terms of morbidity and mortality. Schistosomes employ proteolytic enzymes to digest host hemoglobin from ingested human blood, including a cathepsin D-like, aspartic protease that is overexpressed in the gut of the adult female schistosome. Because of its key role in parasite nutrition, this enzyme represents a potential intervention target. To continue exploration of this potential, here we have determined the sequence, structure and genomic organization of the cathepsin D gene locus of Schistosoma mansoni. Using the cDNA encoding S. mansoni cathepsin D as a probe, we isolated several positive bacterial artificial chromosomes (BAC) from a BAC library that represents an approximately 8-fold coverage of the schistosome genome. Sequencing of BAC clone 25-J-24 revealed that the cathepsin D gene locus was approximately 13 kb in length, and included seven exons interrupted by six introns. The exons ranged in length from 49 to 294 bp, and the introns from 30 to 5025 bp. The genomic organization of schistosome cathepsin D was similar in sequence, structure and complexity to human cathepsin D, including to a greater or lesser extent the conservation of all six exon/intron boundaries of the schistosome gene. It was less similar to aspartic protease genes of the nematodes Caenorhabditis elegans and Haemonchus contortus, and dissimilar to those of plasmepsins from malarial parasites. Examination of the introns revealed the presence of endogenous mobile genetic elements including SR2, the ASL-associated retrotransposon, and the SINE-like element, SMalpha. Phylogenetically, schistosome cathepsin D appeared to be more closely related to mammalian cathepsin D than to other sub-families of eukaryotic aspartic proteases known from mammals. Taken together, these features indicated that schistosome cathepsin D is a platyhelminth orthologue of mammalian lysosomal cathepsin D.
Collapse
Affiliation(s)
- Maria E Morales
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Knox DP, Redmond DL, Newlands GF, Skuce PJ, Pettit D, Smith WD. The nature and prospects for gut membrane proteins as vaccine candidates for Haemonchus contortus and other ruminant trichostrongyloids. Int J Parasitol 2004; 33:1129-37. [PMID: 13678629 DOI: 10.1016/s0020-7519(03)00167-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Substantial progress has been made in the last decade in identifying several antigens from Haemonchus contortus which, in their native form, stimulate useful levels of protective immunity (70-95% reductions in faecal egg output) in the ovine host. Much work has focussed on proteins/protein complexes expressed on the surface of the worm gut which are exposed to the blood meal, and, hence, antibody ingested with it. The antigens generally, but not in all cases, show protease activity and antibody is thought to mediate protective immunity by blocking the activity of enzymes involved in digestion within the worm. This review summarises the protective efficacy, as well as the biochemical and molecular properties, of the principal candidate antigens which are expressed in the gut of these parasites. Of course, such antigens will have to be expressed as recombinant proteins to be sufficiently cost-effective for use in a commercial vaccine and the current status of recombinant antigen expression is discussed with particular reference to conformation and glycosylation. There is a need for continued antigen definition even in the confines of gut antigens and potential targets can be selected from the rapidly expanding genome/EST datasets on the basis of predicted functional homology. Gene knockout technologies such as RNA interference have the potential to provide high throughput, rapid and inexpensive methods to define whether the protein product of a particular gene would be a suitable vaccine candidate.
Collapse
Affiliation(s)
- David P Knox
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Scotland, EH 26 0PZ, Midlothian, UK.
