1
|
Cripps SM, Mattiske DM, Pask AJ. Erectile Dysfunction in Men on the Rise: Is There a Link with Endocrine Disrupting Chemicals? Sex Dev 2021; 15:187-212. [PMID: 34134123 DOI: 10.1159/000516600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/18/2021] [Indexed: 11/19/2022] Open
Abstract
Erectile dysfunction (ED) is one of the most prevalent chronic conditions affecting men. ED can arise from disruptions during development, affecting the patterning of erectile tissues in the penis and/or disruptions in adulthood that impact sexual stimuli, neural pathways, molecular changes, and endocrine signalling that are required to drive erection. Sexual stimulation activates the parasympathetic system which causes nerve terminals in the penis to release nitric oxide (NO). As a result, the penile blood vessels dilate, allowing the penis to engorge with blood. This expansion subsequently compresses the veins surrounding the erectile tissue, restricting venous outflow. As a result, the blood pressure localised in the penis increases dramatically to produce a rigid erection, a process known as tumescence. The sympathetic pathway releases noradrenaline (NA) which causes detumescence: the reversion of the penis to the flaccid state. Androgen signalling is critical for erectile function through its role in penis development and in regulating the physiological processes driving erection in the adult. Interestingly, estrogen signalling is also implicated in penis development and potentially in processes which regulate erectile function during adulthood. Given that endocrine signalling has a prominent role in erectile function, it is likely that exposure to endocrine disrupting chemicals (EDCs) is a risk factor for ED, although this is an under-researched field. Thus, our review provides a detailed description of the underlying biology of erectile function with a focus on the role of endocrine signalling, exploring the potential link between EDCs and ED based on animal and human studies.
Collapse
Affiliation(s)
- Samuel M Cripps
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Deidre M Mattiske
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Rubio-Beltrán E, Correnti E, Deen M, Kamm K, Kelderman T, Papetti L, Vigneri S, MaassenVanDenBrink A, Edvinsson L. PACAP38 and PAC 1 receptor blockade: a new target for headache? J Headache Pain 2018; 19:64. [PMID: 30088106 PMCID: PMC6081277 DOI: 10.1186/s10194-018-0893-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide-38 (PACAP38) is a widely distributed neuropeptide involved in neuroprotection, neurodevelopment, nociception and inflammation. Moreover, PACAP38 is a potent inducer of migraine-like attacks, but the mechanism behind this has not been fully elucidated. Migraine is a neurovascular disorder, recognized as the second most disabling disease. Nevertheless, the antibodies targeting calcitonin gene-related peptide (CGRP) or its receptor are the only prophylactic treatment developed specifically for migraine. These antibodies have displayed positive results in clinical trials, but are not effective for all patients; therefore, new pharmacological targets need to be identified. Due to the ability of PACAP38 to induce migraine-like attacks, its location in structures previously associated with migraine pathophysiology and the 100-fold selectivity for the PAC1 receptor when compared to VIP, new attention has been drawn to this pathway and its potential role as a novel target for migraine treatment. In accordance with this, antibodies against PACAP38 (ALD 1910) and PAC1 receptor (AMG 301) are being developed, with AMG 301 already in Phase II clinical trials. No results have been published so far, but in preclinical studies, AMG 301 has shown responses comparable to those observed with triptans. If these antibodies prove to be effective for the treatment of migraine, several considerations should be addressed, for instance, the potential side effects of long-term blockade of the PACAP (receptor) pathway. Moreover, it is important to investigate whether these antibodies will indeed represent a therapeutic advantage for the patients that do not respond the CGRP (receptor)-antibodies. In conclusion, the data presented in this review indicate that PACAP38 and PAC1 receptor blockade are promising antimigraine therapies, but results from clinical trials are needed in order to confirm their efficacy and side effect profile.
