1
|
Troger J, Theurl M, Kirchmair R, Pasqua T, Tota B, Angelone T, Cerra MC, Nowosielski Y, Mätzler R, Troger J, Gayen JR, Trudeau V, Corti A, Helle KB. Granin-derived peptides. Prog Neurobiol 2017; 154:37-61. [PMID: 28442394 DOI: 10.1016/j.pneurobio.2017.04.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 12/14/2022]
Abstract
The granin family comprises altogether 7 different proteins originating from the diffuse neuroendocrine system and elements of the central and peripheral nervous systems. The family is dominated by three uniquely acidic members, namely chromogranin A (CgA), chromogranin B (CgB) and secretogranin II (SgII). Since the late 1980s it has become evident that these proteins are proteolytically processed, intragranularly and/or extracellularly into a range of biologically active peptides; a number of them with regulatory properties of physiological and/or pathophysiological significance. The aim of this comprehensive overview is to provide an up-to-date insight into the distribution and properties of the well established granin-derived peptides and their putative roles in homeostatic regulations. Hence, focus is directed to peptides derived from the three main granins, e.g. to the chromogranin A derived vasostatins, betagranins, pancreastatin and catestatins, the chromogranin B-derived secretolytin and the secretogranin II-derived secretoneurin (SN). In addition, the distribution and properties of the chromogranin A-derived peptides prochromacin, chromofungin, WE14, parastatin, GE-25 and serpinins, the CgB-peptide PE-11 and the SgII-peptides EM66 and manserin will also be commented on. Finally, the opposing effects of the CgA-derived vasostatin-I and catestatin and the SgII-derived peptide SN on the integrity of the vasculature, myocardial contractility, angiogenesis in wound healing, inflammatory conditions and tumors will be discussed.
Collapse
Affiliation(s)
- Josef Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Markus Theurl
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Rudolf Kirchmair
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Teresa Pasqua
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Bruno Tota
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Tommaso Angelone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Maria C Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Yvonne Nowosielski
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Raphaela Mätzler
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jasmin Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Vance Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Angelo Corti
- Vita-Salute San Raffaele University and Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Karen B Helle
- Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|
2
|
Gramlich OW, Lorenz K, Grus FH, Kriechbaum M, Ehrlich D, Humpel C, Fischer-Colbrie R, Bechrakis NE, Troger J. Catestatin-like immunoreactivity in the rat eye. Neuropeptides 2014; 48:7-13. [PMID: 24331778 DOI: 10.1016/j.npep.2013.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/31/2013] [Accepted: 11/14/2013] [Indexed: 02/06/2023]
Abstract
The aim of the study was to investigate the presence and distribution of the chromogranin A-derived peptide catestatin in the rat eye and trigeminal ganglion by immunofluorescence using an antibody which recognizes not only free catestatin but also larger fragments containing the sequence of catestatin. Western blots were performed in an attempt to characterize the immunoreactivities detected by the catestatin antiserum. Sparse immunoreactive nerve fibers were visualized in the corneal stroma, in the chamber angle, in the sphincter muscle but also in association with the dilator muscle, in the stroma of the ciliary body and processes, but dense in the irideal stroma, around blood vessels at the limbus and in the choroid and in cells of the innermost retina representing amacrine cells as identified by colocalization with substance P. Furthermore, catestatin-immunoreactivity was detected in the trigeminal ganglion in small to medium-sized cells and there were abundant catestatin-positive nerve fibers stained throughout the stroma of the ganglion. Double immunofluorescence of catestatin with substance P revealed colocalization both in cells of the trigeminal ganglion as well as in nerve fibers in the choroid. The immunoreactivities are present obviously as free catestatin and/or small-sized catestatin-containing fragments in the retina and ocular nerves but as large processed fragments as well, weak in the retina and more prominent in remaining ocular tissues, possibly in endothelial cells. This indicates that this peptide is a constituent of sensory neurons innervating the rat eye and the presence in amacrine cells in the retina is typical for neuropeptides. Catestatin is biologically highly active and might be of significance in the pathophysiology of the eye.