| | | | | | | | | | | |
Collapse
|
44
|
Smith WD, Skuce PJ, Newlands GFJ, Smith SK, Pettit D. Aspartyl proteases from the intestinal brush border of Haemonchus contortus as protective antigens for sheep. Parasite Immunol 2003; 25:521-30. [PMID: 15053773 DOI: 10.1111/j.0141-9838.2004.00667.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel pepsin-like aspartyl protease was identified as a component of Haemonchus galactose-containing glycoprotein (H-gal-GP), which is an integral membrane glycoprotein complex located on the intestinal cells of Haemonchus contortus, and a highly protective antigen for sheep. This molecule, designated HcPEP2, showed 50% sequence identity with a previously described aspartyl protease from H-gal-GP known as HcPEP1. Fractions of H-gal-GP, either containing both HcPEP1 and 2 or other lower molecular weight components of the complex, were evaluated as protective antigens in immunization - challenge trials in sheep. When separated from the rest of the complex by gel filtration in 8 m urea, the HcPEP1 and 2 fraction significantly reduced H. contortus egg counts by 48% and worm numbers by 36%, but the lower molecular weight components were not significantly protective. However, the HcPEP1 and 2 fraction did not protect if electro-eluted from SDS-dissociated H-gal-GP, nor did bacterially expressed recombinant HcPEP1, suggesting that conformational epitopes are important for inducing immunity.
Collapse
Affiliation(s)
- W D Smith
- Moredun Research Institute, Penicuik, Midlothian, UK
| | | | | | | | | |
Collapse
|
45
|
Williamson AL, Brindley PJ, Knox DP, Hotez PJ, Loukas A. Digestive proteases of blood-feeding nematodes. Trends Parasitol 2003; 19:417-23. [PMID: 12957519 DOI: 10.1016/s1471-4922(03)00189-2] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Blood-feeding parasites employ a battery of proteolytic enzymes to digest the contents of their bloodmeal. Host haemoglobin is a major substrate for these proteases and, therefore, a driving force in the evolution of parasite-derived proteolytic enzymes. This review will focus on the digestive proteases of the major blood-feeding nematodes - hookworms (Ancylostoma spp. and Necator americanus) and the ruminant parasite, Haemonchus contortus - but also compares and contrasts these proteases with recent findings from schistosomes and malaria parasites. Haematophagous nematodes express proteases of different mechanistic classes in their intestines, many of which have proven or putative roles in degradation of haemoglobin and other proteins involved in nutrition. Moreover, the fine specificity of the relationships between digestive proteases and their substrate proteins provides a new molecular paradigm for understanding host-parasite co-evolution. Numerous laboratories are actively investigating these molecules as antiparasite vaccine targets.
Collapse
Affiliation(s)
- Angela L Williamson
- Department of Microbiology and Tropical Medicine, George Washington University Medical Center, Washington DC 20037, USA
| | | | | | | | | |
Collapse
|
46
|
Yatsuda AP, Krijgsveld J, Cornelissen AWCA, Heck AJR, de Vries E. Comprehensive analysis of the secreted proteins of the parasite Haemonchus contortus reveals extensive sequence variation and differential immune recognition. J Biol Chem 2003; 278:16941-51. [PMID: 12576473 DOI: 10.1074/jbc.m212453200] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Haemonchus contortus is a nematode that infects small ruminants. It releases a variety of molecules, designated excretory/secretory products (ESP), into the host. Although the composition of ESP is largely unknown, it is a source of potential vaccine components because ESP are able to induce up to 90% protection in sheep. We used proteomic tools to analyze ESP proteins and determined the recognition of these individual proteins by hyperimmune sera. Following two-dimensional electrophoresis of ESP, matrix-assisted laser desorption ionization time-of-flight and liquid chromatography-tandem mass spectrometry were used for protein identification. Few sequences of H. contortus have been determined. Therefore, the data base of expressed sequence tags (dbEST) and a data base consisting of contigs from Haemonchus ESTs were also consulted for identification. Approximately 200 individual spots were observed in the two-dimensional gel. Comprehensive proteomics analysis, combined with bioinformatic search tools, identified 107 proteins in 102 spots. The data include known as well as novel proteins such as serine, metallo- and aspartyl proteases, in addition to H. contortus ESP components like Hc24, Hc40, Hc15, and apical gut GA1 proteins. Novel proteins were identified from matches with H. contortus ESTs displaying high similarity with proteins like cyclophilins, nucleoside diphosphate kinase, OV39 antigen, and undescribed homologues of Caenorhabditis elegans. Of special note is the finding of microsomal peptidase H11, a vaccine candidate previously regarded as a "hidden antigen" because it was not found in ESP. Extensive sequence variation is present in the abundant Hc15 proteins. The Hc15 isoforms are differentially recognized by hyperimmune sera, pointing to a possible specific role of Hc15 in the infectious process and/or in immune evasion. This concept and the identification of multiple novel immune-recognized components in ESP should assist future vaccine development strategies.