Collapse
Affiliation(s)
- Eloisa Rubio-Beltrán
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Edvige Correnti
- Department of Child Neuropsychiatry, University of Palermo, Palermo, Italy
| | - Marie Deen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Katharina Kamm
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Tim Kelderman
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Laura Papetti
- Headache Center, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Simone Vigneri
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo; Pain Medicine Unit, Santa Maria Maddalena Hospital, Occhiobello, Italy
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lars Edvinsson
- Department of Internal Medicine, Institute of Clinical Sciences, Lund University, Lund, Sweden
| | | |
Collapse
|
3
|
Rahardjo HE, Reichelt K, Sonnenberg JE, Sohn M, Kuczyk MA, Ückert S. Effects of endopeptidase inhibition on the relaxation response of isolated human penile erectile tissue to vasoactive peptides. Andrologia 2016; 48:1214-1219. [PMID: 27062177 DOI: 10.1111/and.12562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2016] [Indexed: 11/29/2022] Open
Abstract
Peptides, such as CNP, CGRP and VIP, are involved in the function of male penile erectile tissue. Tissue levels of said peptides are controlled by the endopeptidase enzymes. Theoretically, the inhibition of the degradation of CNP, CGRP and/or VIP should result in an enhancement in penile smooth muscle relaxation. The effects were investigated of CNP or VIP (0.1 nm-1 μm), without and following pre-exposure of the tissue to a threshold concentration of the endopeptidase inhibitor KC 12615 (10 μm, for 20 min), on the reversion of tension induced by means of electrical field stimulation. Drug effects on the production of cyclic AMP/GMP were also evaluated. Neither KC 12615, CNP and VIP nor the combination of CNP plus KC 12615 or VIP plus KC 12615 increased the response of the tissue to EFS. While no effects were observed of a pre-exposure of the tissue to KC 12615 on the production of cyclic AMP in the presence of VIP, an enhancement was registered in the accumulation of cyclic AMP in the presence of CNP plus KC 12615. Further studies are indicated to investigate whether endopeptidase inhibitors might tend to be more effective in tissues affected by a decreased local production of vasoactive peptides.
Collapse
Affiliation(s)
- H E Rahardjo
- Department of Urology, Cipto Mangunkusumo Hospital, University of Indonesia School of Medicine, Jakarta, Indonesia
| | - K Reichelt
- Division of Surgery, Department of Urology & Urological Oncology, Hannover Medical School, Hannover, Germany
| | - J E Sonnenberg
- Urological Research Unit, Institute for Biochemical Research & Analysis, Barsinghausen am Deister, Germany
| | - M Sohn
- Department of Urology, AGAPLESION St. Markus Hospital, Frankfurt am Main, Germany
| | - M A Kuczyk
- Division of Surgery, Department of Urology & Urological Oncology, Hannover Medical School, Hannover, Germany
| | - S Ückert
- Division of Surgery, Department of Urology & Urological Oncology, Hannover Medical School, Hannover, Germany.,Urological Research Unit, Institute for Biochemical Research & Analysis, Barsinghausen am Deister, Germany
| |
Collapse
|
4
|
Zhang MG, Shen ZJ, Zhang CM, Wu W, Gao PJ, Chen SW, Zhou WL. Vasoactive intestinal polypeptide, an erectile neurotransmitter, improves erectile function more significantly in castrated rats than in normal rats. BJU Int 2011; 108:440-446. [DOI: 10.1111/j.1464-410x.2010.09901.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
|
5
|
Müller D, Greenland KJ, Speth RC, Middendorff R. Neuronal differentiation of NG108-15 cells has impact on nitric oxide- and membrane (natriuretic peptide receptor-A) cyclic GMP-generating proteins. Mol Cell Endocrinol 2010; 320:118-27. [PMID: 20097258 DOI: 10.1016/j.mce.2010.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 12/17/2022]
Abstract
Cyclic GMP (cGMP), produced in response to either nitric oxide (NO) or certain peptides, controls important neuronal functions. NG108-15 cells were used to characterize the expression of NO- and cGMP-generating proteins and to identify potential alterations associated with neuronal differentiation (neurite outgrowth). We find that these cells contain exclusively neuronal NO synthase (nNOS) isoforms as well as both NO- (soluble guanylyl cyclase, sGC) and natriuretic peptide- (natriuretic peptide receptor-A, NPR-A) responsive cGMP-producing enzymes. The sGC beta(1) subunit (unlike protein phosphatase 2A subunits) is highly membrane-associated. Membrane concentrations of NPR-A and nNOS, but not sGC beta(1) protein are up-regulated with neuronal differentiation. Intriguingly, the rate of hormone-induced cGMP production by NPR-A is significantly diminished in differentiated cells. These findings support roles for NPR-A, the common receptor of atrial (ANP) and B-type (BNP) natriuretic peptide in mature neurons and provide evidence for pronounced changes in neuronal submembrane cGMP signalling during neuronal differentiation.