Collapse
Affiliation(s)
- Oliver W Gramlich
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Katrin Lorenz
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Franz H Grus
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Maren Kriechbaum
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Daniela Ehrlich
- Laboratory of Psychiatry and Experimental Alzheimers Research, Department of Psychiatry and Psychotherapy, Anichstraße 35, 6020 Innsbruck, Austria
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimers Research, Department of Psychiatry and Psychotherapy, Anichstraße 35, 6020 Innsbruck, Austria
| | - Reiner Fischer-Colbrie
- Department of Pharmacology, Medical University of Innsbruck, Peter Mayrstraße 1a, 6020 Innsbruck, Austria
| | | | - Josef Troger
- Department of Ophthalmology, Medical University of Innsbruck, Austria.
| |
Collapse
|
3
|
Lorenz K, Gramlich OW, Grus FH, Ehrlich D, Humpel C, Nogalo M, Fischer-Colbrie R, Bechrakis NE, Hattmannstorfer R, Troger J. GE-25-like immunoreactivity in the rat eye. Peptides 2012; 36:286-91. [PMID: 22634234 DOI: 10.1016/j.peptides.2012.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 02/01/2023]
Abstract
This study aimed to investigate the presence and distribution of the chromogranin A-derived peptide GE-25 in the rat eye. The molecular form detected by the GE-25 antiserum was evaluated in the rat trigeminal ganglion, retina and remaining tissues of the rat eye by means of Western blots and the distribution pattern of GE-25-like immunoreactivity was studied in the rat eye and rat trigeminal ganglion by immunofluorescence. One single band of approximately 70kDa was stained in the trigeminal ganglion and retina which represents the uncleaved intact chromogranin A indicating that the proteolytic processing of chromogranin A to GE-25 is limited in these tissues. Sparse GE-25-like immunoreactive nerve fibers were visualized in the corneal stroma, at the limbus around blood vessels, in the sphincter and dilator muscle and stroma of the iris, in the stroma of the ciliary body and ciliary processes and in the stroma and around blood vessels in the choroid. This distribution pattern is characteristic for neuropeptides whereas the presence of immunoreactivity in the corneal endothelium and in Müller glia in the retina is atypical. GE-25-like immunoreactivity was found in small to medium-sized ganglion cells in the rat trigeminal ganglion clearly indicating that the nerve fibers in the rat eye are of sensory origin. The colocalization of GE-25-immunoreactivity with SP-immunoreactivity in the rat ciliary body is in agreement with the presumption of the sensory nature of the innervation of the anterior segment of the eye by GE-25.
Collapse
Affiliation(s)
- Katrin Lorenz
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Lorenz K, Troger J, Gramlich O, Grus F, Hattmannstorfer R, Fischer-Colbrie R, Joachim S, Schmid E, Teuchner B, Haas G, Bechrakis N. PE-11, a peptide derived from chromogranin B, in the rat eye. Peptides 2011; 32:1201-6. [PMID: 21439336 DOI: 10.1016/j.peptides.2011.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/14/2011] [Accepted: 03/14/2011] [Indexed: 10/18/2022]
Abstract
The aim of the study was to investigate the presence and distribution of PE-11, a peptide derived from chromogranin B, in the rat eye. For this purpose, newborn rats were injected with a single dosage of 50mg/kg capsaicin subcutaneously under the neck fold and after three months, particular eye tissues were dissected and the concentration of PE-11-like immunoreactivity was determined by radioimmunoassay. Furthermore, PE-11-like immunoreactivities were characterized in an extract of the rat eye by reversed phase HPLC. Then, the distribution pattern of PE-11 was investigated in the rat eye and rat trigeminal ganglion by immunofluorescence. As a result, PE-11 was present in each tissue of the rat eye and capsaicin pretreatment led to a 88.05% (±7.07) and a 64.26% (±14.17) decrease of the levels of PE-11 in the cornea and choroid/sclera, respectively, and to a complete loss in the iris/ciliary body complex. Approximately 70% of immunoreactivities detected by the PE-11 antiserum have been found to represent authentic PE-11. Sparse nerve fibers were visualized in the corneal and uveal stroma, surrounding blood vessels at the limbus, ciliary body and choroid and in association with the dilator and sphincter muscle. Furthermore, immunoreactivity was present in the corneal endothelium. In the retina and optic nerve, glia was labeled. In the rat trigeminal ganglion, PE-11-immunoreactivity was visualized in small and medium sized ganglion cells with a diameter of up to 30μm. In conclusion, there is unequivocal evidence that PE-11 is a constituent of capsaicin-sensitive sensory neurons innervating the rat eye and the distribution pattern is typically peptidergic in the peripheral innervation but in the retina completely atypical for neuropeptides and unique.