Collapse
Affiliation(s)
- Ana P Yatsuda
- Department of Infectious Diseases and Immunology, Utrecht University, PO Box 80165, 3508 TD, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
Dalton JP, Brindley PJ, Knox DP, Brady CP, Hotez PJ, Donnelly S, O'Neill SM, Mulcahy G, Loukas A. Helminth vaccines: from mining genomic information for vaccine targets to systems used for protein expression. Int J Parasitol 2003; 33:621-40. [PMID: 12782060 DOI: 10.1016/s0020-7519(03)00057-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The control of helminth diseases of people and livestock continues to rely on the widespread use of anti-helminthic drugs. However, concerns with the appearance of drug resistant parasites and the presence of pesticide residues in food and the environment, has given further incentive to the goal of discovering molecular vaccines against these pathogens. The exponential rate at which gene and protein sequence information is accruing for many helminth parasites requires new methods for the assimilation and analysis of the data and for the identification of molecules capable of inducing immunological protection. Some promising vaccine candidates have been discovered, in particular cathepsin L proteases from Fasciola hepatica, aminopeptidases from Haemonchus contortus, and aspartic proteases from schistosomes and hookworms, all of which are secreted into the host tissues or into the parasite intestine where they play important roles in host-parasite interactions. Since secreted proteins, in general, are exposed to the immune system of the host they represent obvious candidates at which vaccines could be targeted. Therefore, in this article, we consider the potential values and uses of algorithms for characterising cDNAs amongst the collated helminth genomic information that encode secreted proteins, and methods for their selective isolation and cloning. We also review the variety of prokaryotic and eukaryotic cell expression systems that have been employed for the production and downstream purification of recombinant proteins in functionally active form, and provide an overview of the parameters that must be considered if these recombinant proteins are to be commercialised as vaccine therapeutics in humans and/or animals.
Collapse
Affiliation(s)
- John P Dalton
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Newton SE, Meeusen ENT. Progress and new technologies for developing vaccines against gastrointestinal nematode parasites of sheep. Parasite Immunol 2003; 25:283-96. [PMID: 12969446 DOI: 10.1046/j.1365-3024.2003.00631.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite the identification of highly effective native antigens for vaccination against Haemonchus contortus, particularly 'hidden' antigens derived from the intestine of adult worms, to date similar efficacy has not been shown with recombinant antigens. In addition, progress towards identification of protective antigens from other sheep gastrointestinal (GI) nematode species is limited. Coupled with this is an incomplete understanding of the mechanism of natural immunity to GI nematodes, making selection of appropriate immunization strategies and adjuvants for evaluation of candidate 'natural' antigens problematic. The current explosion in new high-throughput technologies, arising from human studies, for analysis of the genome, transcriptome, proteome and glycome offers the opportunity to gain a better understanding of the molecular pathways underlying pathogen biology, the host immune system and the host-pathogen interaction. An overview is provided on how these technologies can be applied to parasite research and how they may aid in overcoming some of the current problems in development of commercial vaccines against GI nematode parasites.