Collapse
Affiliation(s)
- Dieter Müller
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, 35385 Giessen, Germany.
| | | | | | | |
Collapse
|
6
|
Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BKC, Hashimoto H, Galas L, Vaudry H. Pituitary Adenylate Cyclase-Activating Polypeptide and Its Receptors: 20 Years after the Discovery. Pharmacol Rev 2009; 61:283-357. [DOI: 10.1124/pr.109.001370] [Citation(s) in RCA: 829] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
7
|
Vlachopoulos C, Ioakeimidis N, Terentes-Printzios D, Rokkas K, Aznaouridis K, Baou K, Bratsas A, Fassoulakis C, Stefanadis C. Amino-Terminal Pro-C-Type Natriuretic Peptide is Associated with the Presence, Severity, and Duration of Vasculogenic Erectile Dysfunction. Eur Urol 2009; 56:552-8. [DOI: 10.1016/j.eururo.2008.11.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 11/12/2008] [Indexed: 01/31/2023]
|
8
|
Kun A, Kiraly I, Pataricza J, Marton Z, Krassoi I, Varro A, Simonsen U, Papp JG, Pajor L. C-Type Natriuretic Peptide Hyperpolarizes and Relaxes Human Penile Resistance Arteries. J Sex Med 2008; 5:1114-1125. [DOI: 10.1111/j.1743-6109.2008.00775.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Muller JM, Debaigt C, Goursaud S, Montoni A, Pineau N, Meunier AC, Janet T. Unconventional binding sites and receptors for VIP and related peptides PACAP and PHI/PHM: an update. Peptides 2007; 28:1655-66. [PMID: 17555844 DOI: 10.1016/j.peptides.2007.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2007] [Revised: 03/23/2007] [Accepted: 04/10/2007] [Indexed: 11/25/2022]
Abstract
The 28-amino-acid neuropeptide VIP and related peptides PACAP and PHI/PHM modulate virtually all of the vital functions in the body. These peptides are also commonly recognized as major regulators of cell growth and differentiation. Through their trophic and cytoprotective functions, they appear to play major roles in embryonic development, neurogenesis and the progression of a number of cancer types. These peptides bind to three well-characterized subtypes of G-protein coupled receptors: VPAC1 and VPAC2 share a common high affinity in the nanomolar range for VIP and PACAP; a third receptor type, PAC1, has been characterized for its high affinity for PACAP but its low affinity for VIP. Complex effects and pharmacological behaviors of these peptides suggest that multiple subtypes of binding sites may cooperate to mediate their function in target cells and tissues. In this complex response, some of these binding sites correspond to the definition of the conventional receptors cited above, while others display unexpected pharmacological and functional properties. Here we present potential clues that may lead investigators to further characterize the molecular nature and functions of these atypical binding species.