Collapse
Affiliation(s)
- Katrin Lorenz
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Processing of chromogranins/secretogranin in patients with diabetic retinopathy. ACTA ACUST UNITED AC 2010; 167:118-24. [PMID: 21185877 DOI: 10.1016/j.regpep.2010.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/11/2010] [Accepted: 12/15/2010] [Indexed: 12/12/2022]
Abstract
AIMS Inflammation has been linked to the development of diabetic retinopathy (DR). Chromogranins A, B (CgA, CgB) and secretogranin II (SgII), are prohormones overexpressed in inflammatory diseases. The present study was conducted to evaluate the presence and processing of these prohormones in the vitreous of patients with DR (DV), compared with nondiabetic vitreous (NDV). METHODS Thirteen DV and 14 NDV samples were collected during vitreoretinal surgery. ELISA, Western blot, RP-HPLC, dot blot, protein sequencing and mass spectrometry were used to study the quantitative expression and the processing of CgA, CgB and SgII. RESULTS CgA, CgB and SgII presence was higher in DV than in NDV. Mean concentration of CgA evaluated by ELISA was 90.8 (± 90.1) n L⁻¹ in DV vs. 29.7 (±20.9) in NDV (p=0.039). In NDV, Western blot indicated that only short CgB-derived peptides were identified. In DV, proteomic analyses showed that long CgA-, CgB- and SgII-derived fragments and α1-antitrypsin were overexpressed, suggesting possible inhibition of the proteolytic process. CONCLUSIONS This study shows differences in the presence and endogenous processing of CgA, CgB and SgII from DV vs. NDV. In DV, the increase of complete granins and the attenuation of their endogenous proteolytic processing could participate in DR progression by reducing the presence of regulatory peptides, important for the pro-/anti-angiogenic balance in the eye.
Collapse
|
6
|
Helle KB. The granin family of uniquely acidic proteins of the diffuse neuroendocrine system: comparative and functional aspects. Biol Rev Camb Philos Soc 2005; 79:769-94. [PMID: 15682870 DOI: 10.1017/s146479310400644x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The chromogranins A (CgA) and B (CgB) and secretogranin II (SgII) constitute the main members of a family of uniquely acidic secretory proteins in elements of the diffuse neuroendocrine system. These genetically distinct proteins, CgA, CgB, SgII and the less well known secretogranins III-VII are collectively referred to as 'granins' and characterised by numerous pairs of basic amino acids as potential cleavage sites for processing by the co-stored prohormone converting enzymes PC 1/3 and PC2. This review is directed towards comparative and functional aspects of the granins with emphasis on their phylogenetically conserved sequences. Recent developments provide ample evidence of widely different effects and targets for the intact granins and their derived peptides, intracellularly in the directed trafficking of storage components during granule maturation and extracellularly in autocrine, paracrine and endocrine interactions. Most of the effects assigned to the granin derived peptides fit into patterns of direct or indirect inhibitory modulations of major functions. So far, peptides derived from CgA (vasostatins, chromacin, pancreastatin, WE-14, catestatin and parastatin), CgB (secretolytin) and SgII (secretoneurin) are the most likely candidates for granin-derived regulatory peptides, of postulated relevance not only for homeostatic processes, but also for tissue assembly and repair, inflammatory responses and the first line of defence against invading microorganisms.