Collapse
Affiliation(s)
- S E Newton
- Victorian Institute of Animal Science, 475 Mickleham Road, Attwood, Victoria, 3049, Australia
| | | |
Collapse
|
49
|
Jasmer DP, Karanu F, Davis WC, McGuire TS. Abomasal lymph node responses to Haemonchus contortus intestinal antigens established in kid goats by infection or immunization with intestinal antigens. Parasite Immunol 2003; 25:59-68. [PMID: 12791101 DOI: 10.1046/j.1365-3024.2003.00611.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immune responses to Haemonchus contortus intestinal antigens were evaluated using abomasal lymph node (ALN) lymphocytes from kid goats protected against challenge infection by immunization with parasite intestinal antigen, and from kids that were challenged after immunization with ovalbumin. ALN lymphocytes from the intestinal antigen-immunized group produced significantly higher antibody levels against intestinal antigens than the ovalbumin group, supporting the theory that immunization contributed to that ALN response. In contrast, intestinal lysates and membrane enriched preparations from intestinal cells stimulated significant proliferation of ALN lymphocytes in both groups. The proliferation was antigen-dependent, since intestinal antigens failed to stimulate proliferation in ALN lymphocytes from unimmunized and uninfected kids. For both the intestinal antigen and ovalbumin immunized groups, CD4+ T lymphocytes predominated in ALN lymphocytes that were stimulated to proliferate by intestinal antigens. The results indicate that H. contortus infection alone can induce ALN lymphocyte responses to intestinal antigens. In contrast to ALN lymphocyte responses, serum antibody against intestinal antigens was generally low to undetectable in ovalbumin-immunized kids following infection. Abomasal mucus from an H. contortus infected lamb was probed with a monoclonal antibody that binds to a periodate sensitive determinant on numerous H. contortus intestinal membrane and secreted proteins. Numerous bands of reactivity were detected, indicating that multiple parasite intestinal antigens were released into abomasal mucus during infection. The results, challenge the general concept that H. contortus intestinal antigens are 'hidden' from the host immune system during an infection. On the contrary, parasite intestinal proteins may be relatively abundant antigens presented to the host during infection. In addition, ALN T lymphocytes appear to provide a more sensitive measure than serum antibody to detect presentation of these antigens to the host immune system.
Collapse
Affiliation(s)
- Douglas P Jasmer
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman 99164-7040, USA.
| | | | | | | |
Collapse
|
50
|
Williamson AL, Brindley PJ, Abbenante G, Prociv P, Berry C, Girdwood K, Pritchard DI, Fairlie DP, Hotez PJ, Dalton JP, Loukas A. Cleavage of hemoglobin by hookworm cathepsin D aspartic proteases and its potential contribution to host specificity. FASEB J 2002; 16:1458-60. [PMID: 12205047 DOI: 10.1096/fj.02-0181fje] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hookworms routinely reach the gut of nonpermissive hosts but fail to successfully feed, develop, and reproduce. To investigate the effects of host-parasite coevolution on the ability of hookworms to feed in nonpermissive hosts, we cloned and expressed aspartic proteases from canine and human hookworms. We show here that a cathepsin D-like protease from the canine hookworm Ancylosotoma caninum (Ac-APR-1) and the orthologous protease from the human hookworm Necator americanus (Na-APR-1) are expressed in the gut and probably exert their proteolytic activity extracellularly. Both proteases were detected immunologically and enzymatically in somatic extracts of adult worms. The two proteases were expressed in baculovirus, and both cleaved human and dog hemoglobin (Hb) in vitro. Each protease digested Hb from its permissive host between twofold (whole molecule) and sixfold (synthetic peptides) more efficiently than Hb from the nonpermissive host, despite the two proteases' having identical residues lining their active site clefts. Furthermore, both proteases cleaved Hb at numerous distinct sites and showed different substrate preferences. The findings suggest that the paradigm of matching the molecular structure of the food source within a host to the molecular structure of the catabolic proteases of the parasite is an important contributing factor for host-parasite compatibility and host species range.
Collapse
Affiliation(s)
- Angela L Williamson
- Division of Infectious Diseases and Immunology, Queensland Institute of Medical Research, QLD, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|