Collapse
Affiliation(s)
- Jean-Marc Muller
- Institut de Physiologie et Biologie Cellulaires, UMR CNRS 6187, Université de Poitiers, Pôle Biologie-Santé, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
10
|
Müller D, Cortes-Dericks L, Budnik LT, Brunswig-Spickenheier B, Pancratius M, Speth RC, Mukhopadhyay AK, Middendorff R. Homologous and lysophosphatidic acid-induced desensitization of the atrial natriuretic peptide receptor, guanylyl cyclase-A, in MA-10 leydig cells. Endocrinology 2006; 147:2974-85. [PMID: 16527839 DOI: 10.1210/en.2006-0092] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cardiac hormone atrial natriuretic peptide (ANP) signals via interaction with a plasma membrane receptor, which has guanylyl cyclase (GC) activity and is referred to as GC-A. Desensitization of GC-A is thought to represent a physiologically important regulatory mechanism, but the signaling pathways implicated and cell type-specific effects are still poorly understood. Here we demonstrate that sustained exposure to either ANP itself or the bioactive lipid lysophosphatidic acid (LPA) elicits GC-A desensitization in MA-10 Leydig cells. Both reactions show similar kinetics and evoke equal decreases (by 40%) in GC-A hormone responsiveness. Homologous (ANP induced) desensitization, in which cGMP is generated as second messenger, is blocked by distinct cAMP-dependent protein kinase [protein kinase A (PKA)] inhibitors, H 89, and Rp-8-CPT-cAMPs, providing evidence that PKA mediates the reaction. Accordingly, the ANP/cGMP-elicited effects are mimicked by a cAMP analog, 8-bromo-cAMP. The LPA-induced (heterologous) desensitization is not blocked by PKA inhibition, indicating a different signaling pathway. LPA, but not ANP, enhances ERK phosphorylation and induces cell rounding together with a dramatic reorganization of actin filaments. Consistent with the identification of LPA receptor (LPA2 and LPA3) gene expression, the findings are indicative of LPA receptor-mediated reactions. This study demonstrates for the first time coexistence of homologous and heterologous desensitization of GC-A in the same cell type, reveals that these reactions are mediated by different pathways, and identifies a novel cross talk between phospholipid and natriuretic peptide signaling. The morphoregulatory activities exerted by LPA suggest a crucial role for Leydig cell physiology.
Collapse
Affiliation(s)
- Dieter Müller
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
INTRODUCTION Penile erection depends on cavernous smooth muscle relaxation that is principally regulated by cyclic nucleotide signaling. It is hoped that a comprehensive review of publications relevant to this subject will be helpful to both scientists and clinicians who are interested in the sciences of erectile function/dysfunction. AIMS. To review the roles of extracellular signaling molecules, their receptors, intracellular effectors, and phosphodiesterases in cyclic nucleotide signaling that leads to cavernous smooth muscle relaxation. The involvement of these molecules in the development of erectile dysfunction and the possibility of using them as therapeutic agents or targets are also discussed. METHODS Entrez, the search engine for life sciences, was used to search for publications relevant to the topics of this review. Keywords used in the searches included vascular, cavernous, penis, smooth muscle, signaling molecules (adenosine, nitric oxide, etc.), and key elements in the cyclic nucleotide signaling pathways (cAMP, cGMP, cyclases, PKG, PKA, etc.). Articles that are dedicated to the study of erectile function/dysfunction were prioritized for citation. RESULTS More than 1,000 articles were identified, many of which are studies of the vascular system and are therefore reviewed but not cited. Studies on erectile function have identified both cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) signaling pathways in cavernous smooth muscle. Many signaling molecules of these two pathways have been shown capable of inducing erection when administered intracavernously. However, for sexually induced erection, nitric oxide (NO) is the responsible signaling molecule and it passes on the signal through soluble guanyl cyclase (sGC), cGMP, and protein kinase G (PKG). CONCLUSIONS The NO/sGC/cGMP/PKG pathway is principally responsible for sexually stimulated erection. Detumescence is mainly carried out by the degradation of cGMP by phosphodiesterase 5. Both cAMP and cGMP signaling pathways are susceptible to genetic and biochemical alterations in association with erectile dysfunction. Several key elements along these pathways are potential therapeutic targets.
Collapse
Affiliation(s)
- Ching-Shwun Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, University of California, San Francisco, CA 94143-1695, USA.
| | | | | |
Collapse
|
12
|
Christ GJ. Membrane bound guanylyl cyclase as a potential molecular target for the treatment of erectile dysfunction. J Urol 2003; 169:1923. [PMID: 12686874 DOI: 10.1097/01.ju.0000062641.81508.41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|