Collapse
Affiliation(s)
- Karen B Helle
- Department of Biomedicine, Division of Physiology, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| |
Collapse
|
7
|
Quinn JG, Curry WJ, Norlén P. Effect of reserpine on the generation of the chromogranin A-derived neuropeptide WE-14 in rat oxyntic mucosa. ACTA ACUST UNITED AC 2005; 124:1-6. [PMID: 15544835 DOI: 10.1016/j.regpep.2004.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2003] [Revised: 06/15/2004] [Accepted: 06/17/2004] [Indexed: 10/26/2022]
Abstract
WE-14, a post-translational product of the neuroendocrine protein chromogranin A (CgA), is generated in distinct subpopulations of endocrine cells. The objective of this study was to investigate the generation of WE-14 in the endocrine cell types of the oxyntic mucosa of the stomach, after treatment with reserpine, an irreversible inhibitor of vesicular monoamine uptake 2 (VMAT2). Reserpine (10 mg/kg) was administered subcutaneously and tissue analysed 1, 3, 5 and 18 h following treatment. The oxyntic mucosa was analysed immunohistochemically employing a site-specific WE-14 antiserum, a region-specific CgA antiserum and an antiserum against histidine decarboxylase (HDC), a marker of the histamine-producing ECL cells in the oxyntic mucosa. The number of oxyntic endocrine cells exhibiting WE-14 immunostaining increased more than 100-fold 18 h after reserpine administration relative to vehicle treated controls. Double immunostaining with HDC revealed that most, but not all, of the WE-14 positive cells were ECL cells. These results suggest that reserpine has the ability to influence the post-translational processing of CgA to generate WE-14 in rat stomach ECL cells, presumably as a consequence of reduced VMAT2-driven accumulation of histamine.
Collapse
Affiliation(s)
- J G Quinn
- Ophthalmology and Vision Science Research Centre, Institute of Clinical Science, Queen's University Belfast, Grosvenor Road, Belfast, BT12 6BA, Northern Ireland, United Kingdom
| | | | | |
Collapse
|
8
|
Curry WJ, Brockbank S, McCollum AP, Boyle C, Gibson D. Localisation of WE-14 immunoreactivity in the developing mouse limbo-corneal nerve net. Microsc Res Tech 2003; 62:408-14. [PMID: 14601146 DOI: 10.1002/jemt.10393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
WE-14 is generated in subpopulations of chromogranin A immunopositive endocrine cells and neurons including those innervating the anterior uvea. This study investigated WE-14 in intact sclero-limbo-corneal tissue from embryonic (E17), neonatal (N0-N16), and adult mice using immunocytochemistry and confocal scanning laser microscopy. Weak WE-14 immunostaining was observed at birth in nerve fibre tracts entering the corneal mid-stroma from the limbo-scleral junction. Immunopositive fibre tracts were evident throughout the cornea at N3; by N5 the mid-stromal plexus had begun to generate fibre populations extending toward the developing corneal epithelium, and some varicose fibres terminated amongst the developing epithelium. Immunostaining was evident at N7 in the developing limbo-scleral nerve net and some fibres exhibited a close association with unidentified vascular elements. By N11 and in subsequent neonates, the cornea had developed a distinct stratified nerve net composed of thick mid-stromal and thinner upper stromal nerve fibre bundles; both possessed populations of varicose WE-14 immunopositive fibres. In the adult, a sub-epithelial network of varicose WE-14 immunopositive fibres were evident at the limbo-scleral junction. Some fibres exhibited a close association with unidentified vascular elements, while others extended into the upper peripheral corneal stroma. WE-14 was evident in leashes throughout the basal corneal epithelium and generated fibres ramifying between the stratified epithelium with some fibres terminating amongst the outermost corneal epithelia. This study has demonstrated that WE-14 was evident in the limbo-corneal nerve net at birth and that its detection parallels corneal development to adulthood, where WE-14 is evident in a subpopulation of nerve fibres.
Collapse
Affiliation(s)
- William James Curry
- Centre of Ophthalmology and Vision Science, institute of Clinical Science, The Queen's University of Belfast, BT12 6BA, North Ireland, United Kingdom.
| | | | | | | | | |
Collapse
|